
 A Data Integration Framework for Additive Manufacturing Big Data Management

Milica Perišić1, Dimitrije Milenković2, Yan Lu3, Albert Jones3, Nenad Ivezić3, Boonserm Kulvatunyou3

1Faculty of Organizational Sciences, University of Belgrade, Serbia
2TX Services, Serbia

3Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, MD

Abstract
Large amounts of data are generated throughout the entire, AM, part-development lifecycle. Data
are generated by various functions within process monitoring, material characterization,
equipment status, and part qualification. Hence, data integration and management are critical in
streamlining, accelerating, certifying, and deploying these functions. However, achieving that
integration and management has several challenges because AM data embodies the four
characteristics of Big Data - volume, velocity, variety, and veracity. This paper proposes an AM
framework as a foundation for addressing those challenges. In the framework, AM data are
streamed, curated, and configured automatically for real-time analysis and batch processing, which
increases the effectiveness of archiving and querying that data. The framework also includes a
description of the associated AM metadata, which links the various data types and improves
browsing, discovering, and analyzing that data. Finally, the framework can be used to derive
requirements for standards that enable data sharing.

1. Introduction
Large amounts of data are generated through the entire AM development lifecycle. Data is
generated and collected for material characterization, process monitoring, part qualification, etc.
Hence, integrating and managing this data is critical in streamlining, accelerating, certifying, and
deploying those functions. However, successfully integrating and managing this data introduces
several new challenges because AM data embodies the four characteristics of Big Data - volume,
velocity, variety, and veracity. Moreover, addressing these challenges is critical for advancing the
capabilities and use of AM production technologies.

Today, AM technologies are mainly used for rapid prototyping; but they are slowly emerging as a
commonly used production technology in several industry sectors [1]. AM data integration is one
of the top roadblocks to completely automated production management. A major reason for this
roadblock is the lack of established methods and standards that allow a quick, “plug-N-play” type
of integration of AM data sources with various manufacturing and enterprise applications. For
example, the large amounts of high-speed, in-process, monitoring data such as melt pool images
cannot be acquired, and automatically processed for real-time, or near-real-time control.

A “divide and conquer” approach is proposed in this paper to create a data integration framework
that addresses these issues. The framework has seven functional steps, which are discussed in the
next section, including Defining Dataset/Data Source, Collecting Data, Queueing Data, Archiving
Data, Downgrading Data Amount, Building Decision Models, and Using Decision Models. In
addition, the paper offers a guide for using the framework with the current industry standards.

1419

Solid Freeform Fabrication 2021: Proceedings of the 32nd Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper

2. A Big Data Integration Framework

Figure 1 presents a framework that can facilitate the creation of a big data integration system that
would enable real-time monitoring and control and long-term data archiving for offline analyses.
The framework consists of seven steps. Step one provides a clear definition of data that comes to
the system and ensures that future misunderstandings between the data provider and the system
maintainer would be avoided. Step two collects or receives the data from the data provider and
enters it into the system to be further processed. Step three prevents the system from being
overwhelmed by queueing raw data until it can be processed and stored in the system. Step four
decides how the data is stored, which is the key to having a stable and tenable system that makes
data accessible both using queries and bulk downloads. Step five achieves a sustainable system
by reducing and managing the data size and saving only the data necessary for future use cases.
Step six creates new value by building Decision-Making algorithms and models that use the stored
data as inputs. Step seven creates programs that automatically allow use of the system through
alarms, monitoring reports, and automatic actions. Each step is discussed separately with the aim
to emphasize the new standards that are needed.

Figure 1. A big data integration framework
2.1 Defining a Data Source
A clear definition of a data source and its data is critically important both for the Data Provider
and for the System Maintainer because it ensures that both parties have the same understanding of
that data. Such a definition represents a joint agreement between the Data Provider and the System

1

2

5

3

7

4

6

1420

Maintainer. Moreover, if this definition is not standardized and defined, it can cause
misunderstandings throughout the whole life cycle. Three important descriptions are needed to
create a standardized definition.
2.1.1 Data-Source description: Data-source description provides the information about the
device that generates the data as well as the measurement associated with the data. “Data Source
Name” specifies the name of the data source. “Data Source Type” is necessary to indicate its
physical characteristics. For example, the “Data Source Type” can be “Coaxial Camera-based
MPM”, or “Layerwise Overview Imager” etc. “Device Type”, “Device ID”, “Device
Manufacturer”, “Device Model” and “Device configuration” captured the metadata of the
measurement devices or actuation devices. In the case of the co-axial-camera-based, melt-pool,
monitoring system, the device type could be “CMOS Camera”. The metadata definition for data
sources can be leveraged on Dublin Core Metadata Initiative schema1.

2.1.2 Data description: Another block of information is about the data itself. Typical attributes
include “Data Category”, e.g., Sample, Event, or Condition based on MTConnect2. Data Type
can be Value, TIME SERIES, and DATA SET as defined in MTConnect. Additional data types
include images, videos, and 3D models, etc. Coordinate System is also a data field that could be
very important to interpret position and size of measurement data.
2.1.3 Load description: To integrate data sources, it is important to know whether the data are
from streaming or batch upload as well as additional metadata about the load, e.g., size and
frequency. For example, consider an image data type. Will an image file and its metadata be sent
as one object or two? What’s the expected size? Approximately, how many data instances will be
sent per day or per batch? What’s the communication protocol? In the case of streaming data
sources, some additional information is needed, such as sample interval and streaming triggering
mechanism.

Integration of streamed data is more challenging compared to the batch upload, so that will be the
focus of the paper. Nevertheless, the framework can be applied to batch uploads as well.

2.2 Collecting Data
After defining the data, it is necessary to decide how the data will be collected from the data source.
In most processes, including Additive Manufacturing processes, in-process data is created by
following some of these three policies: sample, on event, and on condition. This means that data
will be created during a defined sample interval, when a defined event occurs, or when a defined
condition is satisfied, respectively. Independently of how the data is created, there are two main
approaches when it comes to the data collection – push or pull. These approaches can be applied
for both streaming and batch data processing.

In the first case, the Receiver Web Server, shown in Figure 1, is a data gateway. At this step, it is
important to define a standard for exchanging the data. The Receiver Web Server is an application
written in Java or some other programming language that receives the data through HTTP/HTTPS
protocols and forwards it to the queue. Queue and its purpose are discussed in the next step of the
framework.
In the second case, when the data provider, the device, cannot push the data to the system, the
approach consists of developing an application that will pull data from the data provider’s specific

1 https://dublincore.org/schemas/
2 https://www.mtconnect.org/standard20181

1421

location and forward it to the queue. The best practice is to define a standard location for both, the
data, such as images created during an AM process, and its metadata. The application can use some
of the standard protocols to pull data such as SSH and FTP. The application can be created using
Shell or any other scripting language and can be scheduled using CRON3. Also, for this case some
recent technologies could be used, such as Apache NiFi4.
2.3 Queueing Data
Processing a data instance requires system resources. To prevent the system overload, a message
queue can be helpful. In that way, data will be temporarily stored in the queue until it is processed
and stored in the system. Multiple queues may also be used. For example, the first queue stores
raw, unprocessed data waiting to be processed. The second temporarily holds processed data
waiting to be stored in the system. Common message queue technologies used for these purposes
are Apache Kafka5 and IBM MQ6.

2.4 Archiving Data
Deciding on which persistent-storage technology to use is key to having a stable and tenable
system. Metadata and image data should be defined and stored separately. It is common to use file
systems as image storage, but metadata can be stored in a database that can be searched and queried
quickly and easily. Following that approach, metadata will have one additional field - image
location from where the image can be read.

2.4.1 Metadata Storage: Some of the options for storing metadata are a relational database, a file
system (e.g., Hadoop Distributed File System - HDFS4), or a document database (e.g.,
MongoDB7). Relational database management systems (RDBMS) are the industry standard. The
main advantage of RDBMS is that most engineers know this technology and there are integrations
with many external tools. Considering that metadata will not change after insertion, document
databases can be used as well. However, the file system is appropriate only if data queries are
based on few fields with a limited number of values. When this is the case, these fields and values
can be used to partition the metadata within a file system. This approach allows faster metadata
access.
2.4.2 Image Storage
2.4.2.1 File System Storage: One way to store big data, including images, is to use a file system.
Currently, a commonly used one for big data is Hadoop Distributed File System (HDFS8). HDFS
is highly fault-tolerant and is designed to be deployed on low-cost hardware. In recent years, many
other tools and solutions were developed to support Hadoop core components. All of them together
make data analysis, storage, and maintenance of data easier.
2.4.2.2 Cloud Storage: Another convenient way to handle images, and other binary objects, is to
shift responsibility to cloud-based storage centers. Storage-as-a-service provides features to easily
scale computational resources and provide access permissions. It also offers a user interface,
command-line tools, and an API for several programming languages.

3 https://en.wikipedia.org/wiki/Cron
4 https://nifi.apache.org/
5 https://kafka.apache.org/
6 https://www.ibm.com/products/mq
7 The most popular database for modern apps | MongoDB
8 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

1422

2.4.2.3 Database Storage: Database storage is another possibility. Here, the data, including
images, with the associated metadata can be stored in one schema, which is the biggest advantage
of this approach. Nevertheless, this approach is more appropriate for a small number of images
and for applications that need to search data in real-time.

The decision of what kind of storage to use depends on the target use case. If there are no obstacles
in uploading images to cloud-managed storage and it’s possible to pay for the external software
the choice should be cloud-managed storage. It is easier to maintain and there is no need to worry
about space limitations. On the other hand, if data is private and should be kept in local systems
then paid cloud storage may not be a good option. A file system storage may be a better fit in this
case. However, it is one that requires more resources and skills to set up and later administrate. On
the other hands, a file system leaves more freedom to customize and adjust the solution to specific
target use cases.

2.4.3 Partitioning: Regardless of the choice of local or cloud-based file storage, special attention
should be paid to partitioning. Partitioning data is crucial because it can drastically affect data
processing. By partitioning data, the amount of data scanned by each query is smaller, thus
improving performance and reducing cost. A common practice is to partition the data based on
time, often leading to a multi-level, partitioning scheme; but many other attributes may be used.
2.5 Downgrading data amount
To achieve sustainability, the system needs to be capable of managing different data sizes and save
only the data necessary for future use cases. Several policies need to be defined: deleting the old
data, aggregating the data, removing duplicates, and reducing data quality if needed.
2.6. Building Decision Models
To gain value from the data, many possibilities exist. One is to create an AI-based, decision-
making model and another is to build a rule-based, expert system. AI-based models include
predictive and clustering models. Predictive models need a solid history of data labeled with the
information that needs to be predicted in the future. Clustering models create a group of similar
data items that help experts use to support decision making. Rule-based expert systems are built
using if-then rules, which are defined on the top of the fields of the data instances. Rules are defined
by the experts in the specified area. Common practice is to combine both AI-based and rule-based
approaches to build reliable, decision-making systems.

2.7. Using Decision Models in Practice
There are several options on how decision-making models can be used in practice. In Additive
Manufacturing, for example, if a model can predict a critical event, an alert can be sent to staff in
charge of handling that issue. If the model reports an in-process, monitoring anomaly, it can be
used to change process parameters or stop the build.

3. In-process Data Integration for Additive Manufacturing
A variety of commercially available sensor technologies are now used in monitoring and
controlling AM laser-based powder bed fusion (LBPF) processes. These technologies can be
classified into two types: local sensors and global sensors. Local sensors have smaller fields of
observation and acquire data with finer spatial resolutions and/or higher sampling rates. Global
sensors often monitor the whole build surface and acquire data at lower resolutions. The two types
complement each other and are used together for monitoring AM processes and predicting build
quality [2].

1423

Camera-based, melt-pool monitoring (MPM) involves local sensing which generates high-
resolution, melt-pool images at a high sampling rate. MPM systems are critical for deep process
understanding, in-process defect detection, and real-time control. Hence, they are one of the most
attractive solutions for LPBF in-process monitoring [3]. However, MPM data streaming and
integration for both real-time processing and offline analysis is very challenging for two reasons:
the high velocity of the data generations and the big volume for archiving. In the following
sections, the proposed data-integration framework is applied to MPM to illustrate and validate its
benefits.

3.1 Applying the Framework to AM
3.1.1 Requirements: To implement the framework for this use case, the requirements are first
collected. The main requirements include knowledge of the input data, the capabilities of the
system, the availability of storage, and standards for data flows. According to the framework, we
obtained data source definition. Example input data is given in the table below.

Table 1 Data Source Definition for MPM

Metadata
Field

Data
Definition

Value

Data Source
Name

Data-Source
description

AMMTCoAxialMPM_Mikrotron-EOSens-3CL

Data Source
Type

Coaxial Camera-based MPM

Data Source
Description

NIST AM Metrology Testbed9

Device
Identifier

Mikrotron-EOSens-3CL

Device
Description

Mikrotron, EoSens ® 3CL,
“http://www.mikrotron.ir/Datasheet/mikrotron_eosens_3cl_dsh_03.pdf”

Device Type CMOS Camera
Device
Parameters

Image Size, Pixel resolution - 15KB, 120x120

Data
Category

Data

description

Sample

Data Type Melt Pool Image
Describe By BMP/PNG
Trigger
Method

Load
Description

Load

Description

PUSH

Time Start Time/Stop Time
Protocol Camera Link
Sample
Interval

50 microseconds

Measurement
Setting

Magnification X1

Calibration
Information

Fully Corrected

9 https://www.nist.gov/el/ammt-temps

1424

The next requirement is knowledge about the sensor data transfer capability- is it possible to send
an image or not. Based on that, an application of the framework will proceed differently.
The last prerequisite is to provide storage where the data will be stored. Since the framework
proposes separate storage for metadata and images, it is necessary to provide both.

3.1.2 The Architecture: Figure 2 shows the architecture we propose for AM MPM data
integration. The following sections describe how we use the framework with this architecture.

Figure 2. AM in-process Data Integration Architecture

Collecting Data: Data is collected using the Camera link protocol. The Camera Link Driver is
responsible for collecting data from the sensors and forwarding them to the queue.

Queueing: The key to implementing this architecture is to have a buffer that will prevent the
system overload, since the large amount of data must be processed in a short period. Apache
Kafka10, an open-source message queue, was successfully used for this purpose in our set up. Kafka
can process many messages with negligible latency [8]. Also, Kafka is distributed, scalable system
that offers high availability, so there is virtually no possibility of losing data.
Raw data from the camera-link driver is stored in a queue. To ensure that the system can work
with the amount of data expected, it must be ensured, among other things, that the Kafka cluster
can withstand that amount of data. The buffer can be considered as a single point of failure, which
means that in case it does not work, the system will not respond. Therefore, it is of great importance
that there is a reliable and redundant component in place such that the buffer is highly unlikely to
fail.

10 http://kafka.apache.org/

Data Queue (Kafka)

1425

To ensure that Kafka can support the expected data flow, an overview of the capacity estimation
is given below. In this use case, we assume that the smallest interval of change in an image is 50
microseconds. Each frame of the camera is 120 by 120 in grayscale; hence, the image file size is
approximately 15KB. Considering that, 20000 * 15KB = 300 MB of traffic is expected in one
second. LinkedIn engineering has published a benchmark for a three-node Kafka cluster with a
simple configuration on servers with 7200 RPM SATA drives and 32 GB RAM, which are
connected via 1Gb Ethernet. The benchmark confirms that traffic of 800K records per second can
be processed by a cluster configured in this way without any anomalies in performance. The
process was monitored until the traffic grew to 1400GB [7]. In the use case presented in this paper,
the same server configuration was used. The data would be stored in a buffer for the next 24 hours
from the time it is received to ensure easy system recovery in case of overload of any of the
following components. Considering one hour of high traffic, the calculation is 300MB * 60
seconds * 60 minutes ~ 1100 GB, which is within the range that a cluster configured in this way
can process, based on the LinkedIn's benchmark (1400 GB). During longer use of this system, the
cluster can be further configured to be even more suitable for this use case.
From the queue, the images are sent for real-time analysis and for long-term archiving in parallel.
We used Data Transfer, a custom application for preprocessing the data, for processing images
and their metadata. In this way, we avoid storing irrelevant data in persistent storage.

Archiving: Different types of images are involved in this use case. HDFS, the file system of the
Apache Hadoop, was used for storing them. Their metadata, however, were stored in Additive
Manufacturing Materials Database (AMMD)11, built on top of MongoDB. HDFS is responsible
for storing large, structured, and unstructured datasets across various nodes. Data arrives
frequently so it is not advisable to archive it in real-time. That could overwhelm the HDFS, because
it is not designed to work well with many small files. For that reason, Sequence files are used that
merge many images in one file. Approximately, 8739 images should be merged so the size of one
sequence file corresponds to the size of the minimal HDFS block, which is 128MB. In this way,
the HDFS block will be fully used. Also, queuing from the previous step will create a time delay
to transfer the data to permanent storage less frequently and avoid an overload. The authors in [6]
suggested MapFiles as another solution that could be used for storing images, but further research
is needed before using this in real use cases.

AMMD is built using the NIST Material Data Curation System (MDCS) as a backend with
structure provided by NIST’s AM schema. Providing a collaboration platform, AMMD is set to
evolve through open data access and material data sharing among the AM community.
Real-time Analysis: Next to being archived for future use, images and corresponding metadata
are also used for real-time or near real-time analysis. Real-time functions include measurement
data preprocessing - cleaning, melt pool feature extraction, anomaly detection, real-time feedback
control generation, and emergency reaction, such as build stop. Near real-time functions fuse the
melt pool monitoring data obtained from previous layers, conduct layer-wise process and part state
evaluation, and make decision if the build should be continued or stopped. The real-time and near
real-time analysis generate events, alerts and alarms which are sent to the Alarm Management
system for operator to perform reasoning and take actions. An automated alarm management
system can be built to replace humans in conducting the cognitive task by querying additional data
from other systems, for example, the metadata data store, MES or ERP system.

11 https://ammd.nist.gov/

1426

3.1.3 Data Flows: In this architecture, there are several data flows that need to be defined. They
are (1) between sensor and driver; (2) driver and Kafka; (3) Kafka and Data Transfer; (4) Data
Transfer and Big Data Hadoop (5) Data Transfer and AMMD; (6) Kafka and feature extraction;
(7) feature extraction and automated alarm management; (8) AMMD and automated alarm
management; (9) AMMD and Big Data user.

For 7-9, we propose OAGI Message models or OPC UA standards, while the question remains
which standards should be used for the 1-6 data flows. This requires further research because it is
necessary to consider the technologies that have been proposed and their possibilities. Figure 3
shows a proposed high-level OAGI message for Data Flow marked with 9, in a typical BOD
structure. A new noun named “AdditiveManufacturingBigDataPackage” is created to capture both
the metadata and the reference links to the big datasets [4].

Figure 3. Additive Manufacturing Big Data Package OAGi message

4. Discussion

The AM data integration presents a new application of the five-layer ISA 95 architecture12. Layer
0 involves the functions and standards associated with the physical production process. Layer 1
involves the functions and standards associated with sensing and manipulating that physical
process. Layer 2 involves the functions and standards associated with automatically monitoring
and controlling that process. Layer 3 has manufacturing operation functions and Layer 4 are
enterprise functions.

12 https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95

1427

4.1 Architecture Alignment
AM data integration involves data flows for both monitoring and control and streaming for big
data archiving. Yet, we are mapping our architecture in Figure 2 to the lowest layers of the ISA
architecture.

Alarm management provides Layer 2 functions we use for “controlling the state of the AM
process”. In addition, data integration for alarm management involves 1) the functions and
standards associated with the physical production equipment (Layer 0) and 2) the functions and
standards associated with sensing and manipulating that physical equipment (Layer 1). So, our
AM data integration is functionally aligned with the ISA architecture for the branch of monitoring
and control.

At the same time, data flows are no longer restricted - in both time and space - to adjacent,
functional layers defined in ISA 95. For example, in-process data can be directly streamed and
integrated with Layer 3 and Layer 4 functions. This data then becomes available to be analyzed
and used for real-time decision making as well. Together with other enterprise data, proactive
actions can be taken to optimize enterprise performance and improve the manufacturing strategies.
Even for the lower-level integration, the interfaces will be different. They will contain new types
of information and they will require new types of data structures; or, develop new ways of using
or extending existing structures. We chose the latter. On-going discussions with both OAGi and
MTConnect are focused on extending their message structures, creating new ones, and
using/sending AM data in that resulting structure. The discussions identified a list of required
messages, their content, and their senders/receivers. Technical discussions were conducted with a
focus on finding technical approaches and solutions to meet those requirements.

4.2 Information Exchange Standards

Representative standards need to enable information integration and software interoperability both
within and across each layer in Figure 2. Today, MTConnect and OPC UA13 are the two major
standards adopted by AM machine vendors for machine data integration. The MTConnect standard
offers a semantic vocabulary and data models to grab data from machine tools, production
equipment and other factory hardware. Data from shop floor devices is presented in XML format,
and is retrieved from information providers, called Agents, using HTTP as the underlying
transport protocol. OPC UA is a two-way communication protocol enabling either sending request
and response messages between clients and servers or a publish-subscribe model.
In addition, a wide variety of Internet-of-Things connection options are emerging which might be
applied to AM in-process data integration [5]. For instance, MQTT is a publish/subscribe protocol
with minimal overhead and reliable communications, good for supervisory control and data
acquisition (SCADA) and remote networks. Constrained Application Protocol (CoAP) provides
the interoperability of HTTP but with minimal overhead, an appropriate substitution for edge-
based devices where HTTP would be too resource intensive. Digital Data Service (DDS) is an
open publish/subscribe protocol for fast and decentralized communication, best for machine-to-
machine (M2M) communications.

13 https://opcfoundation.org/about/opc-technologies/opc-ua/

1428

All the communication protocols mentioned above provide an effective mechanism to integrate
small volume data sampled at rates needed in traditional manufacturing processes. For the high
velocity, high volume data generated from field devices, new standards are needed to integrate
new types of data such as images. Given the complexity of the architecture and its new technology
components required for AM data integration shown in Figure 2, existing standards must be re-
evaluated and improved for smart AM.

5. Summary

This paper offers a comprehensive framework for data integration in additive manufacturing and,
moreover, shows the practical implementation of the framework on the example of a melt pool
monitoring system. In the paper, the key components of the framework are highlighted and an
overview of the main decisions that must be made for the proper use of each step of the framework
is given. Moreover, the proposed framework can be applied to other additive manufacturing
systems and quickly achieve the desired results whether the goal is to archive data for future use
or real-time analytics. The paper points that, while standards for the higher-level processing data
flows are being developed already, there is a current lack of standards for messages exchanged in
preprocessing data flows. Further research should include defining messaging standards for each
of the observed flows.

Disclaimer

Certain commercial systems are identified in this paper. Such identification does not imply
recommendation or endorsement by NIST; nor does it imply that the products identified are
necessarily the best available for the purpose. Further, any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of NIST or any other supporting U.S. government or corporate organizations.

References

1. K. Morris, Y. Lu, and S. Frechette, "Foundations of Information Governance for Smart
Manufacturing," Smart and Sustainable Manufacturing Systems 4, no. 2 (2020): 43-61.

2. P. Boulware, “In-Process Monitoring Techniques for Laser Powder Bed Fusion”,
https://ewi.org/wp-content/uploads/2018/12/LP4-Boulware_In-Process-Monitoring-Techniques-
for-Laser-Powder-Bed-Fusion.pdf, Accessed on June 28, 2021

3. Y. Lu, Z. Yang and J. Kim, “Camera-Based Coaxial Melt Pool Monitoring Data Registration For
Laser Powder Bed Fusion Additive Manufacturing”, Proceedings of The International
Mechanical Engineering Congress and Exposition, 2020

4. Y. Lu, “AM Big Data Registration and Exchange based on OAGIS Message Modeling”, ASTM
International Conference on Additive Manufacturing (ASTM ICAM 2020)

5. Y. Lu, A. Jones and P. Witherell, “Standard connections for IIoT empowered smart
manufacturing”, Manufacturing Letters, Volume 26, October 2020, Pages 17-20

6. Q. Su,, L. Luand Q. Feng, ”An optimal solution of storing and processing small image files on
Hadoop”, In International conference on brain inspired cognitive systems (pp. 644-653). Springer,
Cham, 2018

7. J. Kreps, “Benchmarking apache kafka: 2 million writes per second (on three cheap machines)”.
Online: https://engineering. linkedin. com/kafka/benchmarking-apachekafka-2-million-writes-
second-three-cheap-machines, Accessed on June 28, 2021

1429

8. A. Warski, “Using Kafka as a message queue”. Online: https://softwaremill.com/using-kafka-as-
a-message-queue/, Accessed on June 28, 2021.

1430

