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Abstract 
 

Laser additive manufacturing (LAM) allows for complex geometries to be fabricated 
without the limitations of conventional manufacturing. However, LAM is highly sensitive to small 
disturbances, resulting in variation in the geometry of the produced layer (clad). Therefore, in this 
research a monitoring algorithm is discussed with the capability of predicting the geometry of 
multiple tracks of added material. Though imaging can be used to measure the geometry of the 
melt pool during LAM, the appearance of the melt pool changes in multi-track processes due to 
the previous layers causing measurement errors. Hence, a machine learning algorithm may be able 
to accommodate for the changing melt pool appearance to improve accuracy. Images can be 
captured during LAM with visible-light and infrared sensors which may provide sufficient 
information for the geometry to be predicted. A convolutional neural network (CNN) can then use 
these images to estimate the geometry (height and width) during LAM processes. 
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Introduction 
 

During laser additive manufacturing (LAM), the geometry of the added material 
(clad) is critical to monitor in real-time to ensure the final part has the correct dimensions. 
It has been shown that even in cases where constant process parameters were used, the 
height of subsequent layers can vary, which motivates the need for geometry monitoring 
[1]. However, the experimental setup of LAM machines may make it difficult to directly 
measure the geometry of the clad in real-time; therefore, different methods have been 
devised to approximate the geometry in real-time. 

 
In many cases the geometry is monitored with cameras, where the clad is detected 

in captured images, then the clad height can be calculated from direct mathematical 
relationships as in [2, 3].  Other applications have used colinear imaging to predict the 
width, such as Hofman et al. in [4]. Some systems have also been used to monitor the 
height and width simultaneously, such as a U.S. patent by Suh which describes a 
methodology to monitor and control the clad height in laser cladding in real-time [5]. 
However, since the relationship between 3d geometry and the 2d image captured may 
be difficult to determine, some research has been devoted to utilizing machine learning 
(ML) to predict the geometry in real-time. 
 

One approach for measuring the height in real-time was explored by Iravani et al. 
in which images of the melt pool were captured by three cameras positioned 120° apart 
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[6]. A recurrent neural network (RNN) was then able to predict the clad height with an 
average error of approximately 12%. Other research in ML has been applied to find a 
relationship between process parameters and geometry in additive manufacturing (AM) 
and arc welding to control the process parameters to compensate for geometry errors [7, 
8, 9] Goncalves et al. applied a more complex CNN to establish a correlation between 
real-time vision images with process parameters and clad geometry [10]. Thus, ML has 
been applied to find relationships between the geometry, real-time images, and process 
parameters. However, most of the current research is limited to single-track geometry. 
One example of multi-track geometry monitoring was applied by Garmendia et al. in which 
a 3D scanner monitored the height after each set of layers [11]. However, since the height 
was measured between several layers this method is insufficient for real-time 
applications. 

 
Since the view of the clad does not allow for the geometry to be measured directly 

and the potential that has been shown in applying ML to predict the geometry, this 
approach is further explored in this research. Moreover, most research is focused on 
single-track geometry prediction since previous tracks affect the appearance of later 
tracks the same geometry calculations often cannot be applied. However, this research 
focuses on multi-track experiments, which feature layers formed on top of one another 
with the same x and y coordinates and changes in the z-direction to compensate for the 
height of previous layers. Therefore, the goal of this research is to develop a CNN to 
predict the height and width of the clad during multi-track laser additive manufacturing in 
real-time using images captured by a vision camera and infrared camera. Training a CNN 
to solve this challenge removes the need to determine a direct relationship between the 
captured images and clad geometry which may differ based on the LAM system and 
materials used. 
 

Experimental Setup 

A schematic diagram of the experimental setup is shown in Figure 1. The 
experimental setup features a system to perform powder fed LAM to run experiments to 
create a dataset to train the proposed CNN. The main components of powder fed LAM 
are: (1) Substrate, the platform in which the part is built upon, relative motion between the 
laser head and the substrate allows for 3D geometry to be fabricated. The first layer of 
the part is bonded directly to the substrate, while later layers are bonded to the previous 
layers. (2) Powder nozzle, the powder nozzle is connected to a powder feeder which 
mixes the metal powder with inert gas and feeds the mixture to the path of the laser. The 
inert gas has secondary purposes to transporting the powder, the gas also inhibits the 
oxidation at the surface of the newly created clad and the gas also removes plasma from 
the melt pool area. (3) Laser, which is used to provide enough heat to melt the metal 
powder and enough of the substrate or previous layer to facilitate bonding. (4) The clad, 
a layer of additive material, which is formed when the melt pool solidifies, the geometry 
of which is determined by the tool path and other process parameters. All these 
components are shown in the schematic diagram below in Figure 1. The experimental 
setup also shows the Monitoring Optimization and Control MOC Sensor module, which is 
a device used to capture images of the process in real-time. In addition to the MOC 

1597



sensor, an operating system to record and control the critical process parameters such 
as the laser power and scanning speed. 

 

The main components of the experimental setup are: 
A. High Power Laser – provide energy to initiate the fusion of materials, the system features 

a laser with a diameter of 3mm and a Gaussian power distribution. 
B. CNC Machine – move the substrate to allow for geometry manipulation. 
C. Powder Feeder – add new material to the substrate during additive manufacturing. 
D. Nozzle – ensure the added material is placed in the correct location. 
E. MOC Sensor Module – provide visual information of the melt pool in real-time. 
F. Substrate – workpiece for the initial layer of powder to bond to during additive 

manufacturing. 
G. Real-Time Control System – control the process and integrate the other components. 

MOC System 
 

Real-time imaging of the clad is essential for geometry prediction to ensure the 
current state of the clad is known. Therefore, to accomplish this both infrared images and 
visible-light images are captured to observe the clad during the process. Allowing both 
sensors to have a similar field of view (FOV) ensures that the images can be directly 
compared and augments the data since we have multiple readings of the same state. 
Housing both sensors in the same enclosure also reduces the overall volume of the 
system and would require only one fixture to support the monitor. This motivated the 
design of the MOC system, which is shown in Figure 2. This design features a single lens, 
allowing both sensors to have a similar FOV; however, the cold mirror allows the light to 
be split, so the correct wavelength is input to the corresponding sensor. With this optical 
setup, both infrared and visible-light images can be taken of the process in real-time. 
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Dataset 
 

To create a CNN a dataset must be created which includes the desired inputs to 
the system and the correct outputs. For this research, the desired inputs of the system 
are infrared images, visible-light images, scanning speed, and laser power. Using these 
inputs, the CNN was trained to estimate the clad height and clad width. To create the 
dataset, 6 experiments were conducted in total, which are outlined in Table 1. Each 
experiment features 5 layers of a single 80mm track with a 0.5mm increase in the z-
direction between each layer. A fixture was used to secure the substrate to ensure the 
tracks are aligned directly above the previous layer. Figure 3 shows the clad formed in 
experiment 1 to demonstrate the print path of the experiments. 

 

 
Figure 3: Clad created from first layer of experiment 1 

During these experiments, images were captured using both camera sensors, and 
the process parameters, laser power, and scanning speed, were recorded by the system. 
This data was then used to form the input section of the dataset. 
 

Table 1: Details of experiments used to create the dataset used for training, testing, and validating the CNN 

Experiment Number Laser Power (W) Scanning Speed 
(mm/min) 

1 950 100 
2 950 100 
3 950 120 
4 950 80 
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5 850 100 
6 1050 100 

  
Of the experiments shown in Table 1, experiments 2-6 were used to create a dataset 

which was shuffled to form the training, validation, and test subsets for training and 
validating the CNN. Experiment 1 was used to demonstrate the performance of the CNN 
against a dataset that was not involved in training. Experiments 1 and 2 have the same 
process parameters to ensure that the data from experiment 1 was not seen by the CNN, 
but similar data was used in training. 

 
To create the outputs for the dataset, the true geometry must be known, so the CNN 

is trained with the correct information. The height and width of the clad are measured 
after the process using macro-imaging, which allows a zoomed-in image of the clad to be 
taken. This image can then be segmented to differentiate the clad from the background 
and knowing the scale of the image the geometry can be extracted. The true geometry 
was measured for each layer, and a fixture on the CNC ensured that the substrate would 
have the same starting location for all subsequent layers. With the true geometry 
measured, the framerate of the images being recorded in real-time can be used to align 
the real-time captured data to the true geometry measurements.  
 

Pre-processing 
 

With the dataset created with real-time measurements functioning as the inputs 
and true measurements as the outputs some pre-processing was conducted to improve 
the efficiency of the algorithm. Since the clad is only visible in a section of the images it 
is reasonable to crop the images to remove the background information. Removing this 
background information also reduces the size of the dataset, which improves 
computational efficiency without sacrificing performance since that part of the image is 
irrelevant. 
  

To reduce the size of the images the procedure shown in Figure 4: Series of pre-
processing steps conducted on the vision images was followed. First, the image was 
thresholded to determine the approximate location of the clad, which was assumed to be 
the largest observable shape after thresholding. Based on this location, the image could 
be cropped to a reduced size of 254 × 254 pixels. Finally, to further reduce the size, the 
images were scaled to 128 × 128 pixels. 

 

 
Figure 4: Series of pre-processing steps conducted on the vision images. 

 The same procedure outlined in was used to reduce the size of the infrared images, 
except for scaling the images, since these images were a lower resolution to begin with. 
Therefore, once the location of the clad was approximated, the images were cropped 

704×704 254×254 128×128 704×704 
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directly into 128 × 128. Once the completed dataset was created the data was shuffled 
and split into 60% - training, 20% - validation, and 20% - testing. These subsets of the 
data are used to train and test the CNN. 
 

Convolutional Neural Network 
 

As stated in the introduction, the goal of this research is to develop a 
computationally efficient machine learning algorithm to accurately predict the clad 
geometry, by using real-time vision and infrared images and the process inputs during 
multi-track LAM. Therefore, a CNN is developed that predicts the clad geometry using 
vision and infrared images, and process inputs. The developed CNN predicts the clad 
width and clad height from 128 × 128 vision and infrared images and process inputs of a 
laser cladding process. The CNN is trained to minimize the mean squared error (MSE) 
between the predicted clad geometry and the actual clad geometry. The architecture of 
the CNN is shown in Figure 5 which uses seven different operators. 

 
This CNN architecture is made of two deep network branches, in which the infrared 

images are the input for the first branch and the vision images are the input of the second 
branch. Each branch consists of four blocks of two conv layers with batch normalization 
and relu activation, and a maxpooling layer. After these four blocks, the branch output is 
flattened into a 1-dimensional array. After that, both branches are combined with the 
process laser power, process scanning speed, and the layer number. This combined layer 
is fed through two fully connected layers followed by a linear activation. The linear 
activation outputs the prediction of the clad width and clad height. 
  

 
Figure 5: Convolutional neural network architecture used to predict the clad with and clad height. 

 
Loss function 

 

1601



One of the important components of the CNN is the loss function. The loss function 
calculates the prediction error, and this prediction error is used to update the weights of 
the CNN. Because the developed CNN is used for regression, the mean squared error 
(MSE) is used as a loss function. The MSE is the mean of the squared differences 
between the predicted and actual values, which is calculated by: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑝𝑝
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where 𝑝𝑝 is the amount of data samples; 𝑦𝑦� is a vector with the predicted clad width and 
clad height; and 𝑦𝑦 is a vector with the actual clad width and clad height. 

 
To evaluate the performance of the developed CNN quantitatively, the mean 

absolute percentage error (MAPE) is calculated. The MAPE is a measure of average error 
between the LAM process measurements and CNN predictions. In addition, the MAPE is 
easy to understand because the error is calculated in terms of percentages. The MAPE 
is calculated by: 
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where again 𝑝𝑝 is the amount of data samples; 𝑦𝑦� is a vector with the predicted clad width 
and clad height; and 𝑦𝑦 is a vector with the actual clad width and clad height. 

 
Results 

 
After training the CNN for 200 epochs, the performance of the CNN is analyzed on the 
original dataset. The developed CNN resulted in an MSE of less than 0.0006 and MAPE 
of less than 2.05%. These values show that the CNN established a highly accurate 
correlation between the images with process inputs and the clad dimensions. To further 
analyze the overall accuracy of the CNN on the original dataset, the clad width and clad 
height predictions, are compared to the actual clad width and clad height values. This 
comparison is shown in Figure 6 and shows that the CNN fits the data well. The 
differences between the actual values, during multi-track LAM, and the CNN predictions 
are very small. The CNN features an average computational time of approximately 0.037 
seconds per timestep, allowing for the geometry to be predicted at a frequency of 27Hz. 
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Figure 6: CNN predictions compared with the actual measurements when using the original dataset. Note that for the 

combined data set comprised on the training, validation, and test sets the predictions are sufficient such that the 
actual measurements are barely visible on this graph. 

Figure 7, which 
compared the data (blue dots) to the regression line (black). As shown in this figure, the 
CNN fits the data well. However, this figure shows that there are a few outliers, which 
could be caused by noise in the data or overfitting of the CNN.  

 

 
Figure 7: Coefficient of determination between the actual and predicted geometry, generated from the test set. 

Table 1 was not used in the 
training, validation, or test sets and therefore demonstrates the performance of the CNN 
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against unseen data. When only considering experiment 1, the MSE corresponded to 
approximately 0.016, while the MAPE was approximately 12.41%. This performance can 
also be quantified in Figure 8, where the calculated clad width 𝑅𝑅2 value is 0.205 and the 
calculated clad height 𝑅𝑅2 value is 0.486, indicating relatively poor performance.  
 

 

The graph shown in Figure 9 features the height predictions of all 5 layers added 
to show the accumulated error. This figure also better visualizes the performance of the 
CNN against the unseen dataset. 
 

 

Demonstrating the cumulative height predictions of experiment 2, which features 
the same process parameters, shows even less accumulation of error, as seen in Figure 
10. 
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Conclusion 
 

In this research, a computational efficient CNN was developed for the purpose of 
real-time multi-track clad geometry prediction. The developed CNN architecture is trained 
with a dataset which captured the basic modes of the laser cladding process. This CNN 
can easily be extended to different scenarios by adding more training data from a wider 
range of experiments and re-training the network. The results demonstrated that the 
developed CNN is accurate and computationally efficient for the prediction of the clad 
geometry during multi-track LAM. The prediction error is below 2.05% for the training, 
validation and testing set and below 12.5% for the unseen dataset with an average 
prediction time of approximately 0.037 seconds. Though the CNN featured impressive 
performance against the test set, where some data was used for training, the performance 
was relatively poor with unseen data. However, future improvements to the network and 
increasing the training set may improve the results of unseen data to resemble the test 
set results more closely. 
 

The good performance of the test set, which features data from the same 
experiments as the training set, indicates that with improved training the CNN may predict 
unseen data with similar performance to the test set. The CNN does not assume any prior 
knowledge of the clad which allows for training to cover multiple different manufacturing 
processes and materials. Thus, the high accuracy, computational efficiency, and flexibility 
of this CNN makes it suitable for closed-loop control of the clad geometry. In addition, this 
network may even be applicable to a wider group of manufacturing techniques. 
 

Future work 
 

To advance the primary work done in this research and to improve the 
performance and generality of the developed convolutional neural network, the network 
can be retrained with a dataset that uses a wider range of process inputs, substrate and 
powder materials, camera settings and positions, and manufacturing techniques. Though 
experiments 1 and 2 featured the same process parameters, the CNN only achieved a 
MAPE of when predicting the geometry for experiment 1. Therefore, there may be other 
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process disturbances that were not initially considered which differentiate experiment 1 
and 2 which caused the difference in results. Adding more process parameters as an 
input to the CNN would provide more information that may be relevant in predicting the 
geometry. Other parameters that can be added to the prediction include, powder feed 
rate, powder size, gas flow rate, laser diameter, and other features, though these features 
must be statistically analyzed to determine which are significant. Changing the 
architecture of the model into a recurrent neural network (RNN) may also improve the 
results by reducing the influence of outliers and noise in the system, wince RNNs consider 
data from previous timesteps. Applying these improvements to the CNN would allow it to 
be used in a closed-loop control system to demonstrate the potential for better quality 
LAM parts. Finally, the network may also be expanded to include predictions for 
microstructure and porosity. 
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