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Abstract

The overall selective area laser deposition process was modeled using the two-layer, three
dimensional solid phase heat transfer with the moving boundary condition considered, gas phase
mass transfer, and film growth coupled equations. A modified front-tracking finite difference
method was used to solve the moving boundary heat conduction in thick deposits. The results
correlate with the experimental observations.

1. Introduction

The present state of modeling selective area pyrolytic laser deposition is far from complete
because modeling microreaction is a complex, multifaceted problem. In the initial modeling
Jacquot, Zong and Marcus [1] used a finite difference technique to model pyrolytic SALD of a
carbon film on alumina substrate from acetylene using a focused CO, laser. A temperature-
dependent thermal conductivity and a deposit reflectivity which changes as the film grows were
included in the model, while the deposit solid phase heat conduction ( important in determining the
time - varying local temperature profile) was excluded. The model is essentially a model for laser-
induced pyrolytic CVD of thin films, as found in the literature [2-4]. It only has limited
applicability to model the thick film SALD process. In the case of SALD it turns out to be essential
to consider the heat transport through the deposited material, especially when the thermal
conductivity of the substrate is much smaller than that of the deposits. A deposited metal strip of,
for example, unit aspect ratio (height/width) serves as an efficient thermal sink on a poorly
conducting substrate yielding a surface temperature less than expected for a flat surface [5].
Conversely, a very high aspect ratio is thermally decoupled from the heat sink of the substrate and
its surface temperature rises. In this research the overall SALD process was modeled and a code

was developed on the Cray supercomputer. ;
2. The Physical Picture

The model describes the growth of a three-dimensional object on a substrate by selective area
pyrolytic laser deposition, including the solid-phase, substrate and deposit, heat conduction, gas-
phase mass transfer, and the growth of the film. Deposit nucleation was not considered.
Temperature-dependent parameters are used. Most of the modeling equations to be described are
general, but to do the calculations a sample system with specific parameter values was considered.
The sample system considered is the pyrolytic deposition of carbon from acetylene by the overall
reaction Bt L e ‘ : ‘ '

CoHo (g), + AE & 2C (s) + Ha (g) | ” J ‘ ’(1:) ‘

A Gaussian-shaped laser beam of wavelength 10.6um is used. A finite alumina substrate is
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assumed in the model. This then allows comparison to the experimental data obtained. Mass
transport to the surface by convection is neglected in the region of interest, so the reactant transport
to and from the surface occurs only by diffusion.

2.1 Solid-phase heat transport

In the pyrolytic SALD process, the temperature field has to be obtained to determine the
chemical reaction zone on the surface of the substrate or the overlaying deposit. Figure 1 shows the
geometry of the problem to be solved and the coordinate system under considerations. The deposit
with a thickness as a function of position and time is on a substrate of dissimilar material. The
materials are assumed to be isotropic and finite in size.

z Laser beam

Substrate
Fig. 1 Geometry used in the present modeling

The heat transfer equation for an isotropic medium is

k(T) 9T(xy.z.t) g— )
D(T) ot | [k(T)VT(xy.z.1)] Q o

where k(T) and D(T) are the temperature-dependent conductivity and the thermal diffusivity,
respectively. T(x,y,z,t) is the temperature at point (x,y,z) in Cartesian coordinates at time t. V is
the three-dimensional del operator. The heat source term is the sum of the heat from laser beam, the
radiative/ convective heat losses, and the heat supplied locally by the chemical reaction.

Q= [P___ (1-R)/nw2] exp[-(x2 + y2)/w2] + (A Sn)AG
- [N(T(xy) - Tout) + oey(T4(X,Y) - T4our)] 3)
where B is the incident laser power on the substrate, R is the surface reflectivity, and w the
laser beam waist, n is the atomic density of the deposit, AG is the free energy per atom deposited,
is the cross section of the material deposited with a scan speed of s, h is the convective heat

transfer coefficient, o is the Stefan-Boltzmann constant, g is the hemispherical total emittance at
temperature T, and Ty is the ambient temperature.

In the SALD process, heat transfer in two different stages, thin films and thicker deposits,
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have to be considered.
Thin film stage

Ideally, the deposit should always be included in the solid-phase heat conduction, but due to
the thinness of the déposit in the early stage of SALD process, the time steps for the numerical

analysis become too small, and the two-layer problem becomes numerically stiff. Therefore, the
thin film is treated as an intensity filter for the substrate, modifying the laser intensity by changing

in the surface reflectivity.

The surface reflectivity is expresses as a function of the deposit thickness in the form [4]

R(x,y) =R+ (Rz2-Ry)exp [ - gl (x,y)] 4
where

R, =reflectivity of bulk deposit material =0.2 for graphite

R,=reflectivity of substrate material =0.8 for alumina.

I is the thickness of deposit, and g is an empirical characteristic attenuation parameter. The
temperature profile can be obtained by solving equation (2). The substrate is assumed to be a finite
slab and therefore the boundary conditions applicable to equation (2) are given by convective and
radiative heat losses through the surface of the substrate. The initial conditions at t=0 are

Substrate Temperature Distribution: STD (x,y,z) = T,

Carbon Deposit Thickness: CDT (x,y) =0,
Acetylene Concentration Distribution: ACD (x,y,z) = C 0

Thicker deposits stage
When the deposit thickness is equal to g the thick film analysis is used. The heat equations to
be solved for the deposit and the substrate of thickness a can be written as

Ko(To) 214 _gey(r)vT) = @
Da(Ta) ot for z>a, (5)

ks(Te) OTs _ gy(1)vTe1 = 0
Ds(Ts) ot for z<a, (6)

where the subscripts d and s denote the values for deposit and substrate. At the interface between
the deposit and the substrate, the boundary conditions come from energy conservation for heat
flow and temperature continuity:
dT, dT,
k(T 7 = k(T 5 at z=a, ™)
T4=T, at z=a. (8)
2.2 Gas-phase mass transport

The mass transfer equation is given by:

vWC, + 5—=DV2C, +R; )
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With no bulk motion, v = 0. R, is the source term. We assume that the temperature of the gas is
constant and equal to Tg,s. Using the perfect gas equation in a fixed volume, we find the relation
between Pcopz and Ceapo:

Peonz = Ceomz R, Tgas , ~ (10)
where Rg is the gas constant.

2.3 The carbon deposition rate

Leyendecker et al. have determined the apparent activation energy for the reaction (1) using a
laser induced chemical vapor deposition setup [6]. Their result for the case of pyrolytic carbon
which was deposited from acetylene at various gas pressure is '

AEa =213+8 KJ/mole

This value also correlates some other literature values [7]. We fit their data using the minimization
of the coefficient of least squares method to obtain a linear growth rate equation

dl _AE 1
G =P [ (5.86* 104 D] [R,m,]*  pms] (n
4, ‘
where k is the Boltzmann constant and o= [11;191-6 %{I}- ]=1.02. Equation (11) was used to calculate
the carbon deposition profile in this study.

3. Numerical Procedure

In order to solve the nonlinear heat equations (2), (5), and (6), the Kirchhoff transform [7,8]
is applied to eliminate the temperature-dependent thermal conductivity k(T) from the heat equation.
The Kirchhoff transform requires the introduction of a linearized temperature ®, which is defined

as
T

- K(T') 47
O(T)=0(To)+ fT (T aT
(12)

where O(T) and k(T;) are constants.

The heat transfer equation (2) can be now written in terms of the linearized temperature © as

190 y2g__Q

-

D(T(®) ot ~ k(To) | (13)

which can be solved by a finite difference method.

By applying Kirchhoff transform to the equations in the thick deposit case, equations (5)- (8)
can be written in terms of the linearized temperature ® 4 and ©,:

1 00g v20, = Q |
Dy(Tg(@g) 9t kd(To) forz>a (14)
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1 00 2

- V @s =0
Ds(Ts(®s) at for z<a (15)
(o [OF] de
kg(Ta)—2 = kg(Ta)—=
o(Ta) dz s(Ta) dz atz=a (16)
B¢ =06g at z=a an

A moving grid system (Figure 2), which was first used by Crank and Gupta [10,11] for a one-
dimensional problem, arising from the diffusion of oxygen in absorbing tissue, is used to solve
equation (14) under moving boundary conditions. The deposit is subdivided into n intervals each
of width Az such that z =iAz+a; i=0,1,...,n (nAz=1) at t=0. As the boundary moves a distance Al
at the next time step At the whole grid system is moved a distance Al from the fixed surface
(substrate surface) z=a. The size of the first interval will then increase to Az+Al=z! and in general
if the position of the ith mesh point at t=jAt is Z, then

Z=7i+(i-1)Az+a, i=1,2, ..., (18)
2" =7 Alit1+a, (19)
zitl=zj+Alit1+a, (20

where Ali*1 is the thickness deposited from time jAt to (j+1)At.

Z=(i+1)AZ+Al +a
Z=(i+1)AZ +a

--------
------------

Z=i AZ +a

Z=a
Z=

Vs g
T T Y, kAt

Fig. 2 Moving grid system

By using the Taylor's series for ® and neglecting higher derivatives, we have
2

00 2

AN )

O(x,y,z+Alt+At) = O(x,y,z,t) + Al
iz 2 32

ato(m| ve + 8
it )[ +k(To)] (21)
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At the grid point z=7 Lagrange type formula have to be used allowing for the unequal interval z
nearest to the surface x=a. The respective equations are

' £Oij2 (AZ-C)Qi,j,1 LA28i0

©ij1= ' B
AZ(L+AZ) tAz £(C+Az) (22)
~@”i,j,1=2{ Qi,jk.z _Qi,jn " ©i,,0 o | | - |
‘, Az(C+Az) LAz ((G+A2) | @y

Tﬁc temperature at any time step is calculated froin (21) using (22) and (23).
o ‘4. Results and Diséussion

The model described above can be used to carry out parametric studies of the SALD process.
Some typical results are presented in this section. :

Figures 3(a) and 3(b) represent the temperature distribution on the top surface of the substrate
for laser power, P=5W and laser scanning speed relative to the substrate, s=0.1 and 10 mm/s
respectively. It can be seen from these figures that the shape of the surface temperature field has a
Gaussian structure, modified by the scanning speed of the laser beam, due to the consideration of
the Gaussian laser beam as the heat source. The peak temperature decreases from 1994 %K to 1876
OK as scanning speed increased from 0.1 mm/s to 10 mm/s. The size of the laser heated zone also
decreases as laser scanning speed increased, due to the dwell time effect. The knowledge of the
width of the laser heated zone is very important in SALD. The laser heated zone controls the
resolution of the SALD and the definition of the products. The chemical reaction that generates the
film forming material will take place wherever the temperature is more than or equal to the chemical
reaction temperature. Thus, the resolution in the SALD process can be controlled by adjusting
scanning speed.

Figure 3 Surface temperature distribution for the laser beam of power 5W
and scanning at a speed (a) 0.1 mm/s and (b) 10 mm/s.
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Laser power is another process parameter that can be used to control the resolution in the
SALD. Figure 4 clearly shows this control ability. The width of the stripe in Fig. 4(a) is obvious
less than that in Fig. 4(b) due to the laser power change from 8W to 12 W, indicating that
increasing the laser power decreases the resolution.

Figure 4 also show that the width and thickness of the stripe deposited increase as time
increases. This is because at slow scanning speed the conduction rate is higher than the heat
storage rate. Consequently, the substrate material which is in front of the laser beam is heated up
due to the heat conducted away from the laser heated spot. Hence, the laser energy is progressively
imparted to points on the substrate which are at higher temperatures than the preceding points. For
the very same reason, the laser heated zone in the other directions on the substrate increases as time
increases for low scanning speed. Thus, the film width will not be uniform for low scanning
speed. Figure 5 shows the correlation between a partial line scan experimental result and the

modeling resul
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Figure 4 Carbon deposition pli(‘)’filllel for vt'l;e]z‘uéér beam of polvjvéi'l (a) 8W and
(b) 12W and scanning at a speed 1 mm/s.

@ | (b)

.....................................

Figure 5 Comparison‘of carbon deposition simulation profile (a) with a
single scan carbon deposit on alumina substrate (b). (Acetylene pressure
200 Torr, laser power 8W, scanning speed 42um/s).
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On the other hand, if the scanning speed is high the conduction rate will be lower than the
heat storage rate. This reduces the area of the chemically reactive zone due to less heat conduction
of heat from the laser heated spot. Because of this, SALD of constant width film can be deposited
on the substrate by increasing the scanning speed of the laser beam, as shown in Figure 6. The
stripe in Figure 6 is modeled in the same process condltlons as in the F1gure 4(a) except the
‘scanning spccd is 10 mm/s instead of 1 mm/s : ;

T T T T T7T
e

T T Ty TrrTrTrry

LIS B O NN S % B B B e 2 5

anure 6 Carbon deposition profile for the laser beam of power 8W and
scanning at a speed 10 mm/s.

The calculation also showed that the deposit acted as heat sink which lowered the peak
temperature for a given laser power for thick film deposition [12]. With moving boundary
condition and heat transfer in the deposit considered, the model gives more accurate
predictions.

5. ‘Summary

The mathematical model proposed predicts laser-induced temperature profiles both in
substrates and in thick deposits and the thickness of carbon layers deposited by selective area laser
decomposition of acetylene and correlates with the experimental results. Future modeling will
continue taking into account more complex chemical reactions and chemically reacting gas flows
with nonuniform flow and temperature fields involved in the selective area laser deposition.
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