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Abstract

To gain a thorough understanding of the fault mechanisms in SLS machines, we decom-
pose SLS profile signals into independent features using a novel tool called Karhunen-Loéve
(KL) transform. These individual features can then be studied separately to monitor the
occurrence of fault patterns on manufactured parts and determine their nature. Analytical
signals with known fault patterns, simulating profile measurement signals from SLS parts,
are used to determine the suitability of the proposed method. Multi-component patterns
are assumed to manifest on SLS part surfaces, resulting from faults in the machine, for
example, the roller mechanism. The results of this work determine the suitability of the KL
transform for condition monitoring and extraction of fault-indicating patterns.

Fault Patterns on Manufactured Parts

Detecting and quantifying faults that occur during manufacturing is necessary to ensure the
efficient production of accurate parts. The field of fault detection and diagnosis in manufacturing
aims at eliminating the occurrence of faults by continuously monitoring the process, detecting
faults, and taking corrective action. In this paper, the focus is on monitoring the condition of
surface quality. The surface is measured at regular intervals for the purpose of detecting any
degradation on part surface quality. Faults or deviations in the dynamics of the manufacturing
machine or its submechanisms are assumed to leave a “fingerprint” on the surface of the part being
manufactured, which manifest as fault patterns. These are the fault patterns that we seek to detect,
quantify, and diagnose, in order to take remedial action if necessary.

A fault is defined as the inability of a system to perform in an acceptable manner [9]. Faults
typically manifest themselves as deviations in observed behavior from a set of acceptable behaviors.
Fault detection is the recognition of an unacceptable behavior; and fault diagnosis is the identifica-
tion of a component or set of components in the system that causes the fault [9]. As part of fault
detection, analysts collect data, extract relevant features, and compare these extracted features to
a specification of correct or incorrect data [5, 9].

The method of feature extraction and selection is a critical factor in detecting the correct fault-
indicating features from manufacturing signals. Complex signals are best analyzed and processed
using signal processing tools. In this research, we aim to develop a unified method to detect and
diagnose the correct features in an accurate fashion.

The most reliable methods of fault diagnosis utilize signal processing algorithms to extract fault
features. Poorly performing fault monitoring and diagnosis systems are common in industry, and
they result in frequent false alarms or insensitivity to a legitimate failure condition [10]. It is often
difficult to detect the proper features in the presence of random effects and nonstationarities. The
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task of diagnosis is often too complex and unreliable because of errors introduced due to the careless
selection of signal processing algorithms [10]. As a result, in this research, signal processing methods
will be investigated to evaluate their suitability as feature extraction methods. Specifically, fault
patterns on manufactured part surfaces will be analyzed to determine the character, severity, and
origin of faults that result in poor surface quality.

Similarly, ongoing research aims at finding the best approach to classify the extracted features,
in order to determine the existence and cause of a fault. This step typically relies on previously
known limits and specifications, or previously known fault patterns. The most traditional approach
to detect faulty features or patterns is to compare the observed features to previously known
features. In this research, we want to develop a diagnosis method that does not rely on previous
knowledge. A good example of such a case is a completely new system where there is not enough
prior experience and system models for fault classification are not available. This constitutes a
very difficult problem, as it requires any type of fault pattern to be recognized, quantified, and
diagnosed, without prior knowledge of the expected faults.

We propose to develop a fault detection and diagnosis approach composed of signal processing
tools that will detect and quantify a fault-indicating pattern (feature), regardless of the type and
characteristics of the patterns and the observed signals, and that will diagnose the originating source
of the fault, without relying on previous knowledge or known patterns of faults. We aim to do this
in the context of monitoring and controlling part surface quality in manufacturing, specifically, in
Selective Laser Sintering [12].

To satisfy our research goals, we propose a five-step approach, shown schematically in Figure 1.
The main two general portions of this approach consist of feature extraction and quantification and
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Figure 1: Feature Extraction and Fault Diagnosis Approach.

feature comparison for diagnosis. To obtain a decorrelated decomposition of the measured signal, we
need to apply a mathematical transformation to the signal [1, 14]. The Fourier transform is such a
tool, resulting in a decomposition into different frequency components based on sines and cosines as
basis vectors. However, the decomposition is not accurate in the presence of nonstationary features.
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An alternative is the Karhunen-Loéve (KL) transform, an orthogonal transform which decomposes
the signals into decorrelated components in the form of a few empirical basis functions that contain
the majority of the variance in the original data. The most common application of this transform
is to detect dominant features in order to reconstruct original signals with lower dimensionality.
Recent applications include recognition of faces in vision and turbulent structures in fluids [3, 6,
8]. We want to use this tool in detecting features in manufacturing signals, specifically, surface
profiles [11]. Our main purpose is to extract individual patterns and study their characteristics to
determine whether they correspond to significant faults, and use these patterns to determine their
origin.

This paper focuses on the first two steps. In particular, we investigate the suitability of the
Karhunen-Lo&ve transform to provide a proper decomposition leading to accurate fault detection,
quantification, and monitoring. The following sections describe the theory and motivation of the KL
transform and investigate its suitability based on analytical signals which model multi-component
signals and the occurrence of faults.

Karhunen-Loéve Transform

Orthogonal transforms, and, in particular, the optimal Karhunen-Loéve transform (KL), other-
wise known as the Principal Components Analysis in the statistical literature, are used in a variety
of signal processing applications [1, 2, 3, 6, 8, 15]. However, they have never been used for the
purposes of fault detection and diagnosis, or for the purposes of detecting and quantifying faults on
manufactured part surfaces. In this work, we extend the KL transform to the extraction of physical
patterns from surface signals; the purpose is to decompose multi-component signals into individual
patterns and study their characteristics in order to determine the occurrence, severity, and shape
of each fault. We want to assure that any pattern, including stationary and nonstationary, can be
detected and extracted using the KL transform. This information will later be used to diagnose
the origin of each individual fault.

The KL transform presents a great advantage when investigating the occurrence of faults,
especially when the shape of the fault patterns are not known in advance. Orthogonal transforms
provide a decomposition of the signal into its high-energy content basis functions, leading to an
accurate decomposition picture in the time-domain [1, 7]. Because the KL method decomposes
signals into empirically determined basis functions, rather than pre-defined sines and cosines, any
fault pattern, including stationary and nonstationary patterns, can be detected in theory using this

transform.

Theory and Mathematics

In the context of surface profile characterization, the signal being monitored is the surface profile
of an SLS part. A total of M “snapshots” are assumed to be collected at regular intervals, with N
points each, to allow for a continual monitoring of the state of operation.

We first compute the mean vector X ave = M Zm X over the total of M samples collected from
the profile; then the deviation or departure y,, = X Xave of each sample signal from the mean
is computed. The mean is removed to simplify the mathematical derivation of the covariances [4].
Next, the covariance matrix is computed as follows:

1 X -
= —M:L;l Yo L] (1)
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The eigenvectors of C are the basis functions i;, computed from:
Cit; = \il; (2)

The eigenvalues A; are ordered and the relevant features are selected by choosing the first n < N
dominant eigenvalues from the set of solutions, following the feature selection criterion used in the
literature (about 90% of the total energy is sufficient for reconstruction [3]). The coefficients a; are
computed by projecting each sample vector deviation 7, onto the basis vectors #; from:

a; = [ym]74; (3)

For each deviation yp,,there are i = 1...n coefficients, where n is the number of principal eigen-
vectors; there are a total of m = 1...M deviations (snapshots). From another point of view, for
each principal eigenvector 4;, ¢ = 1...n, there are m = 1...M coefficients. The collection of these M
coefficients for each eigenvector is called the coefficient vector; hence, there are as many coefficient
vectors as there are eigenvectors. Each original sample vector X, is then reconstructed with lower
dimensionality by adding this linear combination to the sample mean:

Xm - Xave + Z a;i; (4)

=1

Simulations using Analytical Signals

In this paper, faults are simulated in the context of parts from a Selective Laser Sintering
machine. The roller in the SLS machine is responsible for depositing an even layer of powder on
the powder bed [12, 13]. The quality (“evenness”) of the surface of the top layer of powder will
determine, in part, the surface quality of the final manufactured part. In a previous paper, the
authors have shown that, with certain types of powder, the roller leaves “chatter marks” on the
surfaces of SLS parts [12, 13]. Any undesirable changes in the dynamics of the roller will result in
a change in the surface quality of the part being manufactured. It is changes such as these that we
want to be able to detect using the KL transform.

In order to test the suitability and limitations of the KL transform, we use analytical signals in
which the fault patterns are known. This assures the accuracy of our results, since we know exactly
what fault patterns the decomposition should provide, and when each type of fault pattern occurs.
We first simulate cases where different faults occur during a manufacturing process, and compare
these cases to the normal state of operation. With these simulations, we also want to assure that
multicomponent signals are decomposed accurately, whether the components are deterministic,
stochastic, stationary, or nonstationary. Deterministic and stationary changes are introduced, as
well as nonstationary changes over the entire monitored profile.

The “normal” state of operation is assumed to produce a multicomponent signal with 2 si-
nusoids, in the form of Ajsin(Fij) + Agsin(Fyj), one high frequency (Fy = 0.9 rad/sec), small
amplitude (4; = 1 mm), and the other low frequency (F, = 0.2 rad/sec) and large amplitude
(A2 = 2 mm), plus random (Gaussian) noise (zero mean and low variance of 0.09). This situation
illustrates a typical operation state, in which rotating components, such as the SLS roller, intro-
duce a fundamental sinusoidal pattern, plus a harmonic, accompanied with random noise from the
machine operation or other conditions, such as the surface texture of the roller. Faults, such as
bearing wear or misalignment, introduce either additional harmonics, or a change in the magnitude
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Ind. || Normal | Abnormal la | Abnormal 1b | Abnormal 2a | Abnormal 2b | Abnormal 3 | Abnormal 4
1 255.45 633.47 6938.42 1006.66 6232.03 1037.00 829.55
2 240.15 530.83 5738.31 956.76 5938.75 954.40 685.45
3 74.01 240.76 245.89 72.23 70.81 618.54 89.81
4 55.62 235.70 235.65 57.30 57.61 485.89 84.81
5 2.68 2.81 2.86 2.59 2.75 2.66 52.88
6 2.58 2.39 2.62 2.27 2.21 2.24 26.23
7 2.25 2.25 2.39 2.25 2.08 2.12 2.81
8 2.14 2.00 2.06 2.00 1.95 1.98 2.29
9 2.00 1.73 1.79 1.97 1.64 1.74 1.97
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Eigenvalues: Normal State vs. Abnormal States

of the fundamental frequency component. In addition, offsets or linear trends may be introduced
as a result of misalignment in the non-rotating elements. In the following, These abnormal cases,
as well as other nonstationary faults, are simulated and compared to the normal state of operation.

In the following, the “eigenprofiles” represent the principal basis patterns on the entire surface
being monitored. Snapshots are collected at regular intervals to monitor the condition of the surface
being manufactured. Significant “eigenprofiles” are derived from a covariance matrix to provide the
shape of the dominant patterns on surface profiles; the eigenvalue corresponding to each eigenpro-
file indicates the effectiveness of each feature to represent the original profile. The features are the
coefficient vectors corresponding to each eigenvalue; these indicate any change in amplitude of a
dominant eigenprofile along the snapshots collected in time or in space, corresponding to the weight
of each basis eigenprofile in each snapshot. The variance of the coefficient vectors follows the mag-
nitude of the eigenvalue. There are as many coefficient vectors as there are dominant eigenprofiles.
The coefficient vector contains M points, indicating the change over M profile snapshots.

Stationary Changes in Deterministic Components

In the first set of simulations, the normal state of operation is assumed to produce a multi-
component signal with 2 sinusoids and random (Gaussian) noise. Ten snapshots are assumed to
be collected over the entire profile; each snapshot has 256 sample points. The following set of
simulations test the effect of stationary changes in the deterministic components.

Abnormal States 1a and 1b

In the first case, the high frequency component of the signal increases in magnitude, while the
second component remains unchanged. Abnormal states la and 1b represent two different magni-
tudes. We are investigating whether changes in the amplitude of one of the sinusoidal components
of the multi-component signal can be detected with the KL transform. This might, for example,
simulate the case when a sinusoidal pattern on the SLS surfaces, caused by roller chatter [12],
exceeds its normal limits in magnitude, thus reducing the surface precision and accuracy; remedial
action will have to be taken to diagnose the cause of this increase.

The eigenvalues from abnormal states la and 1b, compared to the normal state, are shown in
Table 1. The first observation is that, for the normal state of operation, the multi-component signal
is decomposed into 4 significant eigenvalues, summing to 98% of the total energy in the signal. The
first two eigenvalues (#1,#2) correspond to low-frequency sinusoidal eigenprofiles, while the next
two eigenvalues (#3,#4) correspond to high-frequency sinusoidal eigenprofiles.
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For abnormal states la and 1b, we also obtain 4 principal eigenvalues and eigenprofiles. As
shown in Table 1, when we increase the magnitude of the high-frequency component of our original
signal, we notice that the eigenvalues corresponding to the high-frequency component increase in
magnitude. The eigenvalues corresponding to the low-frequency component remain approximately
the same as in the normal state of operation.

These trends are more easily noticeable when we study the shape of the eigenprofiles and the
corresponding coefficient vectors. The first four eigenvectors from abnormal states la and 1b,
compared to the normal state, are shown in Figure 2. The corresponding coefficient vectors are
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Figure 2: Principal Eigenprofiles from Normal vs. Abnormal States la & 1b

shown in Figure 3. Notice that the shape of the eigenprofiles are approximately the same for the
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normal state, and abnormal states 1a and 1b. This result is expected since we are only changing
the magnitude of the high-frequency sinusoidal component, and not the frequency. The change
in magnitude is detected using the coefficient vectors. Also notice that, the coefficient vectors

corresponding to the high-frequency component show a steady increase in magnitude, On the other
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hand, the coefficient vectors corresponding to the low-frequency component show no detectable
change. The change in magnitude is successfully detected by monitoring the coefficient vectors.

Abnormal States 2a and 2b

In this case, we simulate an increase in the magnitude of the low-frequency component. The
simulation results show that the eigenvalues corresponding to the low-frequency component in-
crease in magnitude, as the magnitude of the low-frequency sinusoidal component increases. The
eigenvalues corresponding to the high-frequency components remain approximately the same in
magnitude as in the normal state (see Table 1).

In addition, the first four eigenprofiles from abnormal states 2a and 2b, are the approximately
the same as in the normal state and in abnormal states 1a and 1b. This result is not surprising since
we are not changing the shape of the pattern, but only the magnitude. The change in magnitude
is be properly detected with the corresponding coefficient vectors. In this case, the coefficient
vectors corresponding to the high-frequency component remain unchanged, while the coefficient
vectors corresponding to the low-frequency component show a steady increase in magnitude. Once
again, the coefficient vectors can be monitored to detect the change in magnitude of any frequency
component in the measured signal. In addition to these results, further simulation shows that,
when both the high-frequency and the low-frequency components of the multi-component signal
are increased in magnitude, the changes in magnitude are again successfully detected by monitoring
the coefficient vectors (abnormal state 3, Table 1).

Abnormal State 4

Finally, we investigate whether the KL transform detects the occurrence of an unexpected
fault. The fault, in this case, is introduced in the form of an additional frequency component.
This simulates the case where the bearing of the roller in the SLS machine undergoes wear, hence
introducing a harmonic, in addition to the fundamental frequency component. The first two sinu-
soidal components are the same as the normal state of operation; a third frequency component is
added (abnormal state 4). In this case, the addition of a third frequency component introduces an
additional set of eigenvalues (see Table 1). Therefore, the occurrence of an additional frequency
component can be detected by monitoring the number of significant eigenvalues. The accuracy of
this case needs to be investigated further.

Nonstationary Changes

The second set of simulations tests the effect of introducing sudden and/or gradual nonstation-
ary changes to the monitored signal. These cases simulate the occurrence of faults after a certain
point in time, introducing a nonstationary pattern over the monitored signal. Four cases are sim-
ulated, presented next. The eigenvalues for each of these cases, compared to the normal state of
operation, are presented in Table 2.

Case 1

In the first case, signals from the normal state of operation are assumed to have a change in the
mean offset after a certain period of time, hence introducing a nonstationary change in the signal
that must be detected during monitoring; the first ten snapshots indicate normal status, while
the next ten snapshots indicate an offset. This situation, for example, simulates a sudden change
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Index | Normal Case 1 | Case 2 Case 3 Case 4
1 255.45 | 1602.78 | 3243.81 | 2253.35 | 346191.37
2 240.15 254.08 | 3191.27 | 2239.68 254.37
3 74.01 239.45 71.59 | 1397.22 240.01
4 55.62 69.86 56.26 69.79 69.38
5 2.68 55.23 1.52 56.32 56.66
6 2.58 1.66 1.49 1.20 2.36
7 2.25 1.41 1.36 1.08 2.21
8 2.14 1.32 1.33 1.05 2.11
9 2.00 1.24 1.26 1.01 1.92
10 0.00 1.22 1.22 0.92 0.03

Table 2: Results: Eigenvalues for Normal State vs. Cases 1 through 4

in the vertical position of the SLS part while it is being formed, caused by the residue deposited
on the roller mechanism. As shown in Table 2, this fault manifests itself as an added principal
eigenprofile, with a relatively large eigenvalue; the remaining eigenvalues are approximately the
same as the normal state of operation. The simulation results show that the first eigenprofile
resembles a straight line when plotted with the remaining sinusoidal eigenprofiles. In addition, the
coefficient vector corresponding to the first eigenvalue shows the change in the mean offset very
clearly, after the tenth snapshot, as shown in Figure 4. As a result, this additional pattern, defined
by a straight line, can be detected by monitoring the occurrence of a fifth eigenprofile, while its
significance can be evaluated by monitoring the shape of the coefficient vector. Note that no change
is observed in the remaining eigenprofiles or coefficient vectors, when compared with the normal
state of operation.
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Figure 4: Principal Eigenprofiles and Coefficient Vector for Case 1.

Case 2

In this case, a situation similar to abnormal states #2 and #5 occurs, where the low-frequency
component changes in magnitude, while the high-frequency component remains the same. We
collect a total of twenty snapshots; a change occurs during the course of monitoring the signal,
hence introducing a nonstationary change in the signal, after the tenth snapshot. The results show
that, while the eigenprofiles remain the same as in the normal state of operation, the coefficient
vectors corresponding to the low-frequency eigenprofiles increase in magnitude after the tenth
snapshot, where the nonstationary change occurs (Figure 5). As expected, no change is observed
in the high-frequency coefficient vectors (Figure 5). Also notice the increase in the eigenvalues for
the first two eigenprofiles, while the eigenvalues for the next two eigenprofiles are approximately
the same as the normal state of operation, as shown in Table 2.
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Case 3

When both Case 1 and Case 2 take place, i.e., first the magnitude of the low-frequency sinusoidal
component increases (after the tenth snapshot), then, a change in the mean offset is observed (after
the twentieth snapshot), result show similar trends; in this case, we collect a total of thirty snapshots
to observe both types of changes occurring at different points in time. A fifth eigenvalue/eigenprofile
is observed, reflecting the change in the offset value, plus an increase in the first two eigenvalues,
corresponding to the low-frequency eigenprofiles; the last two eigenvalues remain approximately
the same as in the normal state of operation (Table 2, Case 3). In addition, as expected, the
coefficient vectors corresponding to the low-frequency eigenprofiles show a change in magnitude
after the tenth snaphot, and return to their original normal state after the twentieth snapshot. The
coefficient vector corresponding to the third eigenprofile indicates the change in the offset value
after the twentieth snaphot, while the coefficient vectors corresponding to the last two eigenprofiles

show no change.

Case 4

In the final case, the normal state of operation is interrupted by the addition of a linear trend
with a positive slope. This simulates, for example, a change in the table or powder bed slope while
the SLS part is being manufactured. The results show the addition of a fifth eigenvalue (Table 2,
Case 4) of large magnitude, while the remaining four eigenvalues are approximately the same as
the normal state of operation. The first three eigenprofiles and the coefficient vector corresponding
to the first eigenprofile are shown in Figure 6. As expected, the first eigenprofile represents a
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Figure 6: Principal Eigenprofiles and Coefficient Vectors for Case 4.

straight line as the basis vector, while the corresponding coefficient vector indicates the change in
the magnitude of that principal eigenprofile, reflecting the slope in the linear trend.
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Conclusions from the Simulation Results

The simulation results show that the KL transform presents a good potential for detecting,
extracting, and monitoring fault patterns on surface profiles. First, the KL transform successfully
decomposes the signal into its basis patterns (eigenprofiles). Changes in the magnitudes of these
basis patterns are successfully reflected in the corresponding coeflicient vectors. The introduction
of additional patterns are also detected as additional basis patterns. For example, in case 1, the
KL transform successfully decomposes the signal into its individual patterns, i.e., 2 sinusoids and a
straight line. Monitoring is done by detecting a fifth eigenprofile and studying the change in the cor-
responding coefficient vector. In addition, the nonstationary change in the offset level is reflected in
the relevant coefficient vector, hence allowing the effective monitoring of this nonstationary change
in the normal state of operation. In case 2, the sudden change in the magnitude of the sinusoidal
patterns is successfully reflected in the relevant coefficient vectors, while no additional patterns
are extracted. In case 4, the KL transform extracts the additional basis pattern, represented as a
straight line, and detects the introduction of a linear trend, which is reflected in the corresponding
coefficient vectors as a linear increase in magnitude over the set of snapshots. Further simulations
are necessary to assure that nonstationary patterns over snapshots (as opposed to patterns over
the entire signal) are also detectable with this method. An example is a set of linear trends with

differing slopes over each snapshot.

Conclusions and Future Work

This paper presents a study of the suitability of an orthogonal transform, namely the Karhunen-
Loeéve transform, in decomposing signals measured from SLS part surfaces. We show that the
KL transform can be used to detect stationary as well as nonstationary patterns, providing an
accurate decomposition of multi-component signals. In addition, we show that the eigenprofiles
and coefficient vectors derived using the KL transform can be used to effectively monitor and
detect the occurrence of faults on measured SLS surface signals.

Stationary changes, including changes in the magnitudes of one or more sinusoidal components,
are reflected as changes in the corresponding coefficient vectors. The introduction of an additional
frequency component is reflected by an increase in the number of principal eigenvalues and eigen-
profiles. Nonstationary changes in the normal state of operation, including a change in the mean
offset level, and a change in the slope of the part surface, are reflected by the introduction of ad-
ditional eigenprofiles and corresponding changes in the coefficient vectors. A sudden change in the
magnitude of a sinusoidal pattern is reflected by an accurate change in the corresponding coeffi-
cient vector. As a result, the KL transform is shown to be a proper tool in extracting the relevant
features and monitoring stationary and nonstationary changes in the normal state of operation, for
those cases simulated in this paper. Further mathematical proof of these results will follow.

In addition to the work presented in this paper, the authors are currently simulating other
fault components, such as transients, and other nonstationary fault components, such as a saw-
tooth shaped pattern. Other transforms such as the wavelet transforms and higher-order spectral
transforms are also being investigated as potential candidates to provide an effective and accurate
decomposition of multi-component signals. The results of this work will be used to develop an
accurate fault detection and diagnosis method to assure the quality of surfaces from manufacturing

machines.

584



Acknowledgements

This material is based on work supported, in part, by The National Science Foundation, Grant
No. DDM-9111372; an NSF Presidential Young Investigator Award; by a research grant from TARP;
plus research grants from Ford Motor Company, Texas Instruments, and Desktop Manufacturing
Inc., and the June and Gene Gillis Endowed Faculty Fellowship in Manufacturing.

References

[1] A.N. Akansu and R.A. Haddad. Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets.
Academic Press, Inc., San Diego, Ca, 1992.
[2] V.R. Algazi, K. L. Brown, and M. J. Ready. Transform representation of the spectra of acoustic speech

. segments with applications, part I: General approach and application to speech recognition. IEEE
Transactions on Speech and Audio Processing, 1(2):180-195, April 1993.

[3] K.S. Ball, L. Sirovich, and L.R. Keefe. Dynamical eigenfunction decomposition of turbulent channel
flow. International Journal for Numerical Methods in Fluids, 12:585-604, 1991.

[4] J. S. Bendat and A. G. Piersol. Random Data: Analysis and Measurement Procedures. John Wiley &
Sons, New York, NY, 1986.

[5] S. D. Eppinger, C. D. Huber, and V. H. Pham. A methodology for manufacturing process signature
analysis. Journal of Manufacturing Systems, 14(1):20-34, 1995.

[6] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, NY, 1972.

[7] W. Kozek. Matched generalized gabor expansion of nonstationary processes. In The Twenty Seventh
Asilomar Conference on Signals, Systems, & Computers, volume 1, pages 499-503, 1993.

[8] L. Sirovich and L.R. Keefe. Low-dimensional procedure for the characterization of human faces. Journal
of the Optical Society of America, 4(3):519-524, March 1987.
[9] J. Sottile and L. E. Holloway. An overview of fault monitoring and diagnosis in mining equipment.

IEEE Transactions on Industry Applications, 30(5):1326-1332, September/October 1994.

[10] S. Spiewak. A predictive monitoring and diagnosis system for manufacturing. Annals of the CIRP:
manufacturing technology, 40(1):401-404, 1991.

[11] 1.Y. Tumer, R.S. Srinivasan, and K.L. Wood. Investigation of characteristic measures for the anal-
ysis and synthesis of precision-machined surfaces. Journal of Manufacturing Systems, 14(5):378-392,
September/October 1995.

[12] 1.Y. Tumer, D.C. Thompson, R.H. Crawford, and K.L. Wood. Surface characterization of polycarbonate
parts from selective laser sintering. In SFF Symposium Proceedings, pages 181-188. The University of
Texas at Austin, August 1995.

[13] LY. Tumer, D.C. Thompson, K.L. Wood, and R.H. Crawford. Characterization of surface fault pat-
terns with applicaiton to a layered manufacturing process. Submitted for review to the Journal of
Manufacturing Systems, Special Issue in Layered Manufacturing Systems, February 1996.

[14] D.J. Whitehouse. Handbook of Surface Metrology. Institute of Physics Publishing, Bristol, UK, 1994.

[15] S. A. Zahorian and M. Rothenberg. Principal-components analysis for low-redundancy encoding of
speech spectra. Journal of the Acoustical Society of America, 69(3):519-524, March 1981.

585



586



