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1.0 Introduction

Materially graded objects are objects composed of different constituent materials and could
exhibit continuously varying composition and/or microstructure [1][2]. Such continuous changes
results in gradation in their properties and distinguish them from objects made of conventional
composites. They are also known as heterogeneous objects, functionally graded/gradient materi-
als (FGM) and multi-material objects/structures [1]. In this paper, we use the terms “materially
graded objects” and ‘heterogeneous objects” interchangeably. Recently, heterogeneous objects
have found use in several engineering applications. The fabrication process that has shown poten-
tial to manufacture heterogeneous objects is called Solid Freeform Fabrication (SFF), also known
as Layered Manufacturing (LM) [3][4]. SFF is a material deposition process in which the material
deposition can be controlled to vary the material composition throughout an object, thus fabricat-
ing a materially graded object.

All SFF technologies are computer-based and require the CAD model of the object to be man-
ufactured. However, current CAD systems are capable of representing only the geometry/topol-
ogy information. Therefore, heterogeneous objects are fabricated using SFF by manually feeding
the material information along with the geometry data. This is a cumbersome process and leads to
the under-utilization of the SFF process. An assessment of existing representations for SFF is pre-
sented in [5] highlighting the need for CAD models which represent material information along
with the geometry data of the object.

2.0 Previous Work

Traditional geometric/solid modeling has focussed on modeling objects based on their geome-
try and topology [6][7][8]. There is no additional information in the solid model regarding the
material of the object. The geometry of the object is modeled by considering the mathematical
space T = R3. Certain subsets of this space called r-sets and manifold solids are widely accepted
as valid mathematical models of physical objects [7][8]. The most commonly used representation
schemes for this model are the Constructive Solid Geometry (CSG), Boundary Representation (B-
Rep) or a hybrid [6][7][8].

In our earlier work [9], we proposed an approach to model objects composed of finite number
of domains with each domain made of a single material or the domain being a single embedded
component. Examples of these multiple material objects are shown below in Figure 1.
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FIGURE 1. Objects with distinct material domains (a) Two material object: copper cooling channel in steel
block  (b) Object with embedded electromechanical systems

In order to represent these objects, the mathematical space T was expanded to include a mate-
rial space (M) along with the spatial dimensions R®. The choice M = Z, the set of integers, was
sufficient to model objects made of a finite number of unique materials. Thus, the product space T
= R® X Z with the product topology formed the new modeling space for representing these
objects. Subsets of this space T called r,-sets were proposed to model a single material domain of
a multiple material object. In r-sets, the geometry was still modeled by the traditional r-sets and
the additional integer identifies the material of the domain. A set of r-sets called rp,-classes was
then defined to model objects made of these material domains. Boolean operations were defined
to create and manipulate these models. Computer representation to implement this model was
developed by including additional data structure on the B-Rep scheme. The main advantage of
this approach is that the geometry is still modeled using traditional solid modeling methods and
hence, the internal structure of the representation is unaffected. Additional structure has to be
included to implement the material dimension of the proposed model.

3.0 Modeling of Materially Graded Objects

In this paper, we propose a method to model heterogeneous objects which have continuous
variation in material composition. Refer Figure 2 for examples. The material composition of a
heterogeneous object can be fully specified by specifying the volume fractions of all its constitu-
ent materials. From the volume fraction information, the density of the object at any point can be

calculated.

Density variation shown in greyscale

FIGURE 2. Materially Graded Objects (a) Two material object with varying composition
(b) Object made of single material with varying density [13]
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Modeling: To model objects with continuous material variation, the material space (Z in Section
2.0) must be expanded. A suitable choice for the new mathematical space is T = R® X R", n being
the number of constituent materials (also referred to as primary materials). R3 is the geometry
space, the space where the geometry and topology of the object is defined. R" is the material
space with each dimension representing a primary material. Each point in the object can be com-
posed of either a single primary material or a combination of several. Thus, the material at any
point can be identified by volume fractions of each of the primary materials. Noting that these vol-
ume fractions must sum to 1, we can precisely define the space of volume fractions V as:

n
V={ye Rnl ||yl|152vi=1and viZO} (EQ1)

i=1

where v; (i-th component of v) represents the volume fraction of material i. An underline is used
to denote a vector in the corresponding space, such as v. Note that porosity of a local region can
also be modeled by including void as one of the primary materials. A set of n points @1, m>,...,
m") called the primary points can be defined in V to represent the n primary materials. The coor-
dinates of these primary points in V are defined as vi(r_gj) = 813‘ .

Each point in an object S can now be characterized in product space T as (x, v(X)) where x €
S is a point in the object and v(x) represents the material at that point such that v(x) € V. The
material v(x) of any point x in S can be considered as a mapping F from the geometric points x to
the material space V. The geometry of the object S can be modeled as an r-set P and the material
distribution for the r-set P can be represented by the set B in V which is defined by function F.
Thus, an object having varying material distribution can then be modeled as an r,,-object:

S={PeA BcV)whereB = {v(x)=F(x)e V, Vxe P} (EQ2)

Here, A denotes the class of r-sets. It might not always be possible to define the mapping F
(i.e., v(x)) using a single function for each v;(x) to characterize the material distribution for the
entire object. Instead, F can be composed of a finite number of piecewise C" functions:

F(x) = {v)(x),j=1..k (finite)}, Vi = 1...n (EQ 3)

v(x)

In this case, the geometric domain of each function _Yj(g) has to be prescribed separately and
explicitly which is equivalent to specifying C? and C! discontinuities of F. The r,,-object can then

be defined as:

S=(P;e A,B;cV),j=1..k (finite)
X k . . . (EQ 4)
UPj=P, UB;=B where Bj={v'(x€P))}=(V{(x), ..., v3(X))
i=1 i=1
The material distribution B; for each r-set P; can be defined with respect to alocal coordinate sys-
tem L; attached to P;. This would make the definition of the functions ¥'(x) simple. A point x that
does not belong to the object is assigned v(x) = 0.
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Boolean Operations: In order to create and manipulate these models, boolean operations are nec-
essary. Consider two ry-objects D = {D;} = {(P;, By, t= 1.k} and G = {Gy} = {(Py, By),
w=1...m}. The boolean operations on any two regions D, and G,, can be defined as:

p, O, G, = {Pz O PW,B},B = {w(x) eV,vzer O Pw} (EQ5)
w(x) = normalize(c, (x)(u(x) € B,) + ¢ (x)(¥(x) € B,))

where [0 represents the three boolean operations /, M and U. The “normalize” is the normal-
ization operation with respect to the L; norm as in (EQ-1) and is performed only if the norm of
Ww(X) exceeds one. The weight functions ¢,(x) and ¢,(x) can be used to manipulate w(x) . Alter-
nate functions can also be used to define the material in the intersecting region as long as w(x) lies
in V. Now the difference operation on the two rp,-objects D and G is defined as:

D/1G ={ AL vo.e oD /mGy)| VD e D} EQ6)

where the difference operation between each D, and G,, is now defined using (EQ-5). Simi-
larly, the intersection operation can be defined as:

m

D ni,G= V {Dt N, G, |VD,e D,G,e G} EQ7)

where the intersection between D, and G, is now defined using (EQ-5). The join operator (V)
is defined as the union of two r-sets if their corresponding material distribution is constant and

equal. Finally, the union operation is defined as:

DusG= V{D nG)(D/5G)(G/5D)} (EQ8)

with the union between D; and G, defined using (EQ-5).

Representation: The computer representation of the rp,-object model can be implemented as
shown in Figure 3.

Links between Module for each j in S = {(Pj, B;),j = 1..k}
material regions
e If?).rRezal?l I§’j del »| Material Function Module, B;

FIGURE 3. Computer representation of ry,-object
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4.0 Example

We will illustrate the proposed modeling strategy through an example shown in Figure 4. The
example object is a simplified model of a valve seat and is made of three regions. The outer shape
(L) is made of one material (Al33) and the inner deposit (M) is made of another material (brass).
The interfacial region (N) between the two is a mixture of two materials with the composition

gradually changing from one material to another.

FIGURE 4. Sample Heterogeneous Object

We model this object in R3 x R3 with both the geometry space and the material space being
R3. The space of volume fractions V is a plane in the first quadrant of the R joining the three
material points m' = (1, 0, 0) and m? = (0, 1, 0) and m* = (0, 0, 1). The point m” is the void space
which is used for constructing objects as shown in this example. The region L is modeled as a cyl-
inder, the region M as a elliptical torus and the region N as a spherical shell.

The sequence of operation we used to model this object is shown in Figure 5. The primitives
used are cylinder (C, _m_l), spheres (S1, r_n_3) and S2, and an elliptical torus (T, _rr_lz). The material
distribution of each primitive is defined with respect to its local coordinate system. Note that S2 is
not assigned any material because it is used only for the difference operation. When two regions
are united, the material for the intersecting region is chosen using the “matl” function (as shown
in the figure). The spheres are split by two planes P1 and P2 to obtain (Slc, m3) and S2c. The
object (Slc, m°) is then united with the cylinder C by choosing the material for the intersecting
region as m>. From the resulting object, S2c is subtracted followed by the union of object (T, m?).
Finally, the material distribution for N is changed to F(r) = _m__1 + t(_rgl_2 — m') where t is the thick-
ness of N and r is the radius in the local co-ordinate system of N. Although the final model does
not contain any region made of material _1_11_3, the sphere S1 is assigned that material in order to
construct the model. The final object contains three regions and is represented by an r-object as

{(L, mb), (N, F(r)), M, m?)}.
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5.0 Fabrication

{(L, m"), (N, m?)

| an matlL M* T) = m!
l matlN M T) = _rp_3

(L, mb, N, m%), M, m?)}

matl(N) = F(r)
-

FIGURE 5. Steps in the creation of the valve model

Fabrication of materially graded objects by SFF involves additional processing compared to
fabrication of homogeneous objects. These are identification of material distribution in each layer
after performing the slicing procedure and material based tool path generation for deposition in
each layer. To illustrate the steps involved, consider an r,-object S = {(P;, F)), i=1...k} (equivalent
definition of S= {(P;, B;), i=1...k} where F, is the material distribution defined in the local coordi-
nate system of P;. The r,-object S = {(P;, B;), i= 1...k} is processed by performing the operations

on (Pi’ Fl)

Orientation: Denoting the transformation by OT, the oriented r,,-object can be defined as:

S, = OT(S) = {(OT(P)), F,), Vi = 1...k} EQY)
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Slicing: The oriented rp,-object S, is sliced by the slice planes SP(z) to obtain the layers L(z):
L(z) = S,nSP(z) = {(OT(P;) " SP(z), F;n OT_I(SP(Z))), Vi=1...k} (EQ 10)

The material distribution function for each layer obtained in (EQ-10) (denoted by F,(x,y)) has
to be approximated depending on the resolution of the fabricating process. An example of a 1D
single material distribution F,(x) and its approximation is shown in Figure 6.
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FIGURE 6. Approximation of a distribution function by series of step functions

Toolpath Generation: Once the material distribution for each layer is obtained, the tool paths for
material deposition have to be generated. Currently, there does not exist any automated way of
generating optimal tool paths for a given material distribution in a layer and this issue has to be
addressed. Figure 4 illustrates these steps for the example discussed in Section 4.0.

(© z & (d) Volume fraction

Volume fraction z T of materijal mz
of material m! .

FIGURE 7. (a) Adaptive slicing  (b) Material Distribution at slice z=0.8  (c) Variation of volume
fraction of material-1 in slice z=0.8  (d) Variation of volume fraction of material-2 in slice z=0.8
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Figure 7(a) shows the adaptive slicing [10] of the object and Figure 7(b) shows the material
regions of a slice at z=0.8. The variation of volume fraction of material _131 and material _m_2 are
shown in Figure 7(c) and Figure 7(d) respectively. The slice geometry is in the x-y plane and the
variation of volume fraction of each material is shown along the z-axis.

6.0 Summary

In this paper, we proposed a solid modeling scheme for materially graded objects by extend-
ing beyond geometry/topology representation (based on r-sets) to include the material variation of
the object. For a more detailed treatment of this problem, refer to [12]. The r-object model
enhances the theory of r-sets and is compatible with traditional solid models. The computer repre-
sentation of this model was built on existing B-Rep scheme and hence, can easily be adapted into
existing solid modeling systems. Finally, fabrication of objects modeled as r,-objects using SFF

was also discussed.
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