
A Memory Efficient Slicing Algorithm for Large STL Files

S. H. Choiand K. T. Kwok
Department of IndustriaFand Manufacturing Systems Engineering

The University ofHongKong, PokfulamRoad,~ong Kong
Email: shchoi@hkucc.hku.hkandktkwok@hkusua.hku.hk

ABSTRACT

This paper proposes a memory efficient slicing algorithm for Rapid Prototyping (RP)
processes. The algorithm is aimed to overcome the constraints of computer memory inherent in
the .conventional slicing methodologies.lte~tracts from the Stereolithography (STL) file the
facets that intersect with the cutting plane to process the slice data and the topological
information. Reading onlythefacets ofthe current layer greatly reducestheatnount ofcomputer
memory required <and involves less •computationally intensive. searching operations. Th~s, large
STh files>of virtually~nlimitedsizescan be sliced to facilitate theRt> process. The algorithm is
alsorelativelyfau;lt-tolerant in that inconsistent contour due to defects of the STL file may be
l11()reeffectiVelyrepaired.

The topologicaLinformation of the layer contours can be subsequel1tlyprocessed by further
operations, such as hatching, physical fabrication or virtual simulation. To cater for the variations
of RP processes, the Common Layer Interface (CLI) format is adopted as the output interface.

l..INTRODUCTION

Rapid Prototyping (RP) is an additive fabrication process. Contrary to the traditional
subtractive machining processes such as milling, RP processes use liquid, powder or sheet
materials to form a part layer by layer. These parts are used in various stages of the product
development. The role of RP has become more important since it was introduced about 10 years
ago.

Fig.1 shows the flow of a typical RP process. The first phase is to validate the 3D CAD
model, which is then orientated with the optimal orientation with respect to the build time and
the surface quality. Support structures are then generated based on the process requirements. The
final model is then sliced with a set of horizontal planes. Each horizontal plane gives a piecewise
linear contour, which is then crosshatched to determine the laser paths to control the sintering or
solidification process. The process is repeated for the next layer until the model increment to its
final shape.

3D CAD MODEL > STLFILE )
y

RP PROCESSES

Fig. 1 STL as an interface between CAD and RP

155



2. SLICING STRATEGIES

x

y

When creating parts layer by layer, a CAD model of
the part is required [1]. Currently, STL format is the de
facto. standard representation of·. CAD data input.
Tessellationis. the process. that converts a model
to aSTL file. We consider now only the CAD modeLas
the input, despite there are lots more data input methods
such as reverse engineering data and layered data from
mathematical programs.

Fig. 2 Sphere in STL format A STL file consists of an. unordered list of triangular
facets covering. the outer surface of the model.. Bach

facet is described by a set of X, Y and.Z coordinatesfor<each of the three vertices and a unit
normaLpointing outside of the solid. An example of STL sphere is shownin Fig. 2. As STL is
just an approximation ofthe surface model, the user needs to define the chordal value, which is
the maximum distance from the surface to the vector representingthe surface of a facet. BTL
format offers·good geometry approximation of the CAD model if small layer thickness
However, the smaller the tolerance, the larger the number of facets required to ...",.-.,..."""",,"1

solid, and hence the bigger the file size. Other cases would also result large STLfile .sizes,
as complex medical scan data which require high resolution for specific vital purposes (Fig.>6),
life-sized models of large. objects. to be fabricated by RP processes (Figs. 7 and 8) or virtual
models developed for different applications (Fig. 9).

The major disadvantage oftessellated or facet models used in most currentRP systems is that
they are poorly suited for representing highly curved objects. A simple solution to improve the
overall surface quality is to increase the number of facets and decrease the slice thickness that
results in large STL'· file. Hitherto, commercially available slicing algorithms usually read the
whole STL file into the computer memory to reconstruct the topological relationship of the
surface facets. However, a complex or accurate CAD model is often too large to read into the
memory. Consequently, slicing cannot take place and thus becomes a bottleneck in the RP
process. This bottleneck limits the use of RP technology in certain areas where highly detailed or
complex models are required.

Direct Slicing
Direct slicing has been proposed to alleviate' the problem of STL by skipping the facet

representation and slice the CAD model directly [2]. It can therefore, solve the big STL file
problem if implemented between the CAD system and RP machine. I1nplementation of direct
slicing based on binary representation (B-rep) solid model and constructive solid geometry
(CSG) had been proposed. However, similar to sloping surface approach [3], the major
disadvantage of direct slicing is that it is machine/CAD dependent. Solid model representation
such as B-rep and CSG are fundamentally different, and a generic model format has yet to be
devised.



2.2 Adaptive Slicing
Adaptive slicing was proposed to maximize the geometry without affecting the accuracy. In

contrast to uniform slicing, adaptive slicing increases the slice density in highly convoluted
regions, and reduces itin other regions wherever possible. Adaptive slicing mainly addresses the
geometry issues and need a·specific RP systemto •achieve the desired results .•However, there are
stillnot RP machines that fully support or able to take fUlladva~tagesofadaptive slicing. The
build thickness for a single layer is usually fixed to. a small range between certain upper and
lower limits .• In case of large model size adaptive slicing offers no compensation. The current RP
systems such as Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM) only
fuse a layer of building material having a thickness ofless than O.5\mm in order to have a higher
accuracy along the build direction.

Most researchers tend to propose another file format to replace the STL file standard. Jacob
[4] •proposed a new rapid prototyping interface, <which includes facets. topological information.
However, similar to other proposed formats [5], they failed to provide imperious advantages over
STL file as a new .. standard. Others focus on process parameter.optimization.[7,8] but less effort
has been given to solve the big STL file problem that provides a practicable and economical
solution to the existing RP users. Due to the nature of STL file, no sorting or reconstructing
algorithm is able to give satisfactory results. Once if the input STL file is too large to fit in the
system memory or has minor defects, it will stop the RP process or even 'hang' the machine. It is
the purpose of this paper to solve this memory limitation problem.

It can be concluded that STL representation of CAD models is still the most versatile interface
for commercially available RP systems. STL format has been a unified input to all downstream
processes that are performed in rapid prototyping as well as other layered manufacturing. STL
export option has been implemented in most CAD· systems that ensures • a unified·· neutral
interface between CAD and RP systems. Solving the memory bottleneck provides an economical
and practicable option for RP users. A memory efficient. slicing algorithm that eliminates the
bottleneck has been developed and is discussed inthe following sections.

3. THE MEMORY EFFICIENT SLICING. ALGORITHM

The memory efficient slicing algorithm adopts a different approach. Instead of storing the
whole model into the computer memory, this algorithm reads only the facetsthatintersectwith
the cutting plane as shown in Fig. 4. Hence although the numberoffacetsiniaSTLfile depends
on the model density, the.number of facets read. in the.computer.mel11ory is greatly reduced. The
difference is even more observable as the facetdensity becomes higher.

Fig. 5 shows the overall flowchart of the slicing program. The facetmodel will be scanned to
obtain properties such as maximum and. minimum vertices,lTIodelnarne and number offacets.
Once the model has been scanned, all the properties willbe displayed on the screen. Since a valid
STL model should be in the positive Cartesian space, a Model Manipulator .module has been
developed to handle the case ofnegative vertices, which may be produced from the CAD to STL
conversion or part orientation optimization. The simple..Model Manipulator uses the translation

157



matrix for the calculations of model rotation, model transition and model scaling. With the
Model Manipulator, the STL model can be properly orientated before the slicing process.

In the slicing stage, the algorithm mainly involves manipulation of the facet data and
comparison of z-coordinates of the facets, and then calculates the line segment that defines the
contour for the layer. The line segments are vectors following the anti-clockwise rule, which will
be stored in the computer memory for contour construction. The sliced line segments are sorted
and joined to form a closed contour by simple head-to-tail searching mechanism with a given
tolerance. The tolerance is the maximum distance between the head and the tail of two joining
line segments, as shown in Fig. 3. The choice of the tolerance value is critically related to the
chordal value of the STL file [10]. In this algorithm, the maximum tolerance is set to equal to the
shortest edge in the STL file.

Once the model is sliced in each layer, the topological relationship needs to be sorted. The
anti-clockwise nature of the line segments can be used to identify the inner loop and the outer
loop. Other topological information such as number of holes and number of surrounding contours
should be calculated also. This is done by the ray-crossing or ray-shooting containment test [11],
which is implemented in the Contour Sorter Module. The Sorting Module outputs the sorted
layer contours for subsequent processes. The Layer Viewer Module is used to view the contour
output. The user can view the layer contour to check its validity.

Finally, the sliced data are used to generate a data file in the Common Layer Interface (CLI)
format [12]. The CLI data format containing the contour information is independent of the RP
machines. CLI is a simple and efficient format for data input to all Layer Manufacturing
Technology systems based on a 2.5D layer representation. Moreover, medical scan data is already
accommodated in CLI format [13].

• Line segments related to
the currl:mt layer are
stored randomly in
computer memory before
sorting out to form closed
contours for each layer.

~~ Tolerance Value

Fig. 3 Sample layer contour following the anti-clockwise rule

158



Fig. 4a: Conventional slicing algorithm stores all
facets in computer memory, which limits
the size and complexity of the design and
thus leads to breakdown of the rapid
prototyping process.

Scan the STL file to
find the properties of
the model

Fig. 4b: The memory efficient slicing algorithm
stores only the facets intersect with the
cutting plane, thus alleviates bottlenecks
due to memory limitations and thereby
facilitates rapid prototyping of large and
complex models.

No

Define a cutting plane
at Z-height

Read a facet from the STL
file and compare it with the
Z-height

Increase the Z-height,
reset pointer to the STL

file

No

No

Yes

Slice the facet to
calculate and store the
line segment vectors

Sort line segment
vectors to construct
and store the layer
contour

Fig. 5: Flowchart of the memory efficient slicing algorithm

159



4. EXAMPLES

files ofdifferent sizes and shapes have been sliced to test the functionality and stability of the
program. The configuration ofthe computer used is as follows: InteLPentium166MHzprocessor,
64l\1B.Ram,a4.2GBharddiskwithSCSI controller and Microsoft Windows 98. Fig. 6 shows a
human skulLmodel, which consists of 767,256 facets. Abell and a car of 426,572 and 151,350
facets are given in Figs.land 8 respectively, while Fig. 9 shows a computer generated virtual
model that consists of 74,634 facets. Screen captures of Layer Viewer Module are also shown in
Figs. 6 to Fig. 9. Layer Viewer displays contours in differentcolours for better Visualisation and
easier error detection. Indeed, most commercially available slicingalgorithmswilLnoLendure
evenQne fault facet [6], and slicing will not proceed unless all the triangles are perfectly linked
togetherin.the BTL file. In.contrast,.the.proposed algorithm will slice the STL file even. if.some
edges are missing. The slice can be viewed in Layer Viewer module, and hence the user can
manually edit the slice in case of unbound contours.

6 A. Human Skull Model (36MB binary STL file, with two slices at different Z-height
generated by the algorithm. Mean processingtime per slice is approximately 1 minute)

7 A Bell Model (21 MB binary STL file, with two slices generated at different Z-height by
the algorithm. Meanprocessing time persliceis approximately 30 seconds)



D

D 0
\J [7

Fig. 8 A Car Model (7.21MB binary STL file, with two slices generated at different Z-height by
the algorithm. Mean processing time per slice is approximately 12 seconds)

Fig.9 A Virtual Model (3055MB binary STL file, with two slices generated at different Z-height
by the algorithm. Mean processing time per slice is approximately 5.2 seconds)

5. CONCLUSION

The productivity of layered manufacturing can be improved by using a versatile slicing
algorithm, which should be able to slice STL models of any sizes and complexities. Traditional
slicing algorithms can only handle relatively small STL models because of the limitation of
computer memory. A new memory efficient slicing algorithm has been developed to solve this
problem. The advantage of this algorithm is its ability to slice STL models of virtually unlimited
sizes. It processes only the facets of a single layer to free up memory. This feature would be
essential to make large objects such as a life-sized vehicle, or complex and detailed models used
in medical applications.

161



ACKNOWLEDGEMENT

The authors would like to thank the Research Grant Council of the Hong Kong Government and
the CRCG of the University of Hong Kong for their financial support for this project.

REFERENCES

1. Vinod Kumar and Debasish Dutta, "An assessment of data formats for layered
manufacturing", Advances in Engineering Software vol. 28 (199'7), pp. 151-164

2. P. J. de Jager, "A comparison between zero and first order approximation algorithms for
layered manufacturing", Rapid Prototyping Journal, vol. 3 number 4 199'7, pp.144-149

3. Zhiwen Zhao and Luc Laperriere, "Adaptive Direct Slicing of the Solid Model for Rapid
Prototyping", http://ecoleing.ugtr.uguebec.ca

4. Gan G.K. Jacob, "Development of a new rapid prototyping interface", Computers in industry
vol. 39 (1999), pp. 61-'70

5. Anna Kochan, "Rapid prototyping trends", Rapid Prototyping Journal vol. 3 number 4, 199'7,
pp. 150-152

6. Leong, C. K. Chau and ¥. M. Ng, "A study of Stereolithography File Errors and
Repair", The International Journal of Advanced manufacturing Technology (1996) 12:40'7
414

'7. Zhu Wei-Ming and ¥u Kai-Ming, "Pre-processing Technologies for Rapid Prototyping and
Rapid Tooling - a Survey", CIRT International Symposium - Advanced Design and
Manufacture in the Global Manufacturing Era. August 21-22, 199'7, Hong Kong, pp. 802-808

8. Minoo Bablani and Amit Bagchi, "Quantification of errors in Rapid Prototyping Processes,
and Determination of Preferred Orientation of Parts", Transaction of the North American
Manufacturing Research Institute of the SME, vol. xxiii, May 1995, pp. 319-324

9. Michael J. Laszlo, "Computational Geometry and Computer Graphics in C++", Prentice Hall,
1996, pp.116-130

10. Joel McClurkin and David W. Rosen, "Computer-aided build style decision support for
stereolithography", Rapid Prototyping Journal vol. 4 number 1, 1998, pp. 4-13

l1.R. Hope, P.N. and P.A. Jacobs, "Adaptive slicing with sloping layer surfaces", Rapid
Prototyping Journal vol. 3 number 3, 199'7, pp. 89-98
http://www.cranfield.ac.uk. Cranfield University EARP

13. Common Layer Interface, Version 2.0, pp.19-21

162


