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Abstract

SFF technologies have the potential to become manufacturing process that are capable of producing
parts that have not been feasible by other techniques. The fabrication of Functionally Gradient Material
(FGM) is one of the possible candidate. It is critical.to provide three dimensional material gradient data
in the solid model to fabricate FGM. The approach is to model spatially varying material density
distribution on implicit solid geometry using a hypertexturing scheme and a procedural volumetric
modeling. It is essentially an extension of procedural solid texture synthesis, which has been effectively
used to model cloud, gas, and flow stream. It will save the amount of information storage especially
when the gradient pattern is repeating. Geometric operation becomes convenient since the material data
are linked to the geometry only by the reference surfaces.

1 Introduction

SFF technologies have the potential to become manufacturing process that are capable of
producing parts that have not been feasible by other techniques. The fabrication of Functionally
Gradient Material (FGM) is one of the possible candidates. An FGM is a non-homogeneous solid
which exhibits spatially varying volume fractions of the. constituents. It has its micro-elements
systematically and continuously distributed and.controlled so as to provide functionality suited
to the intended service environment. Layer based manufacturing becomes a natural choice
when material distribution inside a part varies continuously in three dimensions. To accomplish
the fabrication of FGMs, SFF processes must be supported by advanced software. The SFF
community is currently experiencing a growing need for including additional information, such
as material distributions in the solid model.

For fabricating FGMs, it is critical to provide three dimensional material gradient data in
the solid model. The material data should be able to exist in discrete, gradient, or mixed form.
Predetermined spatial distribution data must easily be represented. in the data .format. The
modeling tool should support procedural modification of the distribution interactively.

2 Approach

2.1 Hypertexturing

I used a hypertexture scheme to model spatially varying material density distributions. Hyper­
texture is a technique which is intermediate between shape and texture by using space-filling
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applicative functions to modulate density. The model is essentially an extension of procedural
solid texture synthesis that is well known in computer graphics, but evaluated throughout a
volumetric region using a Density Modulation Function (DMF) [4].

In hypertexture, a continuous characteristic function which is a mapping from f : R3 -+
lO, ... ,11 is defined for the solid geometry. All points x for which f(x) is zero are said to be
outside the object. All points x for which l(x) is one are said to be strictly inside the object.
Finally, all points for which °< l(x) < 1 are said to be in the object s fuzzy region. This
formulation gives the object surface an appreciable thickness. Finally, the fuzzy shape and the
solid become unified once solid texture functions are combined with the function that describes
the object s fuzzy region [4].

Procedural texturing or modeling methods can be categorized into two types: explicit and
implicit methods. In implicit methods, a texture pattern is defined as a function 1 of points in
the texture space, and the pattern consists of a level set of 1, that is, the set of all points at which
the function has a particular value. Since implicit models tend to be continuous throughout a
region of the modeling space, they are appropriate for continuous density and flow phenomena
such as clouds and fog [4]. Thus, the implicit scheme will be chosen to model the material
gradient because of their ease of specification and smoothly blending density distributions.
The implicit density functions are best defined by summed, weighted, parameterized, primitive
implicit surfaces [4].

Implicit Surfaces

Algebraic implicit formulation was used as a representation scheme for both solid and sliced
geometries. Implicit surfaces for solid geometry are two-dimensional, geometric shapes that
exist in three dimensional space; they are defined according to a particular mathematical form.
Intuitively, an implicit surface consists of those points in three dimensional space that satisfy
some particular requirement. The requirement is represented mathematically by a function,
generically named 1, whose argument is a point p. By definition, if 1(jt) = 0, then p is on the
surface. The function 1 does not explicitly describe the surface, but implies its existence [1].

Compared to parametric surfaces, implicit surfaces are receiving increased attention espe­
cially with· respect to their accurate yet compact depiction of solid objects and their innate
blending properties. That is, implicit surface functions naturally describe the interior of an ob­
ject, whereas a parametric description of an object usually consists of piecewise surface patches
and requires additional information for the interior. Geometric queries, such as point classi­
fication to determine whether a point is inside, outside, or on the surface, are simpler with
implicit surfaces that with parametric surfaces. The ability to enclose volume and to represent
blends of volumes endows implicit surfaces with inherent advantages in geometric design and
the corresponding fabrication.

The union of two algebraic surfaces, unlike the union of two solid models, is usually given by
the product of the corresponding algebraic functions. Intuitively, if 1 iszero, then any multiple
of 1, including multiplication by another function, is zero. It is called the closure property.
Unfortunately, the multiplication f112 confuses the sense of inside and outside. That is, points
that are within both spheres as well as points that are beyond both spheres evaluate positively;
only points within one and only one sphere evaluate negatively.

Solid modeling emphasizes operations on volumes rather that on surfaces. Accordingly,
it typically defines the union of objects 11 and 12 by min(11' 12)' Intuitively, if a point is
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within any sphere it evaluates negatively, regardless of the number of surrounding sphere.
Conversely, max(fl' f2) evaluates positively if a point is outside any sphere, thus representing
the intersection of the volumes.

Analytic expressions approximating union and intersection are given as;

uniona(fl, ... ,fn)

intersecta(fl,'" ,fn)

-1

= (fla+,"', +r;;a) a

(fl+"",+f~)~

where a > 0, lima --+ oo uniona(fl,'" ,fn) = min, and lima --+ oo intersecta(fl,'" ,fn) = max.

2.3 Density Modulation Functions (DMF)

The geometric gradient information is determined and controlled interactively by a DMF, which
is used to modulate an object's density within its material space. It consists of the several
procedural functions such as bias, gain, and noise functions which are the base level functions
that higher order DMFs are built upon. These functions are used to control some aspect of an
object s spatial characteristics. The following briefly introduces these functions.

The bias function, is mainly used to either push up or pull down an object's density around
In(b)

the middle of the fuzzy region. The bias function is typically defined by t In(O.5). The values at
three points are fixed such that, bias(O) = 0, bias(0.5) = band bias(l) = 1. By decreasing or
increasing b, the values in an object's fuzzy region can be biased up or down smoothly [12].

The gain function can be effectively used as an intuitive method to control whether a function
spends most of its time near its middle range, or, conversely, near its extremes. As a result,
the density distribution can be tweaked to be either flatter or steeper across the fuzzy region.
The gain function over the unit interval, for example, can be defined as follows.

gain(O)

gain(0.25)

gain(0.75)

gain(l)

o
9

0.5 - 2"

05+ Q. 2

= 1

By controlling the value of g, the rate at which the midrange of an object's fuzzy region goes
from 0 to 1,can be increased or decreased [12].

In case that the material information is supplied in a discrete data form, for example, directly
from FEManalysis, a polynomiaLinterpolation. canbeexploited to. interconnect ithe data points
in a mathematical form forDMP. For gradedcom~ositions,analyticiJunctionsmustbe defined,
capable of representingsmooth.variation over the domain of material subspace. There exists a
number of effective polynomial bases for interpolation. One of the most popular bases is the
Bernstein-Bezierbasis. The basic formulations are as follows.

m n p

Tensor: P(x, y, z) = L L L WijkBi(x)Bj(y)Bk(z)
i=O j=O k=O

m m-im-i-j
Barycentric: P(x, y, z) = L L WijkBi]k(X, y, z)

i=O j=O k=O
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B['jk(X, y, z) G~) xiyizk(l - x - y - z)m-i-i-k

The composition at a point can be considered as a blend of the control compositions with their
influence determined by the value of their basis functions, analogous to the surface reconstruc­
tion with a meshof.control points.

In order to represent objects made of rrruJtiple materials using hypertexture, the mathemat­
ical space must be modified. The space for the model must now include material subsets apart
from the global spatial dimensions that captured the geometry and topology of the object.
The material subset also needs to provide its own space for geometry and topology because
the hypersurfaces should be in primitive volume and it is convenient to separate homogeneous
regions and heterogeneous regions.

3 Results and Discussion

3.1 Discrete Point Data Set

I used a 64 equally spaced discrete point data set in three dimension for demonstration. This
data set was scanned into the program to create an implicit polynomial form of continuous DMF
by tensor product of trivariate Bernstein-Bezier interpolation. It was first mapped onto the
pre-determined material subspace domain which contains the graded portion of the secondary
material only. If discontinuous or isolated material distribution is needed, more material sub­
space would be created. One of the surface of the material subspace was mapped onto the
surface of the geometry with the depth. ·Figure 1 shows an example of material
gradient in z on'eC1ClOJn.

Figure 1: Trivariate Bernstein-Bezier interpolation

3.2 Pattern Sketching

When gradient information is based on iterative experiments, designers need to sketch and
modify the gradient pattern in the solid model in accordance with the experimental results.



I used the cascaded form of the Bias and Gain functions, which are controlled only by Bias
Coefficient, b and Gain Factor, g. The mapping on the material subspace and the solid geometry
followed the same procedure as the discrete data set representation. The sketched material
gradients with different Bias Coefficient and Gain Factor, are shown in Figure 2

Figure 2: Material Gradient by Bias and Gain Functions

3.3 Applications

The first application chosen for demonstration, is the Willie Cube, a rounded cube with a sphere
removed. It is defined by 1 - (a2x 2 -+ a2y2 -+ a2z2 )-6 (b8x 8 -+ b8y8 -+ b8z8 )6 0, with a 0.43
and b = 0.5. A sharply edged wedge occurs along each circular opening of the cuboid. As shown
in Figure 3, this implicit surface was first polygonized and rendered using the polygnization
scheme and the surface normal of each polygon.

The Bias and Gain functions were applied on the material subspace of the spherical coor­
dinates with given range of radius. The highest density at the inner surface of the spherical
shell and zero density at the outer surface. Figure 4 shows the material gradient represen­
tation and its sliced geometry that were mapped onto the center of the Wiffle Cube. Since
both geometry and material data are formulated in implicit algebraic form, they retain the clo-
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Figure 3: WifHe Cube

sure property that T\rt~QD'r"TD the implicity of the representation even after geometric operations.
Therefore, only a cutting plane, the slicing of the material and the geometry can
be represented

Figure 4: Spherical Material Gradient in WifHe Cube

FGMs of ceramic and metal canbe··employed in advanced dental and medical applications,
rnainlyas implants and replacements. As bioceramic materials such as Calcium Phosphate,
favorably bioreact with existing bone, they can serve as porous media to support the ingrowth
of new bone tissue,which results in permanent bonding with the body. The strength and life
of the implants can be even more enhanced by applying biocompatible metal such as titanium
for the core of the implant.

A simplified human femur implant for hip socket was created using blending and union of
implicit spheres and elipsoids. The base shape was formulated in the following form. Detq,iled



features were added by feature based boolean operations. The geometry of the implant is

rendered in Figure 5.

Implant (x, y, z)
blend=5.0
newx=0~5*x*1.414+1-0.5*y

newy=0.5*x+O.5*(-2+y)*1.414

tmp= pow(elipsoid(y,x,z 0.25,0.25),-blend)
+pow(elipsoid(newy, newx, z, 0.6,0.1,0.1), -blend)
+pow(pow«y-3.4)*4/3,2)+pow«x-O.6J*4/3,2)+pow«z-0.0)*4/3,2), -blend)

returnpow(tmp,-1/blend)-1.0

elipsoid(x, y, z, a, b, c)
result=x*x/a+y*y/b+z*z/c
return (result <0.001? 0.001 result)

The same algebraic surface in implicit form was used for the material subspace. The gradi­
ent region in the subspace is specified as a function of radius within the range of the material
subspace. Therefore, The material distribution has constant depth of a primary material shell.
Localized distribution also can be achieved by modifying the blob model for the •material sub­
space. The material gradient and the cross section along thez axis of the implant are shown
in Figure 6.

4 Conclusion and Future Work

I have successfully. implemented material gradient varying in. three dimension in implicit al­
gebraic surfaces. Material gradient region in the solid can be designed by generating implicit
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Figure 6: J.VJ.CIJIJGJ"J.Q,J. vr'aOleIlt

J.J.J.\;'IJJ.J.VU is .very
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.."... ...., ....... i- scheme

material

function
effective
terpolated
was chosen to and J.J.J.(J~IJGJ. .1Q,.1

information can be queried at any points without further interpolation.
While it is possible to model a general closed surface as a single implicit surface patches,

higher-order algebraic surfaces become difficult to design because there is no readily perceived
relation between polynomial coefficients and the shape of a surface. This has prompted the
use of piecewise algebraic surfaces, also known as semi-algebraic sets or implicit patches. Each
surface piece is low order and spans a particular cell, usually a tetrahedron, that is defined by a
spatial partitioning. The formulation would become more efficient to generate complex shapes
by employing implicit algebraic patches.
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