
Development of Reverse Engineering System for Machine Engineering
Using 3D Bit-map Data

Tatsuro Yashiki* and Tarou Takagi*

*Power & Industrial Systems R&D Laboratory, Hitachi, Ltd.

Abstract

In this paper, the authors describe a reverse engineering system, named BitCAT, for machine

engineering using 3D bit-map data obtained from CT digitizers. BitCAT can compose B-Rep CAD
models by fitting parametric primitives, such as flat planes and cylinders, onto 3D bit-map surfaces.
To find boundaries of the primitives effectively, a novel interactive “growing surface method” is
developed and applied in the system. BitCAT is also provided with a method to determine
geometric constraints between the primitives during composition processes. BitCAT can make
very useful CAD models for manipulation and NC machining, because they are properly attached
with geometrical features. A demonstration verifies the faculty and usefulness of the system.

1. Introduction

In many areas of machine engineering, reverse engineering techniques can be used to create

CAD models of real objects for which no CAD model exists. Reverse engineering typically starts
with digitizing real objects so that surface or solid models can be deduced in order to exploit the
advantages of CAD/CAM technologies. To digitize real objects, high energy X-ray computed
tomography (CT) is very useful, because they can digitize whole shapes including interior regions
accurately and automatically in a very short time [1].

X-ray CT apparatuses obtain sectional images as two-dimensional (2D) bit-map data. After real
objects have been digitized by X-ray CT, they are represented as piled-up X-ray CT sectional
images, that is three-dimensional (3D) bit-map data. On the other hand, surface or solid models that
conventional CAD systems handle are represented as boundary representation (B-rep) data [2].
Figure 1 shows the difference between B-rep and 3D bit-map formats. A 3D B-rep datum is
represented as a set of geometrical and topological definitions of the shape elements like vertices,
edges, faces, loops and shells. On the other hand, a 3D bit-map datum is represented as a
three-dimensional array of tiny cells called “voxels” (volume picture cells). Each voxel holds
inside/outside discrimination or relative density at its position. Compatibility is poor between
bit-map data and B-rep data.

239

The purpose of this study is to construct B-rep CAD models from 3D bit-map data obtained
from X-ray CT apparatuses. For this purpose, the authors developed a reverse engineering system
for machine engineering, named “BitCAT”, which can make very useful B-rep models for CAD
manipulation and NC machining. In this paper the authors describe the algorithm for creating B-rep
CAD models and give results of an example conversion.

2. Related work

Many commercial software packages for reverse engineering create B-rep CAD models from

3D point cloud data obtained from 3D digitizers by the following procedures: (i) constructing
triangulated meshes from 3D point cloud data; (ii) constructing a curve network, which divides a
geometry defined by triangulated meshes into four-sided patches; and (iii) fitting NURBS surfaces
onto each patch.

Many mechanical parts include parametric primitives, such as flat planes, cylinders and swept
surfaces. Because the B-rep CAD models created according to the above approach are composed of
NURBS surfaces only, parametric primitives in mechanical parts are represented as NURBS
surfaces. This causes the following problems.

1. Because the data size required for handling a NURBS surface in CAD systems is much
larger than that of a parametric primitive, CAD operations for such B-rep models may
need a very long processing time.

2. Making modifications for NURBS surfaces are much more difficult than for parametric
primitives. For example, to change the diameter of a cylindrical hole represented as
NURBS surfaces, the user must move many control points suitably.

3. It is more difficult to generate NC tool paths for NURBS surfaces than for parametric
primitives.

To overcome these problems, the authors suggest the following approach: (i) extracting

V1:(1.0,1.0,1.0)
V2:(1.0,0.0,1.0)
V3:(0.5,0.0,1.0)

V4:(0.5,0.5,1.0)
E1:V1,V2
E2:V2,V3
E3:V3,V4

E4:V4,V5
F1:E1,E2,E3,E4,E5,E6
S :F1,F2,F3,F4,

F5,F6,F7,F8

V1

V2V3V5V6

V8

V9V11

V12

E1

E2E3E4E5

E6

E8E12

E14E17

F1

F3F4F5F6

Top layer

Bottom layer

Voxels

V1:(1.0,1.0,1.0)
V2:(1.0,0.0,1.0)
V3:(0.5,0.0,1.0)

V4:(0.5,0.5,1.0)
E1:V1,V2
E2:V2,V3
E3:V3,V4

E4:V4,V5
F1:E1,E2,E3,E4,E5,E6
S :F1,F2,F3,F4,

F5,F6,F7,F8

V1

V2V3V5V6

V8

V9V11

V12

E1

E2E3E4E5

E6

E8E12

E14E17

F1

F3F4F5F6

Top layer

Bottom layer

Voxels

Figure 1. B-rep and bit-map formats

240

regions from 3D bit-map data to which appropriate parametric primitives can be fitted; (ii) fitting
parametric primitives to the extracted regions; and (iii) fitting NURBS surfaces to the regions
where no appropriate parametric primitives can be fitted. Because parametric primitives are
represented just as they are in the B-rep CAD models created by the authors’ approach, the B-rep
CAD models are very useful for CAD manipulation and NC machining.

3. Algorithm for creating B-Rep CAD models

In this study, the authors developed a reverse engineering system for machine engineering,

BitCAT, which can construct B-rep CAD models from 3D bit-map data. The algorithm for creating
B-Rep CAD models is shown in Figure 2. First 3D bit-map surfaces are created from 3D bit-map
data. Next regions are extracted from 3D bit-map surfaces to which appropriate parametric
primitives can be fitted. Parametric primitives are fitted to the extracted regions. Then NURBS
surfaces are applied on the regions where no appropriate parametric primitives are fitted. Then
topological information of the B-Rep CAD models is created. Finally, the operator specifies
geometric relationships among parametric primitives and refits them so that the specified
geometric relationships can be satisfied. In some steps, interactive operations are required. Details
of the algorithm in each step are described below.

3.1 Creating 3D bit-map surfaces

In this stage, each voxel of 3D bit-map data is converted to a 1-bit voxel, which holds
inside/outside discrimination, after thresholding has been applied. With a geometry represented as

the 3D bit-map data of the 1-bit voxel, the surfaces are composed of pixels on which an inside

Figure 2. Algorithm for creating B-Rep CAD models

3D bit-map data

B-rep CAD models

1. Creating 3D bit-map surfaces
2. Parametric primitives

(Parametric primitives type, seed region)
3. Fitting NURBS surfaces

(Curve network)
4. Creating topological information
5. Specifying geometric relationships and refitting surfaces

(Geometric relationships)

(............): user’s input

3D bit-map data

B-rep CAD models

1. Creating 3D bit-map surfaces
2. Parametric primitives

(Parametric primitives type, seed region)
3. Fitting NURBS surfaces

(Curve network)
4. Creating topological information
5. Specifying geometric relationships and refitting surfaces

(Geometric relationships)

(............): user’s input

241

voxel is adjacent to an outside voxel (Figure 3). Such pixels are called “surface pixels”. Surface
pixels are extracted from 3D bit-map data and 3D bit-map surfaces are created.

3.2 Fitting parametric primitives

After 3D bit-map surfaces have been created, regions are extracted from 3D bit-map surfaces to
which appropriate parametric primitives can be fitted. Then parametric primitives are fitted to the
extracted regions. To accomplish fitting parametric primitives, the following three problems must
be solved at the same time: segmentation of 3D bit-map surfaces, determination of parametric
primitive type and parametric primitive fitting [3].

To solve these three problems, the authors developed a novel interactive “growing surface
method”. In the growing surface method, a user specifies the parametric primitive type and seed
region on 3D bit-map surfaces interactively using the BitCAT GUI interface. Then segmentation
and fitting proceed automatically with the following procedures.

First a surface of given parametric primitive type is fitted to the seed region. This surface which
is called the “reference surface” is used to estimate how well a surface pixel matches the regions.
Next the current region is growing by adding a surface pixel if the following requirements are
satisfied.

1. The surface pixel is adjacent to the current region.
2. The perpendicular distance between the surface pixel and the reference surface is within

the threshold of D.
3. The angle between the surface normal

at the surface pixel and reference
surface normal at the surface pixel
position is within the threshold of S.
The surface at the surface pixel is
estimated by least-squares fitting of a
plane to the surface pixel and the
neighboring ones.

The region growing procedure is continued
until no more surface pixels can be added to the
current region. Then the reference surface is
refitted to the current region. The above two
procedures of region growing and surface
refitting are iterated mutually until the current
region do not grow any further. Finally the
parametric primitive is fitted to the current region.

Figure 3. Definition of surface pixels

Inside voxelOutside voxel

Surface p ixel

Inside voxelOutside voxel

Surface p ixel

242

In the authors’ current implementation, flat planes and cylinders are possible parametric
primitive types. To fit parametric primitives, a least-squares surface fitting is performed [4].

3.3 Fitting NURBS surfaces

If there are regions where appropriate parametric primitives are not fitted, NURBS surfaces are
applied on the regions instead of them. This task is done by the following procedures: (i)
constructing a curve network interactively using the BitCAT GUI interface, which divides regions
into four-sided patches; and (ii) fitting NURBS surfaces on each patch [5].

3.4 Creating topological information

In this stage, topological information of B-Rep CAD models is created. First boundaries of the
divided regions on the 3D bit-map surfaces are extracted. By tracing the divided regions along the
boundaries, it is known how the divided regions are connected to each other. In the object shown in
Figure 4(a), for example, region 1 has one outer boundary and one inner boundary. By tracing
region 1 along the two boundaries, it can be found that region 1 is connected to region 2, region 3,

Figure 4. Example of creating topological information

outer boundary

region 1

region 2

region 3
region 4

region 5

region 6

region 7
inner boundary

region 1

region 2

edge 1

(a)

(b)

edge 1

edge 2

edge 3

edge 4
edge 5

loop 1

(c)

(d)

edge 1

edge 2

vertex 1

outer boundary

region 1

region 2

region 3
region 4

region 5

region 6

region 7
inner boundary

region 1

region 2

edge 1

(a)

(b)

edge 1

edge 2

edge 3

edge 4
edge 5

loop 1

(c)

(d)

edge 1

edge 2

vertex 1

243

region 4, region 5 and region 6 around the outer boundary and region 7 around the inner boundary.
The edges can be defined by calculating intersecting curves between two adjacent regions. This

calculation is done according to information on the connection among the divided regions. In the
above example, edge 1 can be defined by calculating the intersecting curve between region 1 and
region 2 (Figure 4 (b)).

Then by linking the edges in the counterclockwise direction along the outer boundaries and in
the clockwise direction along the inner boundaries, the loops can be defined. As shown in figure 4
(c), for example, loop 1 can be defined by linking edge 1, edge 2, edge 3, edge 4 and edge 5 in the
counterclockwise direction along the outer boundary.

Next the vertices can be defined by calculating intersecting points between two linked edges
along the loops. For example, vertex 1 can be defined by calculating the intersecting point between
edge 1 and edge 2, which are linked along loop 1 (Figure 4 (d)).

3.5 Specifying geometric relationships and refitting surfaces

In many cases, mechanical parts have some geometric relationships among parametric
primitives. For example, in the object shown in Figure 5, cylinder 1 is connected to plane 1 and
plane 2 smoothly (C1 continuity). Plane 3 is perpendicular to cylinder 1, plane 1 and plane 2.

Because each parametric primitive is fitted individually in the stage described in section 3.2,
there are no geometric relationships among them yet. Then geometric relationships among
parametric primitives are specified and the parametric primitives are refitted so that the specified
geometric relationships can be satisfied.

In the authors’ systems, a user specifies geometric relationships among parametric primitives
interactively using the BitCAT GUI interface. Then parametric primitives are refitted. Geometric
relationships among parametric primitives
can be represented as constraint functions for
the parameters defining the shapes. For
example, the relationship that two flat planes
are perpendicular to each other can be
represented as a constraint function for the
flat planes’ normal vectors as follows:

021 =⋅ nn rr

where 1nr and 2nr are the normal vectors of
the two flat planes. Then parametric
primitives can be gotten which satisfy the

Figure 5. Example of geometric relationships
among parametric primitives

plane 3

plane 1

cylinder 1

plane 2

plane 3

plane 1

cylinder 1

plane 2

244

specified geometric relationships by fitting them with some constraint functions. Mathematically
this task is equivalent to dealing with a constrained non-linear optimization problem. In this study,
a quasi-Newton method [6] and Lagrange multiplier method [7] are used to solve this optimization
problem.

4. Example

The authors have applied the BitCAT system to some 2D / 3D bit-map data in order to confirm

the validity of the algorithms for creating B-Rep CAD models. The results are shown in this
section.

First to test fitting parametric primitives and creating topological information procedures, the
3D bit-map datum shown in Figure 6 (a) was used. This 3D bit-map datum was created by adding
the standard deviation of the noise to the synthetic data. The data size was 100x100x100 voxels.
Figure 6 (b) shows the complete B-Rep CAD models created by BitCAT and Figure 6 (c) shows the
edges and vertices.

(a) (b) (c)(a) (b) (c)

Figure 6. Example of BitCAT applied to 3D bit-map datum

Figure 7. Example of BitCAT applied to 2D bit-map datum

(a)

(b)

Close up

(c)(b)(a)

(b)

Close up

(c)(b)

245

Next to test specifying geometric relationships and surfaces refitting procedures, the 2D
bit-map datum shown in Figure 7 (a) was used. This 2D bit-map datum was obtained from X-ray
CT apparatuses. Figure 7 (b) shows parametric primitives (lines and circles) fitted to the 2D
bit-map datum, where no geometric relationships were specified. The authors specified C1
continuity connections between parametric primitives. The results are shown in Figure 7 (c). Every
parametric primitive was connected with C1 continuity. This result is in 2D, but the algorithms can
be extended to 3D with no difficulty.

5. Conclusion

The conclusions of this paper are summarized below;
1. The authors have developed a reverse engineering system for machine engineering, named

“BitCAT”, in order to construct B-rep CAD models from 3D bit-map data obtained from X-ray
CT apparatuses.

2. BitCAT can compose B-Rep CAD models by fitting parametric primitives, such as flat planes
and cylinders. BitCAT is also provided with a method to determine geometric constraints
between the primitives during composition processes. By using these functions, BitCAT can
make very useful CAD models for manipulation and NC machining.

3. BitCAT has been applied to some 2D / 3D bit-map data and the validity of the algorithms was
confirmed.

References

[1] J. H Stanley and R. N. Yancey, CT-assisted Agile Manufacturing, Proceedings of SPIE,

Nondestructive Evaluation for Process Control in Manufacturing (1996).
[2] J. D. Foley, A. Dam, S. K. Feiner and J. F. Hughes, Computer Graphics, Addison-Wesley

(1990)
[3] T. Varady, R. R. Martin and J. Cox, Creating Geometric Models in Reverse Engineering,

RECCAD Deliverable Document 1(1996)
[4] G. Lukacs, A. D. Marshall and R. R. Martin, Geometric least-squares fitting of spheres,

cylinders, cones and tori, RECCAD Deliverable Documents 2 and 3(1997)
[5] L. Piegl and W. Tiller, The NURBS Book, Springer (1997)
[6] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes in C, Cambridge

(1992)
[7] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press

(1982)

246

