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Abstract 

 
In this paper, the authors describe a reverse engineering system, named BitCAT, for machine 

engineering using 3D bit-map data obtained from CT digitizers. BitCAT can compose B-Rep CAD 
models by fitting parametric primitives, such as flat planes and cylinders, onto 3D bit-map surfaces. 
To find boundaries of the primitives effectively, a novel interactive “growing surface method” is 
developed and applied in the system. BitCAT is also provided with a method to determine 
geometric constraints between the primitives during composition processes. BitCAT can make 
very useful CAD models for manipulation and NC machining, because they are properly attached 
with geometrical features. A demonstration verifies the faculty and usefulness of the system. 

 
1. Introduction 

 
In many areas of machine engineering, reverse engineering techniques can be used to create 

CAD models of real objects for which no CAD model exists. Reverse engineering typically starts 
with digitizing real objects so that surface or solid models can be deduced in order to exploit the 
advantages of CAD/CAM technologies. To digitize real objects, high energy X-ray computed 
tomography (CT) is very useful, because they can digitize whole shapes including interior regions 
accurately and automatically in a very short time [1]. 

X-ray CT apparatuses obtain sectional images as two-dimensional (2D) bit-map data. After real 
objects have been digitized by X-ray CT, they are represented as piled-up X-ray CT sectional 
images, that is three-dimensional (3D) bit-map data. On the other hand, surface or solid models that 
conventional CAD systems handle are represented as boundary representation (B-rep) data [2]. 
Figure 1 shows the difference between B-rep and 3D bit-map formats. A 3D B-rep datum is 
represented as a set of geometrical and topological definitions of the shape elements like vertices, 
edges, faces, loops and shells. On the other hand, a 3D bit-map datum is represented as a 
three-dimensional array of tiny cells called “voxels” (volume picture cells). Each voxel holds 
inside/outside discrimination or relative density at its position. Compatibility is poor between 
bit-map data and B-rep data. 

239



The purpose of this study is to construct B-rep CAD models from 3D bit-map data obtained 
from X-ray CT apparatuses. For this purpose, the authors developed a reverse engineering system 
for machine engineering, named “BitCAT”, which can make very useful B-rep models for CAD 
manipulation and NC machining. In this paper the authors describe the algorithm for creating B-rep 
CAD models and give results of an example conversion. 

 
2. Related work 

 
Many commercial software packages for reverse engineering create B-rep CAD models from 

3D point cloud data obtained from 3D digitizers by the following procedures: (i) constructing 
triangulated meshes from 3D point cloud data; (ii) constructing a curve network, which divides a 
geometry defined by triangulated meshes into four-sided patches; and (iii) fitting NURBS surfaces 
onto each patch.  

Many mechanical parts include parametric primitives, such as flat planes, cylinders and swept 
surfaces. Because the B-rep CAD models created according to the above approach are composed of 
NURBS surfaces only, parametric primitives in mechanical parts are represented as NURBS 
surfaces. This causes the following problems. 

1. Because the data size required for handling a NURBS surface in CAD systems is much 
larger than that of a parametric primitive, CAD operations for such B-rep models may 
need a very long processing time. 

2. Making modifications for NURBS surfaces are much more difficult than for parametric 
primitives. For example, to change the diameter of a cylindrical hole represented as 
NURBS surfaces, the user must move many control points suitably. 

3. It is more difficult to generate NC tool paths for NURBS surfaces than for parametric 
primitives. 

To overcome these problems, the authors suggest the following approach: (i) extracting 
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Figure 1. B-rep and bit-map formats 
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regions from 3D bit-map data to which appropriate parametric primitives can be fitted; (ii) fitting 
parametric primitives to the extracted regions; and (iii) fitting NURBS surfaces to the regions 
where no appropriate parametric primitives can be fitted. Because parametric primitives are 
represented just as they are in the B-rep CAD models created by the authors’ approach, the B-rep 
CAD models are very useful for CAD manipulation and NC machining. 

 
3. Algorithm for creating B-Rep CAD models 

 
In this study, the authors developed a reverse engineering system for machine engineering, 

BitCAT, which can construct B-rep CAD models from 3D bit-map data. The algorithm for creating 
B-Rep CAD models is shown in Figure 2. First 3D bit-map surfaces are created from 3D bit-map 
data. Next regions are extracted from 3D bit-map surfaces to which appropriate parametric 
primitives can be fitted. Parametric primitives are fitted to the extracted regions. Then NURBS 
surfaces are applied on the regions where no appropriate parametric primitives are fitted. Then 
topological information of the B-Rep CAD models is created. Finally, the operator specifies 
geometric relationships among parametric primitives and refits them so that the specified 
geometric relationships can be satisfied. In some steps, interactive operations are required. Details 
of the algorithm in each step are described below.  
 
3.1 Creating 3D bit-map surfaces 

In this stage, each voxel of 3D bit-map data is converted to a 1-bit voxel, which holds 
inside/outside discrimination, after thresholding has been applied. With a geometry represented as 

the 3D bit-map data of the 1-bit voxel, the surfaces are composed of pixels on which an inside 

Figure 2. Algorithm for creating B-Rep CAD models 
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voxel is adjacent to an outside voxel (Figure 3). Such pixels are called “surface pixels”. Surface 
pixels are extracted from 3D bit-map data and 3D bit-map surfaces are created.   
 
3.2 Fitting parametric primitives  

After 3D bit-map surfaces have been created, regions are extracted from 3D bit-map surfaces to 
which appropriate parametric primitives can be fitted. Then parametric primitives are fitted to the 
extracted regions. To accomplish fitting parametric primitives, the following three problems must 
be solved at the same time: segmentation of 3D bit-map surfaces, determination of parametric 
primitive type and parametric primitive fitting [3].  

To solve these three problems, the authors developed a novel interactive “growing surface 
method”. In the growing surface method, a user specifies the parametric primitive type and seed 
region on 3D bit-map surfaces interactively using the BitCAT GUI interface. Then segmentation 
and fitting proceed automatically with the following procedures. 

First a surface of given parametric primitive type is fitted to the seed region. This surface which 
is called the “reference surface” is used to estimate how well a surface pixel matches the regions. 
Next the current region is growing by adding a surface pixel if the following requirements are 
satisfied.  

1. The surface pixel is adjacent to the current region. 
2. The perpendicular distance between the surface pixel and the reference surface is within 

the threshold of D. 
3. The angle between the surface normal 

at the surface pixel and reference 
surface normal at the surface pixel 
position is within the threshold of S. 
The surface at the surface pixel is 
estimated by least-squares fitting of a 
plane to the surface pixel and the 
neighboring ones. 

The region growing procedure is continued 
until no more surface pixels can be added to the 
current region. Then the reference surface is 
refitted to the current region. The above two 
procedures of region growing and surface 
refitting are iterated mutually until the current 
region do not grow any further. Finally the 
parametric primitive is fitted to the current region. 

Figure 3. Definition of surface pixels
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In the authors’ current implementation, flat planes and cylinders are possible parametric 
primitive types. To fit parametric primitives, a least-squares surface fitting is performed [4].  
 
3.3 Fitting NURBS surfaces  

If there are regions where appropriate parametric primitives are not fitted, NURBS surfaces are 
applied on the regions instead of them. This task is done by the following procedures: (i) 
constructing a curve network interactively using the BitCAT GUI interface, which divides regions 
into four-sided patches; and (ii) fitting NURBS surfaces on each patch [5]. 

 
3.4 Creating topological information  

In this stage, topological information of B-Rep CAD models is created. First boundaries of the 
divided regions on the 3D bit-map surfaces are extracted. By tracing the divided regions along the 
boundaries, it is known how the divided regions are connected to each other. In the object shown in 
Figure 4(a), for example, region 1 has one outer boundary and one inner boundary. By tracing 
region 1 along the two boundaries, it can be found that region 1 is connected to region 2, region 3, 

Figure 4. Example of creating topological information 
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region 4, region 5 and region 6 around the outer boundary and region 7 around the inner boundary. 
The edges can be defined by calculating intersecting curves between two adjacent regions. This 

calculation is done according to information on the connection among the divided regions. In the 
above example, edge 1 can be defined by calculating the intersecting curve between region 1 and 
region 2 (Figure 4 (b) ).  

Then by linking the edges in the counterclockwise direction along the outer boundaries and in 
the clockwise direction along the inner boundaries, the loops can be defined. As shown in figure 4 
(c), for example, loop 1 can be defined by linking edge 1, edge 2, edge 3, edge 4 and edge 5 in the 
counterclockwise direction along the outer boundary.  

Next the vertices can be defined by calculating intersecting points between two linked edges 
along the loops. For example, vertex 1 can be defined by calculating the intersecting point between 
edge 1 and edge 2, which are linked along loop 1 (Figure 4 (d)). 
 
3.5 Specifying geometric relationships and refitting surfaces 

In many cases, mechanical parts have some geometric relationships among parametric 
primitives. For example, in the object shown in Figure 5, cylinder 1 is connected to plane 1 and 
plane 2 smoothly (C1 continuity). Plane 3 is perpendicular to cylinder 1, plane 1 and plane 2. 

Because each parametric primitive is fitted individually in the stage described in section 3.2, 
there are no geometric relationships among them yet. Then geometric relationships among 
parametric primitives are specified and the parametric primitives are refitted so that the specified 
geometric relationships can be satisfied. 

In the authors’ systems, a user specifies geometric relationships among parametric primitives 
interactively using the BitCAT GUI interface. Then parametric primitives are refitted. Geometric 
relationships among parametric primitives 
can be represented as constraint functions for 
the parameters defining the shapes. For 
example, the relationship that two flat planes 
are perpendicular to each other can be 
represented as a constraint function for the 
flat planes’ normal vectors as follows: 

 
021 =⋅ nn rr  

 
where 1nr  and 2nr  are the normal vectors of 
the two flat planes. Then parametric 
primitives can be gotten which satisfy the 

Figure 5. Example of geometric relationships 
among parametric primitives 
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specified geometric relationships by fitting them with some constraint functions. Mathematically 
this task is equivalent to dealing with a constrained non-linear optimization problem. In this study, 
a quasi-Newton method [6] and Lagrange multiplier method [7] are used to solve this optimization 
problem.  

 
4. Example 

 
The authors have applied the BitCAT system to some 2D / 3D bit-map data in order to confirm 

the validity of the algorithms for creating B-Rep CAD models. The results are shown in this 
section. 

First to test fitting parametric primitives and creating topological information procedures, the 
3D bit-map datum shown in Figure 6 (a) was used. This 3D bit-map datum was created by adding 
the standard deviation of the noise to the synthetic data. The data size was 100x100x100 voxels. 
Figure 6 (b) shows the complete B-Rep CAD models created by BitCAT and Figure 6 (c) shows the 
edges and vertices.     

(a) (b) (c)(a) (b) (c)

Figure 6. Example of BitCAT applied to 3D bit-map datum 

Figure 7. Example of BitCAT applied to 2D bit-map datum 
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Next to test specifying geometric relationships and surfaces refitting procedures, the 2D 
bit-map datum shown in Figure 7 (a) was used. This 2D bit-map datum was obtained from X-ray 
CT apparatuses. Figure 7 (b) shows parametric primitives (lines and circles) fitted to the 2D 
bit-map datum, where no geometric relationships were specified. The authors specified C1 
continuity connections between parametric primitives. The results are shown in Figure 7 (c). Every 
parametric primitive was connected with C1 continuity. This result is in 2D, but the algorithms can 
be extended to 3D with no difficulty.  

 
5. Conclusion 

 
The conclusions of this paper are summarized below; 
1. The authors have developed a reverse engineering system for machine engineering, named 

“BitCAT”, in order to construct B-rep CAD models from 3D bit-map data obtained from X-ray 
CT apparatuses. 

2. BitCAT can compose B-Rep CAD models by fitting parametric primitives, such as flat planes 
and cylinders. BitCAT is also provided with a method to determine geometric constraints 
between the primitives during composition processes. By using these functions, BitCAT can 
make very useful CAD models for manipulation and NC machining. 

3. BitCAT has been applied to some 2D / 3D bit-map data and the validity of the algorithms was 
confirmed. 
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