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A fully three-dimensional Finite Element analysis based on the continuous media theory is used to predict the
temperature evolution and the formation of the part during the selective laser sintering process. We consider the mod-
ification of the thermal coefficients (like the thermal conductivity and the heat capacity) which is due to temperature
changes and phase transformations. We get a quite complex numerical problem, but we can show that the growth in
computational time may be partially compensated by the use of finite element meshes with local refinement.

1. INTRODUCTION

The subject of this paper is the modelling and the numerical simulation of the Selective
Laser Sintering process (SLS). The SLS technology is used to build up three-dimensional
parts out of a metallic (or ceramic or plastic) powder. The part is constructed layer by layer
by selectively consolidating the powder thanks to a controlled laser-beam.

The main physical phenomena involved in the SLS process as well as their strong interplay
mechanisms are not well understood. A systematic regulation of the SLS process is therefore
not possible and operators have to rely on long and costly trial and error procedures. The
basic motivation of our work is to improve the situation and to propose new alternatives
for the process control. Our first goal is to provide a physical insight of the SLS process
so that we can get reliable models. The second objective is to tune the SLS process with
a ”virtual” machine based on numerical simulation. A practical application of the virtual
machine would be to test different sets of operating parameters (scanning strategy, laser
power, pulse duration, pulse frequency ...) when they are applied to different powders
(Aluminium, Titanium or Steel powder) with different grain sizes (from 50 to only a few
microns). The long term objective of our study is finally to develop a smart computer-aided
tool to optimise the process parameters for getting good parts with minimum input from
the operator.

Many references to modelling and numerical simulation of the SLS process can be found in
the literature (see [4], [15], [9], [2], [10], [5], [7] or [14]). An essential novelty of our work is to
deal with a three-dimensional geometry in an evolutive context. In comparison, the thermal
diffusion in the transversal directions is neglected and the global problem is turned into a
collection of independent 1D problems in reference [4]. In references [15] and [7], the space
dimension is reduced to two under rough symmetry hypotheses. To get pseudo-stationary
equations similar to the Rosenthal’s equation, the authors of [2] limit their analysis to
extremely simple scanning strategy. The modelling of the SLS process we propose in section
2 is based on the continuous media theory. The standard Finite Element Method (FEM)
is then chosen for solving the governing equations. For accuracy reason, the FEM mesh
size to be used has to be smaller than the radius of the laser beam (~ 100um). Otherwise
the fine features of the scanning strategy would not be correctly reproduced. Since the
typical dimensions of the computing domain are of some tenths of centimetres, simulating
the evolutive SLS process in a three-dimensional geometry leads to a complex numerical
problem reaching the limits of current computers. To compensate the growth in complexity,
we will only refine the FEM meshes locally by means of a non-conforming technique. This
method will be extensively described in sections 3.2, 3.3 and 3.4. Its efficiency will also be
discussed and the accuracy of its predictions will be demonstrated in section 4.
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For a comprehensive description of the medium undergoing sintering, two fields are used
in all the aforementioned references: the temperature T and the density p. A novelty of our
approach is to introduce a third field called ”sintering potential”. It essentially measures the
volume of the necks which build up between particles during sintering. Its main interest is
to complete the information contained in the pair of independent variables (7', p) for a better
description of the conductivity properties of the powder bed. Under the same temperature
and for the same density, it has actually been observed that a powder may have different
thermal diffusivity, depending on the type of bounds connecting grains.

The third original feature of our work concerns the way phase transitions in the powder
bed are taken into account. The melting and resolidification phenomena as well as the
changes in crystalline structure significantly impact the laser sintering process. A careful
description of these mechanisms is therefore necessary to ensure accurate predictions. Un-
fortunately, the modelling of phase transitions results in an uncontrolled growth of the heat
capacity C),. For first order phase transitions, the heat capacity actually behaves like the
Dirac distribution with an amplitude corresponding to the latent heat. The consequence is
that common explicit methods for integrating the temperature evolution cannot be applied
anymore. They all are known to require bounded heat capacity to be stable. To overcome
this difficulty, we integrate the evolution equations by means of a non-standard scheme
based on the Chernoff formula (see [8]). This technique is described in section 3.1. It has
the major advantage of being numerically stable even if C), fails to be bounded from above.

To conclude this introduction, let us stress that our work is mostly focused on the sintering
of metallic powders. Most of the topics could however be easily transposed to ceramic or
plastic powders as well.

We now proceed with the modelling section.

2. MODELLING

Our description of the powder bed under selective laser sintering is based on the mechanics
of continuous media. We neglect the phenomena due to mechanical strains and we assume
that the chemical composition of the powder is given and does not evolve in time. An
elementary model can then be derived by just considering the temperature T', the density
p, the specific enthalpy u and a fourth variable called sintering potential ®. It typically
measures the quality of the necks between particles build up during sintering.

The four describing fields are space and time depending functions defined on € x [0, ¢]
where Q € R? is the sintered media and where ¢ ¢ represents the total duration of the
sintering experiment. The initial state (when ¢ = 0) of these fields is known and the
modelling reduces to find a system of four equations governing their evolution.

The first equation is an algebraic relation between temperature and volume enthalpy. It
reads

(2.1) T = Blu)

where ( is a non-decreasing and real-valued function of u € R. The quantity % is the specific
heat C),. Since the chemical composition of the powder is known, C), can be computed as
a function of T from experimental data available in tables. A straightforward processing
leads then back to a tabulation of f(u)

Remark 2.1. For any material, the heat capacity is always bounded from below:
Cp(T) = CJP" > 0.

Consequently, the derivative of the function 8 has a bound from above:

Lo 1
I = & 6wy < o
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On the other hand, observe that (' has no positive bound from below and can be arbitrarily
close to zero as soon as phase transitions are taken into account. The classical example is a
first order phase transition at temperature Ty with latent heat L > 0. It implies that 6 = Ty
and that 3’ = 0 over a whole interval of the form [ug,uy + L].

The temperature evolution is governed by a diffusion equation. Since we are dealing with
metallic powders and as the light penetration depth in metals is quite small, we can assume
that there are no internal heat sources and the equation for T' reads

(2.2) Opu — divkVT =0
where the thermal conductivity k is a known function of the state variables T', p an ®:
k= k(T,p,®).

Following an idea by Frenkel (see [6]), one can get an evolution law for the density by
balancing the viscous dissipation mechanisms in the molten powder and the capillary effects.
The relation which is obtained is of the form

(2'3) Op = a(psolid - P)-

It anticipates an exponential growth of p until the value of the solid density pgoiq- The
coefficient a is non-negative. It depends on the viscosity of the molten powder and on the
surface tension coeflicients between the different phases.

Remark 2.2. The increase in density leads to volumic shrinkage. For the sake of simplicity,
the model we are presenting neglects this mechanism. We thus assume that the sintered
medium always occupies the same domain Q.

In sintering experiments, it can be observed that the volume of necks between particles
are approximately proportional to the time spent by the sample above a given temperature
Ts. The evolution equation we use for the sintering potential ® is in agreement on this
remark. It reads

b T > T,
(2.4) O = { 0 T <T,.

The proportionality constant b and the threshold temperature Ts are material depending
properties which have to be adjusted from experimental data.

The four equations (2.1)-(2.4) are not sufficient to characterise the medium evolution. The
heat flux along the boundary 3 of the sintered domain € still needs to be prescribed. Recall
that the heat flux along ¥ is related to the temperature field by Fourier’s law: —kd,,T where
k is the thermal conductivity and 0, T the outward normal derivative of the temperature.
Denoting by x the thermal exchange coefficient between the powder and its environment at
ambient temperature Ty, we write the following boundary condition all along >:

(2.5) — k0T — k(T — T) = Q.

The right-hand side ) represents the energy input of the laser beam. It vanishes everywhere
except in the part of 3 scanned by the laser. In this region, the value of @) is computed
by multiplying the laser intensity (in W/mm?!) by the absorption coefficient of the powder
bed.

3. NUMERICAL RESOLUTION

3.1. Time discretisation. We choose a time step 7 > 0, we set t,,, = m7, m =0,1,2...
and we have to compute approximations T, v, p™ and ®™ for the profiles of the different
fields at time t,,. The profiles T°, u°, p° and ®° at time ty = 0 are imposed by the initial
conditions and the basic idea is to combine the evolution equations (2.1)-(2.5) for designing
a reasonable procedure which leads to the profiles at time ¢, when their values are known
at time ¢,,_1.
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Updating p™ and ®™ by using the ordinary differential equations (2.3) and (2.4) is a
straightforward operation. We thus can focus on the integration method to be used for
deducing 7™ and u™ from 7™~ !, u™=1 pm~! and ™~ 1. Applying the Chernoff formula
(see [8]) to the algebraic-differential equations (2.1)-(2.2) completed by the boundary con-
dition (2.5) yields

(3.1) P (U™ — ™) — rdivk™ IV T™ = 0, in Q,
(3.2) —k™ 10, T™ — k(T — T™) = Q™, on X,
(3.3) T = Bu™ ) + wu™ —u™ ),

kmfl

In the system (3.1)-(3.3), w > 0 is a stabilisation parameter and is the thermal

conductivity computed at the previous time layer:

kmfl _ kj(Tmfl pmfl (I)mfl)
The advantage of the scheme (3.1)-(3.3) is to provide approached profiles 7™ and u™ which
converge to the exact profiles under a simple condition on the stabilising parameter w

(see [8]). This condition is connected with the minimum value C’,;”i" of the powder heat
capacity (see Remark 2.1). It reads

w = Cmin :

p
In comparison, the Euler-forward method (which corresponds to the particular choice w = 0)
would not converge at all while other methods would require a bound from below for 3’.
Unfortunately, such a bound does not exist if phase transitions are taken into account (see
Remark 2.1).

3.2. Space discretisation. The equation (3.3) has to be interpreted as an explicit relation
for the enthalpy profile,

oty T B

(3.4) u" =u
w

9

and (3.1)-(3.2) can be transformed in a boundary value problem for the temperature profile
T™. It reads

(3.5) cI™ —divaVT™ = f,  inQ,

(3.6) —a0, T+ NXT™ =g, onX

by way of the obvious identifications ¢ = p™, a = wrk™™ !, f = pmB(u™ 1), A = wrk and
g = wT(KTgmp + Q™). Since we mean to find a FEM approximation of the profile 7™, we
have to write the problem (3.5)-(3.6) in a variational form:

(3.7) a(T™, v) =1(v)

for any continuous and piecewise differentiable test function v. In the formulation (3.7) the
bilinear form « and the linear form [ are connected to the data ¢, a, f, A and g by the
classical definitions (see e.g. [12])

(3.8) a(u,v) = /(cuv +aVu - Vv)dw —|—/ Auvdo and [(v) = / fodw + / gudo.
Q by Q by

The finite element mesh is designed carefully according to the laser location. We divide the
computation domain (2 in two parts, {1, and 2y with interface I':

0=0,UQ;UT

The domain 2. is supposed to stay far away from the region scanned by the laser and it is
meshed by coarse cells to limit the numerical complexity of the problem (the subscript ¢ in
Q). stands for coarse). On the other hand, we equip the domain €2y, where the laser activity
is confined, with fine cells (the subscript f in € stands for fine). For accuracy reasons,
the typical size h of the fine cells has to be smaller than the radius of the laser beam. The
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novelty of our approach is that the sub-domains €2, and €2y are meshed independently. The
meshing and remeshing procedures are therefore very simple and the fine grid can easily
be transported to follow the path of the laser beam at each time step. An example of the
situation is represented in Figure 1.

N--L¥h
[

FIGURE 1. A view from above of the mesh. The dashed region corresponds
to the domain Q.

In general and as it can be observed in Figure 1, the element do not satisfy the standard
compatibility constraint (see [12]) along the interface I'. This is the reason why our FE
method requires a non standard formulation. It is exposed in the next paragraph.

3.3. The FE formulation. We first have to introduce the notations M., My and, respec-
tively, M = M. U M/ for the meshes in (), in Q0 and for the resulting mesh in Q. The
FE space will be called V. It contains all the piecewise linear functions over M which are
continuous separately in €. and in € ¢. Observe that the functions in V' are not necessarily
continuous across the interface I'. This fact will be exploited in the implementation phase of
the FEM (see paragraph 3.4). The approximation 77" of the temperature profile 7" will be
searched in V. In the standard Galerkin method, T}" is defined as the element of V' which
is continuous across I' and which satisfies the variational formulation (3.7) for any contin-
uous test function v € V. Unfortunately, imposing the continuity of the temperature 77"
across I' in an explicit way leads to a complicated discrete problem. This problem has the
saddle point structure and can be ill-conditioned. To avoid this situation, we have decided
to penalise the continuity constraint across I'.

For this purpose, we introduce the notation N;, 1 < ¢ < n, for the nodes belonging to
the coarse mesh M. and located on the interface I'. To each node IN;, we associate a jump
operator ¢;. It is defined on the space V by the relation

(3.9) ci(v) = v, (Ni) — v (N;), Vv € V.
The penalty technique can now be expressed. We choose a small penalty parameter € > 0

and we define the approached temperature profile 77" as the element in V' satisfying

1 n
(3.10) a(T,:”,v)—l——Zci(T;L”)ci(v) =l(v),VveV.
£
i=1
The bilinear and linear forms « and [ in (3.10) are as in (3.7). The convergence properties

of the penalty method can be found in [1] and the next paragraph essentially discusses a
way to implement it.

361



3.4. Implementation of the FEM. The outputs of the FE computations we are inter-
ested in are the values of the approached temperature profile T}™ at the nodes of the mesh
M. We use the notation N;, 1 < i < m for these nodes. Observe that the n first nodes,
Nj...N,, have already been introduced in paragraph 3.3. They were defined as the nodes
belonging to the coarse mesh M, and located on the interface I'. Another important feature
has to be stressed. If a point P € I' is a node in M, and, simultaneously, a node in M,
then it has to appear twice in the list {IV;}: P = N; = Ny with ¢ <n and i’ > n.

In the sequel, the unknown values of T} at the nodes N; will be denoted as u;: u; =
17" (N;). They will also be considered as the components of a vector u = (uy ... u,,) € R™.
Once the u}s are determined, the profile T} can be recovered by applying the Lagrange
formula

m
(3.11) =3 uies
=1

where ; is the shape function associated to the node N;. Recall that ¢; is defined as the
unique element of V' vanishing in each node Nj, j # 4, and satisfying ¢;(V;) = 1.

Substituting the development (3.11) of T}" into the penalised problem (3.10) and choosing
the test function v as any of the shape function, we get a linear system for u. It reads

1 n
3.12 K+ = ,cHu=Db
(3.12) ( +€Z§;ccz>u

where the matrix K € M,,(R) and the vectors b, c; € R™ are connected to the bilinear and
linear forms « and [ in (3.10) and to the jump operator ¢;, defined in (3.9), by some obvious
relations which are discussed below.

The matrix K is the regular stiffness matrix and b is the regular right-hand side:

(3.13) Kij = algj, i), 1 <i,j <mand b; =1(p;), 1 <i<m.

In the FE code we have developed, the matrix elements K;; and the components b; are
computed by means of a loop over the elements in 2 and over the faces meshing the surface
Y. The positive definite matrix K is sparse and we use the routines of the Sparselib library
(see [3]) to store it.

For 1 <14 < n, the component number j of the constraint vector c; is defined by

(3.14) [cilj = ¢j () = ()10, (Ni) = (05)10. (N5

It follows from (3.14) that c¢; has only four non-zero components. The first one is the
component number ¢. It satisfies

(3'15) [Cl]l =1

because ¢; is the shape function associated to the node N; located in the coarse mesh. To
determine the three other non-zero components of c;, we first locate the node N; in the fine
mesh M. This can be done with a standard FE algorithm. It reads the connectivity of the
faces in the fine mesh which lie on the interface I' and it is able to select the particular one
which contains N;. Let Ni,, Ny, and Ny, be the three vertices of that face. Let also £ and
n € [0,1] be the coefficients such that it holds

ONZ' = fONkl + nONk2 + (1 — 5 — T))ONk3.
Then we have
(3.16) [Cile, =&, e, =1 and [cip, =1—-&—n.

We use (3.13), (3.15) and (3.16) to construct the matrix K and the vectors b and c;. We
then solve the positive definite system (3.12) by means of the conjugate gradient algorithm
(see [3]). The convergence of this method is good provided we pay some attention to design

362



the penalty parameter €. Too small values of € may actually spoil the conditioning of the
system (3.12) and slow down the convergence rate of the conjugate gradient algorithm.

4. SOME RESULTS

In this section we report the results of the simulation of a sintering experiment. The part
to be sintered was a ring with inner radius R; = 1.25mm and outer radius R, = 2.5mm and
the material was Titanium powder.

The thermal conductivity of the Titanium powder is a function of the temperature T and
of the sintering potential ®. It is supposed to be independent of the density p. We use an
interpolation rule

(4'1) k(T’ (I)) = (1 - (I))kpowder + (I)kbulk(T)

between the thermal conductivity of bulk Titanium and the thermal conductivity of loose
Titanium powder. The bulk thermal conductivity, kp,x, is plotted as a function of temper-
ature in Figure 2(a) while the loose powder thermal conductivity, kpowder, is assumed to be
independent of the temperature. A reasonable value of this quantity can be found in [11]:

kpowder = 1.5[W/mK].
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FI1GURE 2. Thermodynamic properties of the bulk Titanium

Beside the thermal conductivity, the function 3, which is characteristic of the thermody-
namic properties of Titanium powder, is necessary to write down the evolution equations
(2.1) and (2.2) for the temperature and the specific enthalpy. According to the theory de-
veloped in section 2, $(u) can be obtained by processing the specific heat capacity of the
bulk material. This last quantity is represented as a function of the temperature in Figure
2(b).

It has been observed experimentally that the densification mechanisms occurring during
the laser sintering of Titanium powder can be neglected. It means that the densification
law (2.3) can be simplified by setting a = 0. We can also assume that the material density
is constant:

p = 4.5g/cm?.
The threshold temperature T affecting the evolution rate of the sintering potential (see
(2.4)) has been chosen equal to the melting temperature of bulk Titanium:

Ts = Therr = 1953K.

and the unknown coefficient b has been normalised to one.
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The description of the experiment is completed by some information about the laser
parameters (see Figure 3) and about the laser scanning strategy (see Figure 4).

Variable Notation Value Unit
Average power P 5.0 (W]
Period tp 1.0%x1072 5]
Pulse duration td 1.0x107% 5]
Spot radius R 201074 [m]
Laser path length L 1021072 [m]
Laser spot speed S 4.0%107% [
Duration of the laser activity ta 2.55 [s]

FI1GURE 3. The laser parameters.

S
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FIGURE 4. The laser scanning strategy

Those informations are used to build the right hand-side in the boundary condition (2.5).

The ring has been manufactured by depositing three successive layers of powder with a
thickness of about L = 50um. The horizontal dimensions of the working area (corresponding
to the computation domain ) were

[y = 10mm and Iy = 10mm

We did two different numerical experiments. In the first one, we tried to demonstrate the
efficiency of the non-conformal meshing technique described in section 3.2. The goal of the
second experiment was to predict the shape of the sintered part.

4.1. The efficiency of the non-conformal meshing technique. We performed the
same simulation but with two different meshes. The first mesh was uniformly refined all
over the computation domain € (see Figure 5(a))
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(a) The uniformly refined mesh. (b) The locally refined mesh.

FIGURE 5. The two different meshes.

while the second mesh was only locally refined (see Figure 5(b)) in a central parallelepiped
1y with horizontal dimensions

| = 6mm and I, = 6mm

We considered the results obtained with the uniformly refined mesh as a reference. Figure 6
represents the evolution of the relative error (in the square gradient norm) which affects the
temperature profile computed with the locally refined mesh. In comparison, we also plot
the relative error we would get by roughly reducing the computation domain to ;. In that
case, we assume that the boundary 9€Q; is an insulating border.

A Locally refined mesh. -
- Reduced computational domain =

o
=

o
w
o

o
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FIGURE 6. The errors due to the refinement technique and to the insulation
of Q f

The conclusions we can draw from Figure 6 are clear. On the one hand, neglecting the
heat transfer across the boundary 0€1; of the refined domain Qf leads to an unacceptable
error in the predictions of the temperature profile for large time. On the other hand, the
prediction quality of the locally and totally refined meshes are comparable for any time. As
a consequence and since it reduces the computation effort by a factor 4, the locally refined
mesh is preferable.

4.2. The shape of the sintered part. The shape of the sintered part is predicted by
processing the final distribution of the sintering potential ®. We assume that the sintered
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region is the domain where the sintering potential has risen above some value ®3. We
typically choose

Do = 0.75.

The predicted part is represented in Figure 7(a). It can be compared to the sintered sample
in Figure 7(b).

(a) The predicted sintered part. (b) The real sintered part.

FiGure 7. Comparison between simulation and experiment

A good agreement can be observed between the predicted and the sintered parts. It con-
firms that the sintering potential, evolving according to equation (2.4), is closely connected
to the real consolidation level of the powder. Observe however that the parameters in equa-
tion (2.4) as well as the value ®, reached by the sintering potential in the consolidated
region, need to be carefully adjusted. The main issue which still need to be addressed is the
design of relevant experimental setups for fitting those quantities. In the same way, we are
considering more sophisticated models of liquid phase sintering (e.g. those which are based
on Plateau’s problem see [13]) in order to improve the evolution equation for the sintering
potential.
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