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Abstract

Our research investigates the special characteristics of femtosecond laser processing for 

microfabrication.  The ultrashort pulse significantly reduces the thermal diffusion length.  As a 

result, material is removed more efficiently with little damage to the surrounding feature volume.  

Currently, we are exploring the basic mechanisms that control femtosecond laser processing, to 

determine the process parameter space for laser processing of metals to address manufacturing 

requirements for feature definition, precision and reproducibility. One of the unique aspects to 

femtosecond radiation is the creation of localized structural changes.  By scanning the focal point 

within a transparent material, we can create three-dimensional waveguides.    

This paper will describe our results to explore femtosecond laser ablation for laser 

processing of metals and glasses.  We will discuss the effect of laser parameters on removal rate, 

feature size/definition, aspect ratio, material structure, and performance.  Examples of 

component fabrication in metals and glasses will be shown.

Introduction 

At Sandia National Laboratories, miniaturization dominates future hardware designs, and 

technologies that address the manufacture of micro-scale to nano-scale features are in demand.  

Currently, Sandia is developing technologies such as photolithography/etching (e.g. silicon 

MEMS)
1
, LIGA

2
, micro-electro-discharge machining (micro-EDM)

3
, and focused ion beam 

(FIB) machining
4
 to fulfill some of the component design requirements.   As in the macro world, 

no one micro- or nano-scale process can do it all.  Some processes are more encompassing than 

others, but each process has its niche, where all performance characteristics cannot be met by 

one technology.  For example, micro-EDM creates highly accurate micro-scale features but the 

choice of materials is limited to conductive materials.  With silicon-based MEMS technology, 

highly accurate nano-scale integrated devices are fabricated but the mechanical performance may 

not meet the requirements.  Femtosecond laser processing has the potential to fulfill a broad 

range of design demands, both in terms of feature resolution and material choices, thereby 

improving fabrication of micro-components.  One of the unique features of a femtosecond laser 

is the ability to ablate nearly all materials with little heat transfer
5
, and therefore melting or 

damage, to the surrounding material, resulting in highly accurate micro-scale features. 

For many years, Sandia has been involved in the development of laser-based rapid 

prototyping (RP)
6
 and direct fabrication technologies

7-9
 to build prototype parts, as well as small 

lot production components.  The significant aspect of these technologies is the utilization of a 

computer model, sliced into two-dimensional cross-sections, to drive the fabrication process, 

50



where a part is fabricated layer by layer to create the three-dimensional shape.  For example, we 

use these models to routinely fabricate polymeric three-dimensional representations for design 

verification and, in some instances, fabricate patterns for investment casting to obtain a metal

component.  Instead of using secondary processes, such as investment casting, to fabricate the 

final metal part, Sandia has developed a laser-based metal fabrication technology, known as

Laser Engineered Net Shaping (LENS
®

)
7
, to directly fabricate the metallic component.  These

technologies have greatly enhanced our ability to quickly fabricate parts but the size regime is 

typically on the macro-scale.  The RP polymeric-based technologies are now scaled to the micro

level but their properties do not typically meet the performance requirements of components that 

are of interest to Sandia.  The LENS
®

 process can produce parts down to the mm-scale but no 

smaller due to processing constraints. 

At present, Sandia is developing a femtosecond laser micro-fabrication capability to 

expand into the micro-scale size regime for metals and glasses.  We hope to produce accurate,

reliable micro-components.  To facilitate adoption of this technology in the manufacturing 

environment, further understanding is required to ensure routine fabrication of robust 

components with desired material properties. This requires understanding and control of the 

material behavior during part fabrication.  This paper describes our initial research to understand 

the ablation process of stainless steel to determine the correct path sequencing to drive the

process in order to fabricate components with clean surfaces and accurate features.  The paper 

will also describe our work to understand the modification of glass structures and control of this

phenomenon to fabricate waveguides and other photonic device based features. 

Experimental Setup 

Figure 1 is a photo of our femtosecond laser micro-fabrication system.  We are using a 

Hurricane femtosecond laser from Spectra-Physics. This laser provides a small footprint which 

is more amenable for the manufacturing environment with the following characteristics:  800 nm

wavelength, 120 fs pulse width, 1 KHz frequency, up to 1 mJ energy, and approximately 4 mm 

output beam.  This beam is transferred to the working envelope by a series of mirrors and is 

focused with a microscope objective.  The beam is focused onto the working surface and X-Y

stages manipulate the geometry in the plane, whereas the microscope objective is mounted to a Z 

stage to manipulate the beam position.

Figure 1.  Sandia’s femtosecond laser micro-fabrication system.
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Stainless steel 304L foils were used for the metal work.  Typically, 50-200 micron thick 

foils were used.  The foils were mounted into a picture frame holder, where features ablated 

through thickness easily fall out of the foil for analysis.  A 20X objective was used resulting in a 

minimum spot size of 60 microns at 975 mW.  Smaller spot sizes are easily obtainable, but for 

this work a larger spot size was used to aid in understanding the ablation process.  Full power 

(975 mW) was used for most studies.  Since this work involves the utilization of traditional RP 

techniques, effects of travel velocity, layer decrement, and geometric features were studied.  

Sandia-developed software was used to define the path sequence for part fabrication.  Simple 

machine language (M and G codes) was used for initial parameter studies.  Ablated features were 

analyzed by optical and scanning electron microscopy.  Width and depth of features were 

measured by interferometry techniques. 

When our femtosecond laser was used to modify the local glass structure, the power of 

laser beam had to be reduced to prevent optical damages to the glass.  The energy of the beam 

was first reduced by rotating a half wave plate together with a thin film polarizer along the beam 

path.  Further energy reduction was accomplished by the use of neutral density filters.  The glass 

used in this evaluation was a thermally treated chemical vapor deposited (CVD) amorphous 

quartz (Quartz International, Albuquerque, NM).  The laser beam was directed through a long-

working-distance microscope objective (Mitutoyo, NIR 20X, NA = 0.40) and focused into the 

polished glass approximately 500 to 750 µm below the surface.  Typical laser energy per pulse 

used in this investigation was controlled between 0.45 to 0.9 µJ. The samples were scanned 

perpendicular to the focused fs laser pluses at a rate of 20µm/s to create micron-sized lines inside 

the bulk glass.  The optical properties of these scanned lines were studied using near-field and 

far-field techniques.  Light scattering in these modified regions (waveguides) was determined by 

image analysis of light intensity decay along the beam direction, using a digital camera.  Laser-

induced birefringence was characterized by using a Dalsa CA-D1-0128T camera attached to an 

Olympus transmitted light microscope (BH-2) with samples between crossed polars on a rotation 

stage.  Digital signals from these images were processed using a National Instruments PCI-1424 

digital image capture card and software written in LabVIEW G code.   

Results in Metals 

A. Ablation Properties 

For complex part fabrication, we will need to process parts in a layered manufacturing 

approach. Much of our understanding of ablation with respect to velocity and layer decrement 

for stainless steel can be found in the following reference
10

.  By utilizing a layered 

manufacturing approach, a three-dimensional shape is represented by two-dimensional cross-

sections where each cross-section is represented by a raster pattern.  There are two choices for 

volumetric material removal:  1) fast travel velocity and smaller layer decrement or 2)  slow 

travel velocity and larger layer decrement.  Processing speed is of great importance in the 

manufacturing environment, but so is final part resolution and cleanliness.  For this work, all 

studies were done in air, where it is generally more difficult for the species to ablate away from 

the surface resulting in redeposition onto the sidewalls or top surfaces.  It is beneficial to process 
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in air for a variety of factors from simpler equipment (no vacuum/gas handling equipment) to 

easy sample exchange.  Other researchers have found techniques
11

 to provide good feature 

definition without species redeposition while processing in air.   Appropriate techniques will be 

incorporated into our system in the future. 

In order to correctly choose the layer thickness and raster width (known as hatch) we 

need to understand the effect of velocity on feature width and depth.  Initially, single lines, 10

mm long, were drawn at various velocities and their width and depth measured using 

interferometry.  A foil thickness of 50 microns was used for this study.  Figures 2a and 2b show

the measured ablated depth and channel width.  As expect, the depth decreases as the velocity 

increases from 46 microns to 5 microns for a change in velocity from 0.4 mm/s to 3.4 mm/s.  At

slower velocities, one would expect the channel width to match closely to the minimum spot

size, 60 microns, and decrease in width as the velocity increases.  In Figure 2b, the data shows 

this general trend within error.  Inconsistencies are most likely due to species redeposition 

thereby adding measurement error depending on the efficiency or inefficiency of removal. 
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Figure 2. Ablated depth (a) and channel width (b) for lines processed at four travel 

velocities at 975 mW.    A 50 µm foil thickness was used in this study. 
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B. Components 

With the knowledge of depth and width at various velocities, complex shapes were tried. 

For manufacturing speed, it would be best to utilize the greatest decrement possible, or try to 

match the 46 micron cut shown in the previous section.  Since Figure 2A shows a dramatic

change in depth for a small change in velocity at low travel speeds, a decrement value of 25

microns was chosen at a speed of 0.4 mm/s.  Figure 3 shows the results for a comb-like geometry

that was cut into a 200 micron think SS304 foil.  Comb arms are 200 microns wide with 250 

micron spacing.   The comb geometry is reasonably accurate dimensionally, but as the figure 

shows, there is a large amount of recast material along the sidewalls.  Furthermore, it took twelve 

passes to ablate through the thickness or a discrepancy of 100 microns.  This discrepancy can be 

explained by the ablation energy being utilized to remove old material that has recast within the

channel.

Figure 3.  Comb geometry fabricated at 0.42 mm/s with 25 micron layer decrements.

In contrast, Figure 4 shows clean and accurate features for a ratchet gear fabricated with 5 

micron decrements using a travel velocity of 1.7 mm/s.  The gear was cut through a 100 micron

thick foil in 18 passes, or 90 microns, resulting in a more efficient process where energy is

directly utilized to cut features.  Even though the gear was cut from a 100 micron foil, it is 

apparent that the small layer increment is better for part fabrication.  For this parameter set, the 

particles can volatize away from the channel without heavy plasma shielding or increased 

particle-particle collisions.

54



26x26x

Figure 4.  Ratchet gear fabricated in 100 micron thick SS304 foil using the following 

parameters:  1.69 mm/s travel velocity and  5 micron layer decrement. 

200 m200 m350 m350 m

Results in Glasses 

A. Structure Modification

When an intense femtosecond laser pulse is focused inside bulk glass, the intensity in the 

local volume can become high enough to cause absorption through nonlinear processes, leading 

to optical breakdown or photo-damage.  Slightly below the optical breakdown threshold, this 

nonlinear, multi-photon absorption can locally alter the glass structure and cause refractive index 

changes.
12-16

 If the intensity of the laser is below the threshold level of multi-photon absorption,

glass becomes almost transparent to the laser beam.  Therefore, it is important to identify the

proper processing space that can effectively increase the refractive index without creating photo-

damage in the bulk glass. Figure 5 shows the micro-Raman spectrum of bulk silica glass and 

normalized spectrum of a laser-damaged region (0.1 mJ).  Under cross-polarized light condition, 

the damaged regions exhibit stress birefringence and are occasionally associated with

microcracks. Without the normalization procedure, the intensity of the Raman bands from the

laser-damaged region is consistently less than that from the bulk glass.  This reduction in 

intensity indicates that the modified regions have structures of lower density where some glass 

has been partially replaced by voids.  However, this reduction in intensity becomes significantly

less for laser-modified regions (0.9 µJ) that produce refractive index change without creating 

stress birefringence.  Furthermore, the normalized Raman spectra show an increase in the 490

and 605 cm
-1

 peaks in the damaged region, indicating an increase in the number of 4- and 3- 

membered ring structures in the silica network.  The formation of these 4- and 3- ring structures 

are sometimes associated with the creation of new quasi-surfaces at small voids in the silica-rich 

matrices.
18

  In addition, the Raman band peaking between 400 and 500 cm
-1

 is significantly 

narrower in the spectra from laser modified regions compared to the bulk glass.  The relative

narrowness of the bands in the spectra indicates that the silica networks in these areas have a 

smaller distribution of ring sizes, with fewer large rings.  This type of modification of the silica

network is typically achieved by quick melting followed by fast re-solidification during the laser

process.
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Figure 5. Micro-Raman spectra for bulk glass and laser modified regions. 

B. Components

With the knowledge of the effect of average laser power on structure modification of 

glass, direct writing waveguides inside amorphous quartz was explored.  Figure 6 shows the top

view, near-field and far-field patterns of laser-modified lines above (0.1 mJ) and below photo-

damage threshold (0.9 µJ).   The near-field and far-field patterns were obtained from the 

transmitted beams at 650 nm through 2 mm length of laser-modified regions.  The near-field 

pattern of waveguides created below damage threshold illustrates the propagation of a single 

LP01 mode through the waveguide inside of a bulk glass.  The far-field pattern indicates that this

transmitted mode possesses a nearly Gaussian profile.  Above the photo-damage threshold (> 2.2

µJ), extensive light scattering is observed, which is consistent with the Raman analysis results

where some glass has been partially replaced by voids.  Experimental results suggest that these 

laser-modified regions have a unique biaxial optical birefringence, where the maximum

birefringence is in the range of 0.002 to 0.004.  Figure 7 (a) illustrates the variation in transmitted

light intensity through the laser-modified regions under cross-polarized light.  The polarization 

direction of the laser beam was systematically rotated 10° from spot to spot.  The observation of

an optical extinction for every 90° suggests that the laser-modified regions possess an optical 

birefringence property.  Furthermore, the sinusoidal variation of the transmitted light intensity

(see Fig. 7 (b)) is consistent with the theoretical prediction of a birefringent material.   Results 

indicate that the laser-induced birefringence property in the bulk glass can be controlled by laser 

power level, accumulated exposure, and polarization direction of the writing laser.
19

  Details of 

the creation of birefringence by the femtosecond laser pulse will be reported elsewhere.
19
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Figure 6. Direct-write buried waveguides in glass by femtosecond pulse laser.  The top and 

bottom images are regions modified above and below the photo-damage threshold, 

respectively.
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Fig. 7 (a) Transmission image of laser modified regions under a cross polarized light, the 

polarization direction of the laser beam is rotated 10° for each modification, (b) the change 

of transmitted light intensity in the first quarter.
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Conclusions

Initial studies show that femtosecond laser processing is a promising manufacturing 

technology to fabricate micro-components.  We have demonstrated with a basic understanding of 

travel velocity and layer decrement on resulting channel morphology, complex shapes can be 

fabricated in stainless steel.  A key factor in producing clean features is choosing the correct 

layer decrement that allows the ionized species to escape the channel.  Using a unique non-linear 

absorption behavior, we have demonstrated that femtosecond laser pulses, when properly 

adjusted, can locally modify the glass structure and directly fabricate waveguides in bulk glass.  

Results show these laser-modified regions possess an optical birefringence property which can 

be controlled by the polarization direction of the laser beam.  The capability of creating and 

controlling birefringence properties in glass by laser processing could have significant 

implications for the development of novel optical devices. 
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