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Solid Freeform Fabrication (SFF) refers to a group of processes that manufacture parts of 
arbitrarily complex geometry without tooling. Currently, the operation of most SFF machines 

requires skilled operators with expertise in choosing process parameters in ordered to achieve the 
desired part quality. Thus, the “push-button 3D hardcopy” promise of SFF has yet to be realized.
This paper presents a framework for selecting optimal process parameter values automatically 

for the selective laser sintering (SLS) process. The research described considered five process 
parameters that are important for the SLS process. To achieve quality measures from the five 
process parameters, optimization is inevitable. The method optimizes these process parameters 

of SLS with respect to a set of desired quality measures, based on user input of the relative 
importance of each of the quality measures. The basis for the framework is the so-called D-

optimality criterion applied to a series of factorial experiments that capture empirically the 
relationships between the process parameters and part quality measures. The framework is 
implemented in MINITAB™ and a macro is used to perform the optimization

1 INTRODUCTION

Manufacturing processes that build parts by adding material on a layer-by- layer basis, in 

contrast to conventional methods that remove, reshape or add material are defined as Solid 
Freeform Fabrication (SFF) [1]. With such techniques, a prototype part is manufactured directly 
from a three-dimensional (3-D) CAD drawing source. Productivity in manufacturing is achieved 

by guiding a product from concept to market quickly and inexpensively. SFF technology aids 
this process as it automates the fabrication of a prototype part from a three-dimensional CAD 
drawing. This physical model conveys more complete information about the product earlier in 

the development cycle. The turnaround time for a typical rapid prototype part is a few days [1]. 
Conventional prototyping may take months, depending on the method used [2]. SFF is a quicker, 

more cost-effective means of building prototypes as opposed to conventional methods. The 
advent of SFF has changed mechanical design significantly [2].

While the technology involved in physically building a prototype is progressing, the process of 

reliably moving from a computer-generated model directly to a viable part is still in its infancy. 
Relatively little effort has been made to fully characterize the relationships between process 

parameters and part quality metrics [4]. A small percentage of users are aware of how these 
processes actually work, what types of results they will produce, and thus what process
parameter choices will result in parts of the desired quality. This situation causes machine 

operators to make assumptions during the manufacturing stage as to what the designers’
intentions are for the parts to be produced, and to select process parameter values accordingly. 
The research reported in this paper lays the groundwork for reaching the ultimate goal of “point 
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and click” SFF. We present an approach that allows the designer or the SFF part user to rank the 
final part quality measures that are important so that process parameters can be set accordingly. 

In particular, we describe an optimization technique for allowing the designer to know at the 
design stage whether a part manufactured by the given process parameters (i.e. the machine 

settings) can produce a part with the required quality.

1.1 Research Objectives

In all but the simplest design problems, engineers and manufacturers make decisions to 

optimize multiple criteria or objectives simultaneously.  The problem at hand is an example of 
multicriteria optimization.

The purpose of this research is to develop a method to optimize the 

capabilities of a SFF machine so that, given particular part quality (output) 

measures and their relative importance, the optimal values of the process 

parameters (input) can be determined.

Our approach to realizing this goal involved two main objectives. First, we conducted a 
series of experiments to characterize the SFF process. These were factorial experiments in which 

several process parameters were varied systematically, and the resulting part properties were 
measured. The second objective was developing a computer environment for optimizing the 

process parameters for a target part quality. Different multicriteria optimization techniques were 
reviewed and the so-called D-optimality technique was chosen. The chosen implementation
environment for the optimization is a commercially available statistical analysis system,

MINITAB™. A demonstration program was developed in the macro programming environment 
of MINITAB™. The implementation was then tested and evaluated. In the next section, our 
experimental results are summarized. Section 3 describes the optimization macro that was 

developed, and section 4 presents an example of its use.  We summarize the research in section 5.

2 EXPERIMENTS

A concrete set of manufacturing rules and constraints for a Solid Freeform Fabrication 
process allows part manufacturers to account for the designer’ s intent as the part is produced. 
The designer can also determine if it is possible to manufacture the part satisfactorily. With 

information on the capabilities of a particular SFF machine, the part model can be altered as it is 
designed so that it will ultimately be feasible using SFF to fabricate a part with the desired 

quality. We have developed a standard procedure for evaluating a SFF process [4] and have 
applied the procedure to a SLS SinterStation 125.  This section summarizes that work.

2.1 Selective Laser Sintering

Selective laser sintering is a layered manufacturing process in which powdered material is
melted by laser heat into the desired shape through the repeated scanning of cross-sectional areas 
that will eventually form the 3D model (See Figure 1). The machine consists of two 1 pistons 

1
 The most recent commercial systems have three cylinders, including two supply cylinders.  The

Sinterstation used for these experiments has only one supply cylinder.
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within cylinders that contain, respectively, supply powder and the part being built, a roller to 
spread the powder evenly, radiant heaters, sensors and a controller to heat the powder, and a laser 

and its optics. An inert atmosphere is maintained inside the build chamber.

Figure 1.  The selective laser sintering process [2].

The selective melting process is accomplished by a CO
2
 laser. The path of the laser is 

controlled by galvanometers that are connected to the control computer. The computer has a 

sliced 3D model that dictates the path the laser takes. Various scanning techniques are used or 
under research [4, 5]. We used the simple X vector raster scan for our experiments.

Once the entire layer is scanned, a new layer of powder is deposited upon the previous 

layer. The part bed cylinder is lowered, causing the surface of the part bed to drop a prescribed 
amount. The powder bed cylinder is raised to provide powder for the next layer.  The roller 

apparatus then traverses across the top of the powder bed, pushing the raised portion of the
powder across the chamber to the lowered surface of the part bed. The powder covers the 
previously scanned areas with a thickness of powder that is determined by the amount the part 

cylinder has dropped. This value is the “layer thickness”. The laser then scans the next layer. 
This process repeats until the 3D part is completed.

2.2 Process Parameters and Part Quality Attributes

In this research, the relationships between SLS process parameters and part quality
attributes were determined experimentally. Full factorial experiments were used for data

collection [4]. This type of experiment allows the minimal number of builds while still providing 
enough information to evaluate the main effects of each input parameter, as well as the
interaction effects of the combined input parameters, with the same level of precision as “one-at-

a-time” experiments [6]. In full factorial experiments, an experimental run is performed for every 
combination of factor levels. This is the most conservative of the experiment designs.
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In these experiments, only one material, Duraform™, was explored. Duraform™ is a 

polyamide material used for fabricating functional prototypes. The process parameters below 
were identified as having significant relationships to part quality.

• Laser power. Laser energy density, quantified by the Andrew number [3], is a function of 

the laser power, scan speed, and scan spacing, and has the units of J/in2. For our experiments, 
the scan speed and scan spacing were held constant. Thus, energy density was modified by 

varying the laser power between 4W and 8W.

• Powder age. In the experiments described here, both recycled and virgin Duraform™ powde

rs were used. Recycled powder refers to unsintered powder from previous builds. 
The effects of powder age were tested using virgin powder and powder that had been recycle
d at least 10 times.

• Layer thickness. Material choice severely constrains the allowable variation in this paramete
Bounding limits for layer thickness were determined from the size of the particles and the ma

ximum layer thickness at which inter-layer bonding occurs, based on preliminary tests.

• Part orientation. This parameter measures the deviation between a part-based coordinate sys

tem and the build direction in the machine. The parts were oriented in the build cylinder such 
that the effects of scanning perpendicular to the long axis of the test part, as well as along its 
long axis, were tested. Additionally, orientations of 0°, 45°, and 90° around the parts’  long 

axes were evaluated.

• Scan vector length. This parameter is related to part orientation in the build plane. The SLS 

workstation used for the experiments scans in a raster pattern. A long slender part will be sca
nned differently, depending on the orientation of its long axis with respect to the scanning dir
ection.

A series of specimens was fabricated on a DTM Corp. SinterStation 125, with the process 
parameters described above varied according to a full factorial design. The levels of the various 

process parameters are summarized in Table 1 below. The effects of part orientation and scan 
vector length were tested by fabricating multiple parts in the same build with different
orientations (both in the build plane and with respect to the build direction).

Table 1. Process parameter levels.

Parameter No. of Levels Levels (Uncoded)

Laser Power 2 5 W and 6.5W
Age of powder 2 Old and new

Layer Thickness 2 0.004” and 0.005”

Scan Vector Length 2 Short and long

Orientation 4 -90, 0, 45 and 90 Deg

After fabricating the specimens, we measured the following part quality attributes:

• Part strength. Several different measures of strength were tested using the tensile,
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compressive, and bending forms of loading, and the impact strength or toughness of the 
sample. The values were obtained using a MTS tensometer and Izod impact tester designed 

for plastics. Sample hardness was measured using a Rockwell Hardness tester.

• Dimensional accuracy. For functional prototypes dimensional accuracy is important.

Dimensional accuracy includes large dimension accuracy, small dimension accuracy and 
minimum positive and negative feature sizes. The analysis for each was performed at
different orientations since the accuracy in the z direction is different from accuracy in the x

and y directions.

• Thermal expansion. This attribute was measured with a Perkin-Elmer 7 series Thermal 
Analysis System.

• Surface roughness. The surface roughness was measured with a contact profilometer to 
evaluate the effects the parameters have on surfaces that are parallel, perpendicular, and 

angled with respect to the build plane.

Table 2 below summarizes the measured part attributes.

Table 2.  Property limits of DuraForm™ parts on the SS125.

Property Upper Limit Lower Limit

Tensile Strength [psi] 7922 7
Bending Strength [psi] 10657 35

Compressive Strength [psi] 17510 1303

Density [gm/cm3] 94.15 64.19
Impact Toughness [J/cm] 153.42 17.07

% Dimensional Error 0.72
Thermal Expansion Coefficient [1/OC] 1.69E-04 9.71E-05

Surface Roughness [µm] 33.5 7.7

3 OPTIMIZATION OF PROCESS PARAMETERS

In this section we describe our process parameter optimization tool. We chose to
implement the optimization tool in an existing statistical analysis package after careful

consideration of the desired functionality [12]. In particular we wanted an optimization method 
that would:

• Optimize the experimental design (combination of process parameter values) used to 
achieve the desired part quality measures.

• Use non- linear regression techniques to locate the optimal points.

• Obtain the output for the process parameters in coded/uncoded units. Coded means the 
values are normalized in the range of –1 to 1, while uncoded means the values are 

obtained in the actual parameter units.
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• Associate importances and weights with part quality measures to reflect the designer’ s 
preferences.

• Find an optimal way to balance the customer needs (many part quality measures) that a 
designer must take into account before reaching a conclusion about the input parameters 

(process parameters) for the part.

• Provide a user interface that shows the initial condition and the optimized condition and 
be able to switch back and forth between them.

• Illustrate the interactions among various process parameters.

Clearly, these functional requirements call for a multicriteria optimization method that 
uses regression (non- linear) techniques to achieve global optimization. After studying several 

techniques [7], the so-called “D-optimality” technique (discussed in the next section) was
selected. The MINITAB™ statistical package was chosen as the implementation environment, as

it supports regression analysis and provides a macro programming facility for customizing the 
package. Also, the graphical interface generates plots and provides a dialog capability for user 
input. MINITAB™, being a statistics software package, also runs factorial designs and provides 

response surface analysis.

3.1 D-Optimality

Since the 1980’ s much work has been done in the field of experimental design, and 
considerable attention has been given to the use of the computer for constructing experimental 
designs for the user [8]. For a given computer design where the response variable, y, is a function 

of the design variables, x, we usually do not know the nature of the functional relationship. We 
approximate the unknown relationship or function with an empirical model of the form [8]:

,),( ε+= ßxgy (1)

Where ),( ßxg is an interpolating function, ß  is a vector of unknown coefficients in g, and ε  is 

the random error (or bias from true physical relationships). For factorial experiments we usually 
assume that the interpolating function is a low order (e.g., linear) polynomial:

εβββε ++++=+= )()()()( 2211

T xxxßxf nn fffy Κ (2)

Equation 2 is called the regression equation. Each of the terms fi(x) is a multiplicative 
combination of the design variables, raised to the appropriate power, that contribute to that term. 

For instance, for a linear model with two variables, there are four terms:
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To define the interpolating function g, we need to find values for the coefficients ß  in 

equation (2). We can do this by rewriting equation (2) in terms of the known response values 
measured from the experiments. The n sample experiments are characterized by the design points 

nxxx ,,, 21 Κ . Each design point xi consists of a unique set of values for the k design variables. 

Let

[ ]T

21 ,,, nyyy Κ=y

be the measured response values for the n sample experiments, and 

T

21 )](,),(),([ nxfxfxfX Κ=

be the kn X  design matrix. Then equation (2) can be rewritten as the set of equations:

eXßy += (3)

where e  is now a vector of error terms, one for each of the n sample experiments.

Unbiased estimates of ß  can be found if the expected error values are zero and the 

variances of the errors for all design points are the same:

Ie

0e

2)V(

)E(

σ=
=

(4)

where s  is the standard deviation and I is the identity matrix.

With equation (3), the least squares technique can be used to compute ß̂ , an estimate of 

ß , assuming the number of design points in the experiment exceeds the number of parameters ßi:

yXXXß T1T )(ˆ −= (5)

Using these estimates and equation (2), the estimate the value of the response variable is:

ßxf ˆ)(ˆ T=y (6)

A measure of the accuracy of the estimates ß̂  is the variance-covariance matrix )ˆV(ß ,

defined as:

1T2 )()ˆV( −= XXß σ (7)

The optimal design is one that minimizes the variance defined in equation (7). However, the 
minimum of a matrix is not a well-defined concept. A number of operational criteria have been 

developed. One criterion, D-optimality, seeks to minimize the determinant of the matrix
1T )( −XX . Of the available optimality criteria, D-optimality gives accurate parameter estimates 

354



8

and takes the least time to compute [8, 9, and 10]. D-optimality is also appropriate when multiple 
responses are involved. Hence we have chosen the D-optimality criterion for our research.

3.2 Implementation

In this research, D optimality is applied to the 9 responses (part quality measures), the 

data for which was obtained from [4]. The implementation uses a D-optimality macro in
MINITAB™. For each optimization run, the part quality measures to be optimized are first 
chosen. Then the goal for each response (maximize, minimize, or target) is chosen, and the user 

provides values for parameters (limits and targets) appropriate for each type of goal. Weights are 
then associated with the responses. The weights define the shape of the desirability function. The 
values of the weights vary from 0.1 to 10 to de-emphasize or emphasize the response. Finally, 

importances are assigned to the responses.  Values of importance must be between 0.1 and 10 
[11]. If all responses are equally important, the default value of one is used for each response.

The composite desirability is then the geometric mean of the individual desirability [11].
However, if some responses are more important than others, the user can incorporate this 
information into the optimal solution by setting unequal importance values.

4 EXAMPLE: PROSTHESIS SOCKET OPTIMIZATION

In this section we present an example where different target values for the part quality 

measures are required for different regions of the part. The example focuses on determining the 
optimal process parameters for fabricating a patella tendon bearing (PTB) socket, part of
prosthesis used by below-the-knee amputees. An image of a PTB socket is shown in Figure 2.

This socket is designed such that the residual limb contacts all areas of the socket. However, the 
socket is designed with compliant areas in the regions where pressure sensitive tissue touches the 
socket. The patella tendon area is the weight bearing part in the socket while the pressure 

sensitive areas are the distal end and the fibula end (see Figure2). The bottom of the socket 
consists of a pylon fitting that is attached to an aluminum pylon and prosthetic foot assembly.

Figure 2. Patella tendon bearing socket.

Fibula Head

Distal End

Patella Tendon
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For this example the compliant areas have different part quality targets than the other 
areas of the socket. The two part quality measures identified as the most important for the user in 

each area are tensile strength and 3 point bending strength, respectively. Goals, weights and 
importances were assigned to each of the nine quality measures and optimized. The macro 

begins by assuming a full factorial design and obtains data from the “responses.xls” file. The 
macro then performs sequential optimization, and the search improvement for optimization is 
done using one exchange point. The following were the goals, importances and weights for the 

compliant part of the socket.

Table 2.  Properties of the compliant part of socket

Quality Measures Goal Lower Target Upper Weight Importance

Tensile Maximum 19 7775 7775 1 1
3 Point Minimum 29 1000 11090 1 10
Charpy Maximum 17.95 153.4 153.4 1 8

Density Target 64.19 94.2 94.2 1 6
Compress Maximum 1302.5 16665.1 16665.1 1 0.5

Surface Roughness Target 7.7 7.7 33.5 1 2
Thermal Exp Minimum 0 90E-6 133E-6 1 0.1

Dimension Ave Minimum 0.1 0.1 1.7 1 9
% Dimension Minimum 0.3 0.3 43.8 1 9

As can be seen from the parameter settings the goal is to minimize the 3 point bending 
strength, with a maximum importance. This is because the areas where the socket needs to be 
compliant must have little bending resistance, i.e., minimum 3 point bending strength. The 

composite desirability achieved for the given settings (goals, weights and importances) of the 
process parameters is 0.52613. The parameter settings for the five process parameters (uncoded) 

according to this optimization are:

Table 3. Parameter settings for the five process parameters for compliant areas of socket.

Parameter Setting

Power 5.24

Thickness 0.005

Age new

Vector Length long

Orientation -90

For load-bearing areas of the socket the goals, importances and weights are summarized 
below in Table 4. The goals include maximizing the tensile strength, with a maximum
importance attached to this goal. As these parts of the socket must bear the weight of the patient, 

tensile strength becomes the controlling material property. The composite desirability achieved 
for the given settings (goals, weights and importances) of the process parameters is 0.50847. The 

parameter settings for the five process parameters (coded) according to this optimization are 
given in Table 5.
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Table 4.  Properties of the remaining part of socket

Quality Measures Goal Lower Target Upper Weight Importance

Tensile Maximum 19 7775 7775 1 10

3 Point Minimum 29 1000 11090 1 4

Charpy Maximum 17.95 153.4 153.4 1 8

Density Target 64.19 94.2 94.2 1 6

Compress Maximum 1302.5 16665.1 16665.1 1 6

Surface Roughness Target 7.7 7.7 33.5 1 2

Thermal Exp Minimum 0 90E-6 133E-6 1 0.1

Dimension Ave Minimum 0.1 0.1 1.7 1 9

% Dimension Minimum 0.3 0.3 43.8 1 9

Table 5. Parameter settings for load-bearing areas of socket.

Parameter Setting

Power 5.58W

Thickness 0.0046”

Age Old

Vector Length Long

Orientation -70 degree

This example focuses on a part to be manufactured by SLS in response to different 
customer needs for different parts of the same socket. The optimization function shows that the 

power, thickness and vector length will have to be changed for the socket to work as intended.

In the compliant areas of the socket the power level should be lower than that in the load-
bearing areas of the socket. Layer thickness, powder age, and orientation should also vary for the 

compliant areas and the load-bearing areas of the socket. See Table 6 below for a comparison of 
the values:

Table 6.  Comparison of five process parameters for compliant and the load-bearing
areas of socket.

Compliant Part Rest of the socket

Power 5.24 W 5.58W

Thickness 0.005” 0.0046”

Age New Old

Scan Vector Length Long Long

Orientation -90 degree -70 degree

4.1 Interpretation of Results

In this section we interpret the results of optimizing the process parameters for the 
application described above, beginning with laser power. An increase in the process parameter 
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laser power means the powder melts more thoroughly and forms better bonds between layers. 
This leads to increases in tensile, 3 point bending, and compression strengths. Better bonding in 

turn leads to better dimensional. For the load-bearing areas of the socket the tensile strength has 
importance 10 (most important) followed by average dimension, % dimension error and charpy 

impact strength. These areas of the socket must be structurally sound, i.e., the tensile strength 
should be large enough to transfer the patient’ s weight to the pylon fitting.

Increasing the layer thickness reduces the tensile, 3-point bending and compressive 

strengths [4]. This is because, with an increase in layer thickness for a given power, the powder 
does not melt as thoroughly as it would for thinner layers or higher power. For the compliant part 
the 3 point bending is the most important part quality measure followed by average

dimension, % dimension error and charpy impact strength. Thus, a smaller 3 point bending 
strength is desired to allow more bending in compliant. Layer thickness affects several part 

quality measures, the most important being the build time. The surface roughness should
decrease with decreased layer thickness because the stair step effect [4] between layers is 
reduced.

Powder age indicates either new powder or recycled powder. Watson [4] showed that 
accuracy decreases with an increase in the number of times the powder is recycled. Because 

compliance is increased by changing the local geometry (either thickness or by incorporating 
compliant features), accuracy is important in the compliant areas of the socket. Also, recycled 
powder requires more thermal energy, which can have the side effect of part growth or curl.

The scan vector length affects the density of the part produced. The part starts to cool 
immediately after the laser passes over the powder. The longer the laser takes to melt the 
adjacent powder the higher the thermal gradients. With long scan vectors the powder takes 

longer to cool than with short scan vectors [4]. Other part quality measures are also affected by 
the scan vector length due to the galvanometer motion. The motion of the galvanometers is such 

that, when the direction changes, they first decelerate, stop briefly and then accelerate in the 
other direction. This can result in high energy density over the scanned area. Also a part with 
complex geometry may require small scan vectors. Since this prosthesis does not have any 

complex geometric features, we decided to use large scan vector lengths. This speeds the build 
process up and reduces costs. 

Orientation is a major factor in determining the final part quality. For taller parts, the 
machine processes more layers, and more time is required to complete the build. Laser scan time 
is dependent on volume and not on orientation. If the part can be oriented in such a way that the 

longest side is in the plane then the time and cost needed to produce the part are greatly reduced. 
Orientation also affects part strength. In the x-y direction the powder melts homogeneously, 
while in the z direction there is a possibility of improper bonding between layers. This can lead 

to relatively poor lamination and strength reduction in that direction. For compliant areas, where 
more strain is desired for a given stress value, Watson [4] shows that orienting the part with the 

longest dimension in the z direction results in more compliance and lower 3-point bending 
strength. Since our method does not account for the geometry and sizes of the parts in x, y and z
direction we assume that the part is oriented to minimize the time of manufacture and ultimately 

the cost. For the prosthesis socket, this means the longest dimension is in the x-y. The parameter
optimization results suggest that for the required part quality measures the orientation should be 
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such that the longest dimension is along the z direction for the compliant areas of the socket and 
slightly tilted (20 degrees to the earlier orientation) for the load-bearing areas of the socket. This, 

of course, is not possible, but serves to illustrate how our method accounts for orientation in 
process parameter selection.

4.2 Optimization Plots for Prosthetic Socket

The MINITAB™ user interface presents the optimization results in graphical form. 
Figures 3 and 4 show optimization plots obtained for the prosthetic socket example. There are six 

columns in each figure. The first column lists the parameters and gives the optimal value for the 
settings. The subsequent columns give the process parameters, high and low coded values, and 
the optimal value. For instance, the second column plots the variation of power from -1 to 1 in 

coded units. The vertical red line in each column shows the optimal process parameter settings
for all the different part quality measures. The dotted blue line in each row gives the response for 

the set weights and importances.

The plots summarize the optimize results, allowing the user to effectively detect trends. 
For instance, in Figure 4 the tensile strength variation is linear (in blue) and hence shown by a 

straight line. In contrast, for the compressive strength, the variation for orientation process 
parameter is quadratic, indicated by the curve in the plot. A comparison of Figures 3 and 4 shows 

that the optimal points of operation are different (shown by red vertical lines). Also the responses 
for the part quality measures are different in both the figures for a given response, as the 
objectives, weights and importances are different in each case.
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Figure 3. Optimization plots for compliant areas of the socket.

Figure 4: Optimization plot for load-bearing areas of the socket.

5 CONCLUSIONS

This paper describes a system for choosing optimal process parameter values for
manufacturing a part using selective laser sintering. The system uses the D-optimality algorithm 
and nonlinear regression to determine the best values for process parameters based on

experimental part quality data from a series of factorial experiments. Our approach allows the 
designer to prioritize the different part quality metrics and focus on those that are most important 
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to the customer. Using this system, the part designer can balance the various requirements of a 
customer to achieve the optimal part quality.

The research suggests several avenues of future work. The most obvious extension of the 
work is to apply the framework to other SFF machines and processes. Watson [4] describes a 

methodology for characterizing SFF processes. We believe the framework described in this 
paper is general enough to accommodate data from other processes and machines, but this must 
be shown with concrete examples

A second area of improvement is the optimization environment itself. The current 
implementation of the macro requires use of the MINITAB™ drop-down menus. This is a
cumbersome artifact of the chosen implementation vehicle. Other implementation tools should 

be studied to determine if a more suitable environment is available. 

A third, more general extension of this tool is extending to a true manufacturability 

evaluator. Currently the system only reports the optimal process parameters. It does not provide a 
measure of how manufacturable the design is, nor does it give suggestions on improving
manufacturability. This goal is clearly necessary to realize the potential of SFF to be “push 

button” manufacturing technologies.
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