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Abstract

        Silicon Carbide (SiC) has been grown from methyltrichlorosilane (MTS) and

hydrogen using the Georgia Tech Laser Chemical Vapor Deposition (LCVD) system. A 

morphology study of LCVD-SiC fibers and lines was completed. Graphite and single 

crystal silicon were used as the substrates. In order to provide guidance to future growth 

of SiC, thermodynamic calculations for the C-H-Si-Cl system were performed using the 

SOLGASMIX-PV program.

Introduction

      Silicon carbide (SiC) has outstanding material properties, including extreme hardness,

high electrical breakdown field, wide band gap energy, good thermal conductivity, and 

excellent resistance to corrosion and thermal shock. It is either presently being used or

considered primarily for use in critical parts for uncooled gas turbine and adiabatic diesel 

engines and high temperature bearings. It is also currently being considered for use in 

semiconductor devices, especially for high temperature, high frequency, and high power 

electronic applications.

      Laser Chemical Vapor Deposition (LCVD) is a process that uses a laser to initiate a 

chemical reaction of gaseous reactants, which results in solid deposits on selectively 

heated areas of the substrate. The LCVD technique has the potential to make small and 

complex shaped metal and ceramic parts. Due to the nature of the LCVD process,

deposited materials have desirable properties, such as purity and little porosity. There are 

very few papers on making SiC using LCVD. T. Noda et al.
1
 reported the formation of 

polycrystalline SiC by excimer-laser chemical vapor deposition. Chin et al.
2
explored the 

relationship between the morphology and experimental parameters of CVD-SiC prepared 

from CH3SiCl3 and H2. Choi et al.
3

reported the CVD-SiC microstructure obtained from 

different chlorosilanes, such as DDS ((CH3)2SiCl2), TCS ((CH3)3SiCl2), and TS 

((CH3)4Si). Tsui et al.
4
 tried to explain the observed morphology of CVD-SiC with 

chemical kinetics and mass transport arguments. In our research, SiC lines and fibers 

have been grown using the Georgia Tech LCVD system for the pyrolysis of CH3SiCl3

(MTS, methyltrichlorosilane) and H2. A morphological study of the SiC lines and fibers 

was performed, which gave indications of the LCVD-SiC growth mechanism.

      Thermodynamic calculations are extremely useful for analyzing the combination of 

condensed phases that will be most stably deposited during the LCVD process.
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Thermodynamic calculations based on making SiC from the C-H-Si-Cl system, which 

represents the experimental mixture of CH3SiCl3 and H2, were explored using the 

SOLGASMIX-PV computer program. The calculations are based on minimization of the

Gibb’s free energy of the system, which has been explained in detail by Eriksson.
5

Volcano effects
6

have been observed in the SiC fibers & lines produced by the Georgia 

Tech LCVD apparatus. Volcano effects are undesirable because of detrimental results for 

surface quality and component fabrication. Hopefully, the thermodynamic calculations 

will help to explain the cause of the volcano effects and offer direction how to avoid them.

Experimental

      Duty et al.
7
described the Georgia Tech LCVD system in detail. For the deposition of

SiC, a vaporizer (bubbler) was used. A simple schematic drawing of vaporizing the liquid 

MTS and transporting the vapor MTS to the reaction chamber is shown in Figure 1. 

Normally, MTS is assumed saturated under room temperature. The amount of MTS 

flowing into the reaction chamber was controlled by the amount of input hydrogen at

given temperature and pressure. In order to meet the desired dilution ratio of MTS to H2,

more H2 was introduced downstream of the vaporizer. For all the experiments, the 

pressure of the reaction chamber was maintained at 500 Torr. The growth temperature

was measured and controlled by a thermal imager.
7
 Process variables that were 

investigated were deposition temperature, reagent flow rate, and the MTS to H2 ratio.

     Pressure                                                                   Laser 

                           T.C

     MFC                                                                                             Substrate

MTS+H2

H2

                                                  MFC

Mechanisms for moving

                                                                                   the stage

MTS                                     H2

Vaporizer

Figure 1   Reagent supply system
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LCVD-SiC

Fibers and lines of SiC were grown using the Georgia Tech LCVD system. The 

experimental variables for the SiC fibers and lines are shown in Tables 1 and 2. The SEM

micrographs in Figures 2 - 6 show the deposit microstructure and permitted correlating

the processing conditions with the microstructure. Many morphologies were observed. 

These include nodular, rounded columnar, strongly faceted, and needle like structures.

      For the fibers of the L176 series of experiments (Figure 2), as temperature decreased, 

the surface morphology changed from strongly faceted to nodular. This may be explained 

by the fact that temperature often influences nucleation.
8
 For the fibers with faceted 

surface structures, the outer regions of the fibers, which have lower growth temperatures

than the middle region, nodular structures were commonly observed for almost all the 

LCVD-SiC fibers. Surprisingly, the grains in the center of the deposit were often smaller

than at the outer region.

      As the ratio of MTS to H2 increased, the crystallite sizes were increased in the 

indicated deposition temperature range as can be seen in Figure 3. For CVD of SiC Tsui 

et al.
4
 found that the change in concentration of MTS affected the surface structures to a 

lesser extent than the growth temperature. As shown in Figures 2 and 3, the fibers

typically had larger crystallites at the outer regions than in the middle areas.

Except for L265-7 and L265-8 shown in Figure 4, all of the SiC fibers showed 

depressions in the middle. This is known as the volcano effects.
6
 Depressions were 

present because of either high temperatures or the lack of reactants in the effected region. 

Future work is needed to understand the reasons and to determine how to grow SiC fibers 

without these defects.

      The observed LCVD-SiC fiber morphologies did not correlate well with the

relationships of CVD SiC morphology vs. process parameters described by Chin.
2
 The 

reasons are, probably, that for the LCVD process, the temperatures within the reaction

zone are not constant while during the CVD process the whole reaction region has the 

same temperature. As for the SiC fibers grown on single crystal Si, shown in Figure 5, 

they show similar morphology and bad volcano effects, but different from those grown 

on the graphite substrate.

      Figure 6 shows LCVD-SiC lines grown on graphite and single crystal Si. The lines on 

graphite have nodular surface structures. Fine crystallites were obtained in the middle

region and coarse crystallites were observed at the outer areas. This is consistent with the

observation for fibers. The lines on single crystal Si show different morphologies from 

those on graphite. For the line on the smooth surface of the single crystal Si, there is more 

material in the middle. For the line on the rough surface of single crystal Si, the line is 

very flat.

The laser used to deposit SiC has a laser spot of 200 m in diameter on the substrate.

But all the fibers grown are at least twice as big in diameter, which are shown in Table 3. 
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This indicates that the laser used to initiate the chemical reaction introduced a reaction 

zone much bigger then the spot size of the laser. For the processing conditions 

investigated, the spatial resolution for making SiC parts using the LCVD system is bigger

than the laser spot size, which will require special attention for process and component

modeling.

Table 1. Experimental variables of LCVD-SiC fibers 

Sample

No.

Substrate Gas-jet
a
Growth

temp

(ºC)

Growth

pressure

(Torr)

H2 flow 

(cm
3
/min)

MTS flow 

(cm
3
/min)

Volume

ratio

MTS:

H2

L176-3 Graphite Off
b
N/A 500 500 25 1:20

L176-4 Graphite Off 1600 500 500 25 1:20

L176-5 Graphite Off 1600-1550 500 500 25 1:20

L176-6 Graphite Off
c
1600 500 500 25 1:20

L265-1 Graphite On 1300 500 500 5 1:100

L265-5 Graphite On 1350 500 500 8.4 1:60

L265-7 Graphite On 1300 500 500 25 1:20

L265-8 Graphite On 1400 500 500 25 1:20

L252-2
d
Single Si On 977 500 500 5 1:100

L253-2
e
Single Si On 980-1011 500 500 5 1:100

a
Temperature averaged over a given region 

b
Laser power higher than for other L176 experiments

c
Temperature averaged over a smaller region than the one most commonly used,

     therefore, the actual temperature was lower than for L176-3 through L176-5 
d
Polished surface of Si wafer 

e
Rough surface of Si wafer 

Table 2. Experimental variables of LCVD-SiC lines 

Sample

No.

Substrate Gas-jet
a
Growth

temp

(ºC)

Growth

pressure

(Torr)

H2 flow 

(cm
3
/min)

MTS flow 

(cm
3
/min)

Volume

ratio

MTS:

H2

L251-1 Graphite On 1265 500 500 25 1:20

L252-3
b
Single Si On 900-1000 500 500 5 1:100

L253-1
c
Single Si On 970 500 500 5 1:100

a
Temperature averaged over a given region 

b
Polished surface of Si wafer 

c
Rough surface of Si wafer 
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                         L 176-3                                                             L176-4 

                        L 176-5                                                              L176-6 

Figure 2 Microstructure of fibers in L176 series of experiments

                 L 265-1                               L 265-5                                     L265-7 

Figure 3 Influence of MTS to H2 ration on crystallite size 

                                 L 265-7                                                    L265-8 

Figure 4 SiC fibers without volcano effects 
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                                        L252-2                                    L253-2

Figure 5 SiC fibers grown on single crystal Si 

                   L251-1                                L251-1-middle                         L251-1-outer 

                                  L252-3                                                       L253-1 

Figure 6 SiC lines on grown by LCVD 
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Table 3. Diameters of LCVD-SiC fibers 

Sample No. Tavg (ºC) MTS: H2
a
D inner ( m)

b
D outer ( m)

L265-1 1300 1: 100 423.0 838.4

L265-2 1400 1: 100 510.1 947.2

L265-3 1250 1: 60 366.1 801.8

L265-5 1350 1: 60 479.8 841.9

L265-6 1450 1: 60 616.5 924.0

L265-7 1300 1: 20 621.4 788.3

L265-8 1400 1: 20 781.9 958.5
a
Actual fiber size 

b
The whole region that has SiC deposited 

Thermodynamic Calculations 

      The C-H-Si-Cl system used to simulate the deposition of SiC was defined by 

specifying pressure, temperature, and the amount of each element present. By holding the 

pressure and temperature constant, the volume of the system can expand and contract 

during reaction depending on the given pressure and temperature. Because the 

calculations are based upon equilibrium thermodynamics, the final results are 

independent of the initial form of the elements. Therefore, while inputting the element

mole value, the concern is the molecular ratios of each element to satisfy the initial gas 

reactants used. Also, it is assumed that the reactions in the gas phase come to equilibrium

quickly, and the molecules formed represent the most stable distribution.

      Two sets of thermodynamic calculations were performed; one was based on MTS and 

H2, which were used for growing SiC. The other set was based on the mixture of CCl4,

SiCl4, and H2, which were used to check our calculations with those of Kingon et al..
9

The MTS set included 44 gas species and 5 condensed phases (graphite, liquid silicon, 

solid silicon, -SiC, and -SiC). Those species are listed in Table 4. For the calculations

including CCl4 and SiCl4, the species considered by Kingon were used
8
, which are shown 

in Table 5. The enthalpies of formation and entropies of formation were taken from the 

JANAF Thermodynamical Tables.
10

Table 4. Species considered in the C-H-Si-Cl (MTS) system

Equilibrium gas phases 
C(g) Si2(g) C2Cl2(g) C4(g) SiCl3(g)

CCl(g) CH2Cl2(g) C2Cl4(g) C5(g) SiHCl3(g

CCl2(g) CH3(g) C2Cl6(g) Cl(g) SiCl4(g)

CCl3(g) CH3Cl(g) C2H(g) HCl(g) H(g)

CCl4(g) CH3SiCl3(g) C2HCl(g) SiH3Cl(g) SiH(g)

CH(g) CH4(g) C2H2(g) SiCl(g) H2(g)

CHCl(g) SiC(g) C2H4(g) SiCl2(g) SiH4(g)

CHCl3(g) Si2C(g) SiC2(g) Cl2(g) Si(g)

CH2(g) C2(g) C3(g) SiH2Cl2(g)

Equilibrium condensed phases
C[s] Si[l] Si[s] -SiC[s] -SiC[s]
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Table 5. Species considered in the C-H-Si-Cl (CCl4, SiCl4) system

Equilibrium gas phases 
CCl(g) C2H(g) SiH3Cl(g SiCl3(g) H2(g)

CCl4(g) C2H2(g) SiCl(g) SiHCl3(g) SiH4(g)

CH3(g) C2H4(g) SiCl2(g) SiCl4(g) Si(g)

CH3Cl(g) Cl(g) Cl2(g) H(g)

CH4(g) HCl(g) SiH2Cl2(g) SiH(g)

Equilibrium condensed phases 
C[s] Si[l] Si[s] -SiC[s] -SiC[s]

(1) MTS/H2

For the series of calculations based on MTS and hydrogen, the system was

consistently defined with our experimental conditions. The moles of each element input 

were the values of actual moles in the reaction chamber multiplied by 1000. This 

adjustment was made because for some cases, the mole values were too small to get 

reasonable answers due to a quirk of the software. The pressure was kept as 500 Torr and 

the temperature ranged from 300 K to 2900 K. Three different ratios of hydrogen to MTS 

were used, which were 20, 60, and 100. The moles used to perform the calculations are 

listed in Table 6. 

Table 6. Element input mole values 

MTS: H2 C (mole) H (mole) Si (mole) Cl (mole)

1:20 4.672 200.896 4.672 14.016

1:60 4.672 574.565 4.672 14.016

1:100 4.672 948.416 4.672 14.016

      The calculated results of the condensed phases are shown in Figures 7(a) to 7(c). 

Because only -SiC and liquid Si existed according to our calculations, the other 

condensed phases were not plotted here. In fact, according to the data of the JANAF

Tables,
10

-SiC is more stable than -SiC. Therefore, no -SiC was expected.  From the 

Figures 7(a) to 7(c), it can be seen that under the indicated conditions, most of the time,

-SiC was the only condensed phase predicted to exist. The amount of -SiC increased

with temperature, reaching a maximum value, and then less -SiC was predicted to form

with increasing temperature. At higher temperatures, around 2400 K, the amount of -

SiC decreased dramatically and co-existed with liquid Si. The curves for -SiC are

similar in shape. Figure 8 shows the -SiC curves for different MTS to H2 ratios. 

Although it is not that pronounced, it is noted that at temperature less than 2300 K, more 

hydrogen helps to produce -SiC; at temperatures greater than 2300 K, more hydrogen 

leads to less -SiC.  The curves show what would happen when the system is in

equilibrium. There may be some deviations between the real SiC growth process and the 

predicted curves. However, these curves provide the tendency for producing -SiC under 

different process conditions. 
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      As mentioned before, the SiC fibers and lines grown using the Georgia Tech LVCD

system had undesirable volcano effects.
6
 From the previous calculations, in the 

temperature range of 1000 K to 2000 K, the amount of -SiC increased with temperature

and met the maximum value, then decreased with temperature (Figures 7 and 8). It is 

possible that these thermodynamic influences of the growth process are the reason for the 

volcano effects. To confirm this, further experiments and more modeling are required. 
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MTS:H2=1:100
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Figure 7 The condensed phases of system MTS/H2 at pressure 500 Torr and MTS to H2

ratios indicated 

LVCD-SiC
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Figure 8 -SiC mole value curves at pressure of 500 Torr and MTS to H2 ratios indicated 

(2) SiCl4/CCl4/H2

      As previously mentioned, this series of calculations was performed as a check of the 

method by comparing with Kingon’s results.
9
 For a system of CCl4/SiCl4 /H2, the total

amount of Si and C was fixed as 10 moles, the ratio of H2 to (Si+C) was 10, and the

amount of Cl was40 moles. The detailed information used to specify the calculations is 

shown in Table 7. For each set of calculations having a specific pressure and Si/ (Si+C) 
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ratio, the temperature ranged from 1000 K to 2000 K. The calculated results are shown in 

Figure 9. 

Table 7. Conditions used to specify the system of CCl4/SiCl4 /H2

Pressure (Pa) Si/(Si+C)

10
2

0.1 0.3 0.5 0.7 0.9

10
4

0.1 0.3 0.5 0.7 0.9

10
5

0.1 0.3 0.5 0.7 0.9

10
6

0.1 0.3 0.5 0.7 0.9

 Si/(Si+C)=0.5, P=10^2Pa
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Si/(Si+C)=0.5, P=10^5Pa
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Si/(Si+C)=0.5, P=10^6Pa
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Figure 9 CCl4/SiCl4 /H2 system at Si/(Si+C)=0.5 

In each case the calculations were in good agreement with Kingon’s
9
 results, which 

provide confidence for the MTS/H2 calculations. Also, observing the relationship 

between the pressure and the amount of -SiC, it seems that higher pressure inhibits the 

deposition of -SiC. But there are no experimental data showing this relationship.
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Summary and Conclusions 

      LCVD-SiC fibers grown using the Georgia Tech LCVD system have surface 

structures that ranged from nodular, rounded columnar, strongly faceted, and needle like

depending on the growth parameters. LCVD-SiC lines did not show any faceted surface

structures. From our experiments, it can be concluded that the growth temperature,

reactant concentration, and the substrate type play an important role in determining the 

morphology of LCVD-SiC.

      Thermodynamic calculations on the system C-H-Si-Cl system using SOLGASMIX-

PV software provide the basis for getting the most stable combination of condensed 

phases, especially to make -SiC. The calculations suggest that the deposition rate

increased with increasing temperature, reached a maximum, and then decreased. This 

information should be useful in establishing processing condition that permit the growth

of uniform SiC fibers and lines that do not exhibit the volcano effect.
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