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Abstract 
Freeform fabrication of complete functional devices requires the fabrication system to achieve well-controlled 
deposition of many materials with widely varying material properties.  In a research setting, material preparation 
processes are not highly refined, causing batch property variation, and cost and time may prohibit accurate 
quantification of the relevant material properties, such as viscosity, elasticity, etc. for each batch.  Closed-loop 
control based on the deposited material road is problematic due to the difficulty in non-contact measurement of the 
road geometry, so a labor-intensive calibration and open-loop control method is typically used.  In the present work, 
k-Nearest Neighbor and Support Vector Machine (SVM) machine learning algorithms are applied to the problem of 
generating open-loop control parameters which produce desired deposited material road geometry from a description 
of a given material and tool configuration comprising a set of qualitative and quantitative attributes.  Training data 
for the algorithms is generated in the course of ordinary use of the SFF system as the results of manual calibration of 
control parameters.  Given the large instance space and the small training data set compiled thus far, the 
performance is quite promising, although still insufficient to allow complete automation of the calibration process. 
The SVM-based approach produces tolerable results when tested with materials not in the training data set. When 
control parameters produced by the learning algorithms are used as a starting point for manual calibration, 
significant operator time savings and material waste reduction may be achieved. 

Introduction 
Solid freeform fabrication (SFF) is the name given to a family of manufacturing 

processes which allow three dimensional printing of arbitrarily shaped structures, directly from 
computer-aided design (CAD) data.  
 

(a) (b) 
Figure 1. Fabrication platform: (a) 3-Axis gantry robot for deposition with cartridge/syringe tool, 
(b) continuous wire-feed tool  

 
Typically, an SFF system consists of a tool which dispenses a “road” or line of material, a 

robotic positioning system which moves the tool along 3-dimensional trajectory, and a software 
control system.  SFF has traditionally focused on producing passive mechanical parts. Advances 
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in this technology and developments in materials science make it feasible to begin the 
development of a single, compact, robotic SFF system – including a small set of materials – 
which can produce complete, active, functional electromechanical devices, e.g. mobile robots. A 
research SFF system with two material dispensing tools has been constructed (Figure 1Error! 
Reference source not found.) pursuant to this goal, and Figure 2 depicts a Zn-air battery 
produced with this system. One of the challenges in developing such a system is in achieving 
precise, accurate, and repeatable dispensing of materials despite the difficulty of automatically 
monitoring output quality, and the significant variations in properties between materials – even 
between batches of the same material.  Currently, these challenges are handled via an extensive 
and laborious manual calibration process for each batch of each material, immediately prior to 
use.  During calibration, the SFF system produces a series of rectilinear test patterns (Figure 7), 
and control parameters are tuned until the produced pattern matches the desired pattern to the 
operator’s satisfaction.     
 

 
Figure 2. Zn-air battery produced via SFF 

The control parameters (Table I) describe piecewise-linear profiles (Figure 3) for the 
commanded extrusion rate from the tool and for the robot trajectory speed.  The k-Nearest 
Neighbor and SVM algorithms have been applied to the computation of control parameters for 
the syringe tool (Figure 1Error! Reference source not found.a). The inputs (i.e. “attributes”) to 
the learning algorithms are simple quantitative and qualitative descriptions of the material, the 
tool, and the deposited road (Table II). The attributes consist of parameters which are strictly 
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dependent on the material itself as well as desired properties of the extruded material road (e.g. 
width and height of the dispensed material).  In that these attributes have been intuitively 
selected, it is unclear whether they are necessary or sufficient to fully represent the problem 
domain. 

Table I. Example control parameters vector 

Parameter Value Unit 
ACCELDELAY 0.2 s 

INPUTACCEL 1 step/ms2

PUSHOUTSPEED 300 step/s 

PUSHOUTTIME 0.4 s 

INPUTSPEED 50 step/s 

OUTPUTACCEL 40 mm/s2

OUTPUTDECEL -30 mm/s2

OUTPUTSPEED 5 mm/s 

DECELDELAY 0.25 s 

INPUTDECEL 1 step/ms2

PULLBACKSPEED -300 step/s 

PULLBACKTIME 0.4 s 
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Figure 3. Example control profile 
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Table II: Material, Tool, and Path Description Attributes 

Category Attribute Datatype Example Note/Enum 
Material Intrinsic MATERIALNAME Enum HP_GREASE name of material 
  NUMPHASES Integer 1  
  ELASTICITY Enum LOW low, medium, high 
  FRICTION Enum LOW low, medium, high 

  STABILITY Enum HIGH low, medium, high 

  CLOGGING Enum LOW low, medium, high 

  SHRINKING Enum LOW low, medium, high 

  FLOWING Enum LOW low, medium, high 

Material Preparation TRAPPEDGAS Enum HIGH low, medium, high 

  AGE Float 24 hours 
  PROCEDURE Enum PUMP_IN_LUER preparation method 
Tool Properties TOOLNAME Enum SYRINGE  
  NOZ_ID Float 0.8382 diameter, mm 
  NOZ_TYPE Enum NEEDLE needle or taper 
  NOZ_LENGTH Float 35.5 mm 
  PISTON Enum NEOPRENE piston material 
Path Properties PATHWIDTH Float 1.1 mm 
  PATHHEIGHT Float 1 mm 
  STARTERR Enum 

VERY_EARLY 
very early, early, ok, 
late, very late 

  STOPERR Enum 
LATE 

very early, early, ok, 
late, very late 

 
 

Data Collection 
Training data has been compiled using the current manual calibration process, a set of 

materials with a variety of properties, and a standard test pattern.  Each successful test pattern 
(e.g. the material has been dispensed with uniform width over the entire road length, and 
deposition begins and ends at the start and end, respectively, of the geometric path) is considered 
a training sample. The data STARTERR and STOPERR, which describe the observed delay 
between the start of path motion, and the commencement of material deposition, are used to 
determine acceptable training data.  Ideally, only training data for which both STARTERR and 
STOPERR have the value OK would be used, but given that achieving a single such data point 
can take more than an hour, STARTERR and STOPERR values of OK, EARLY and LATE are 
considered acceptable.  Although this adds some noise to the data set, it increases the number of 
data points by an order of magnitude, and it is believed that the noise will be roughly 
symmetrically distributed about the ideal parameter values.  A training sample contains the 
material, tool and path attributes and the required control parameters.  Using these criteria, the 
training data set comprises 63 calibrations and 9 separate materials. 

 
During the training process the main objective is to generate as many training samples as 

possible, the actual width and height of the dispensed material is of minor importance, as long as 
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the road is uniform. On the other hand, when testing the trained machine learning algorithms, the 
road properties become very important since the objective of the SFF process is to dispense the 
material with a well-defined geometry.  The precision and accuracy of material dispensing on 
test patterns, as well as the time required for calibration are used as the basis for comparison 
between each of the machine learning methods and the manual  calibration method. 

Implementation 
 

Two different algorithms for the machine learning task were implemented: k-Nearest 
Neighbor (k-NN) and Support Vector Machines (SVM). The following sections cover the 
implementation and test of these algorithms. Vectors will be indicated using bold letters. A bold 
letter with an index denotes a particular vector out of a set of vectors. 
 

Description of k-NN Approach 
 

The k-NN algorithm is a memory-based or instance-based algorithm, meaning that the 
entire training dataset remains in memory (see Mitchell for in-depth explanation). There is no 
explicit training step for the algorithm or extraction of a generalized classification rule. During 
classification (generation of a set of control parameters for a new material), the algorithm 
compares the new material description vector, xnew, with all description vectors in the training set 
and computes a "distance" function based on the attributes (material, tool, and road description 
data). The label or parameter vector ynew for xnew is a combination of the parameter vectors of the 
closest neighbors. The idea is that attribute vectors which are close in the instance space should 
also have similar labels. This method has the advantage that an entire vector of labels can be 
mapped to a new example at once as opposed to SVMs, where each SVM can only produce a 
single output value. Since this algorithm is relatively easy to program, an implementation was 
written in C as part of the project. The training and test data are stored in text files to maintain 
readability by a human user. 
 
Procedure to classify a new attribute vector xnew: 

1) Normalization of the attributes 
2) Computation of distances to all samples in the training set 
3) Sorting of training set according to distance to xnew 
4) Computation of weighted average of the labels of the k nearest neighbors 

 
Normalization 

In the problem at hand, different attributes have different ranges. For example, the 
average "Pushout Speed" is three orders of magnitude larger than the average "Pushout Time". In 
order to ensure an equal weighting of the distances for all attributes xi, all attribute vectors are 
normalized to a range of 0 to 1. The normalization is based on the minimum and maximum 
values xi,min and xi,max of each attribute in the training data. The normalized attribute xi,norm is 
therefore: 
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The entire training set and the new examples are normalized. 
 
Compute Distances 

The distance d between two attribute vectors x1 and x2 is defined as the Euclidean 
distance 
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where N is the number of attributes in the attribute vectors. 
 
Sort the training set 

After the distances of the new example to all instances in the training set have been 
computed, the training set is sorted according to distance. Since the training set in this particular 
case is not large (less than 100 examples), a very simple "Insert Sort" algorithm has been 
implemented. 
 
Compute new label 

The label ynew for the new example xnew is calculated according to 
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where k is the number of neighbors to be considered, yi are the labels of the closest neighbors, 
and wi are the weights assigned to each neighbor. There are many different ways of defining the 
weights wi, but in general closer neighbors should carry more weight than neighbors who are 
farther away. Two different weight functions were used. The first attempt was based on the 
inverted distance to the new example: 
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The distance d had to be checked before computing the weight in order to avoid a division by 
zero in case xnew matches up perfectly with one of the instances from the training set. This 
seemed to work fairly well, although large numbers of neighbors increased the leave-one-out 
error.  

The second version used an exponential drop-off: 
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where f is the kernel width, a parameter to control the amount of roll-off. The second version 
leaves more room for tuning, since the parameter f can be chosen freely. 
 
 
Experience 

The k-Nearest Neighbor algorithm is very easy to use, and it is straightforward to 
understand exactly how a particular classification was made. The algorithm is very fast given the 
small data set. Furthermore, there are no convergence problems (see also the SVM section). 

 
In general the quality of the output data is good but not great. There are no cases of 

blatant misclassification, since it looks for labels that have been used before and combines them. 
On the other hand, that is one of its biggest drawbacks: k-NN in the current version cannot 
extrapolate beyond what it saw before. If a new material or tool configuration is used that's 
outside the “known region” of the instance space of the training data, the results will be poor. 
 

One particular problem with the data is that it comes in clusters. During each manual 
calibration run, five or six training samples were collected. These attribute vectors/labels don’t 
differ much from each other, since they have the same material and the same nozzle. The k-NN 
tends to lock onto the closest cluster in the instance space and produce labels that are very 
similar to the ones in that particular cluster, instead of averaging over several clusters. This was 
especially apparent when using the inverse distance as a weighting function. Small numbers of 
neighbors produced lower leave-one-out errors, but didn't do much averaging, i.e. "learning". In 
that case, the algorithm basically works as a database which looks up the closest instance in the 
training set. On the other hand, large numbers of neighbors generalized too much and the 
differences between labels started to blur. All classifications looked more or less the same, which 
leads to very mediocre results. 
 

The exponential weighting method is superior, especially when using a large number of 
neighbors. Better results were achieved by setting k to the total number of examples in the 
training set and just tuning the kernel width f. 

Description of SVM Approach 
Support Vector Machines operate on the principle of calculating an optimal separating 

surface between data points with different labels, such that similarly labeled data all (or nearly 
all) lie on one side of the separating surface.  SVMs can be used not only for identifying discrete 
classes, but also can be applied to regression problems, i.e. finding the function f 
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where N is the dimension of the instance space and l is the number of training examples. A good 
introduction to this topic can be found in Smola and Schölkopf. The regression takes the form 
 

byf newnew +•== xwx )(  
 
The vector w is the weight vector, b is the offset. In order to find w and b the following 
optimization problem has to be solved: 
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with C being the weight on the slack variables and  being the slack variables. The 
parameter ε represents the distance from the linear classifier (as defined by w and b) up to which 
values of y

*, ii ξξ

i are considered "good". If yi differs by more than ε from b+• xw , then additional 
cost is added to the minimized function. This also explains why there are two slack variables: 
one is for the positive, the other one for the negative deviation from the linear classifier. 
In practice, the dual of this problem is solved and the regression takes the form 
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where l is the number of support vectors, αi and αi* are the Lagrange multipliers of the trained 
SVM, xi are the support vectors, and b is the offset. The function k(.) is the kernel. 
 
Implementation 

An existing C-library SVM implementation (SVMlight, see Joachims) is used for the 
training and regression. A wrapper function was written that handles the input and output to 
SVMlight, i.e. it prepared the input files and read the data from the output files, as well as 
making function calls to the SVM library with the appropriate parameters, e.g. the kernel type.  
 

As opposed to kNN, SVMs in regression mode have only one output. In order to compute 
the full control vector y with 12 components, 12 SVMs were run in parallel. This approach is 
justified, since the entire control law will be modeled by the SVM as a black box. Therefore any 
coupling between the control parameters will implicitly be taken care of. The full regression is 
thus: 
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where wi and bi are the weight vector and offset of the ith SVM. All SVMs were trained on the 
same attribute vectors xi, but different labels yi (depending on the control parameter). Note that 
the labels yi are scalars. 
 

For some reason, the built-in “leave-one-out error” (see below) computation in SVMlight 
did not work for regression and so the wrapper function includes that functionality. The wrapper 
function reads the entire data set, extracts the line with the example that is to be left out and 
writes both the single example and the rest of the training data to two different files. Then the 
SVMs are trained, the example classified and the output compared with the original label. 
 
Experience 

The experience with SVMs was very good. The trained SVMs are able to produce control 
parameters with small leave-one-out errors and tolerable results when testing them on the 
physical machine. SVMs are remarkably superior to k-NN when dealing with novel materials 
and/or nozzles.  
 

One observed problem was the convergence of the SVMs when training them for a leave-
one-out error computation. It turned out that SVM light is very sensitive to different values of C 
or higher order Kernels. Usually the training of a single SVM takes only a fraction of a second, 
but from time to time the algorithm just failed to converge and kept running until the user 
stopped it. Adjusting the parameter "-e" (error for termination criterion) helped in most cases. 

Results 
A standard method to compare the performance of machine learning algorithms is to 

compute the leave-one-out errors. In this test, one data sample gets removed from the training 
data and the machine learning algorithm is trained on the remaining data. The trained algorithm 
is then used to classify the left out example and the results are compared to the original label. 
Ideally, the difference should be zero. This test is repeated for each sample in the data set. The 
average error is the leave-one-out error. 
Figure 4 to Figure 6 show the normalized (0 to 1) leave-one-out errors for the following 
algorithms: 

• 1-NN, weight equal to inverted distance (1-NN, inv) 
• 5-NN, weight equal to inverted distance (5-NN, inv) 
• 10-NN, weight equal to inverted distance (10-NN, inv) 
• 1-NN, exponential weight, f=1 (1-NN, exp 1) 
• 5-NN, exponential weight, f=1 (5-NN, exp 1) 
• 49-NN, exponential weight, f=1 (49-NN, exp 1) 
• 63-NN, exponential weight, f=0.1 (63-NN, exp 0.1) 
• 63-NN, exponential weight, f=0.01 (63-NN, exp 0.01) 
• 63-NN, exponential weight, f=10 (63-NN, exp 10) 
• 63-NN, exponential weight, f=100 (63-NN, exp 100) 
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• SVM, C = default, 1st order polynomial kernel (SVM, C=def, exp=1) 
• SVM, C = 1, 1st order polynomial kernel (SVM, C=1, exp=1) 
• SVM, C = 0.1, 1st order polynomial kernel (SVM, C=0.1, exp=1) 
• SVM, C = default, 2nd order polynomial kernel (SVM, C=def, exp=2) 
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Figure 4. Leave-one-out errors 
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Figure 5. Leave-one-out errors 2 
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Figure 6. Leave-one-out errors 3 
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Table III. Calibration Time Savings 

Manual Calibration  
(63 calibrations, 9 materials)  Mean  Std. Dev. 
Machine time (h:m) 0:28 0:23 
Operator time (h:m) 1:02 0:43 
Iterations 11.89 4.94 
64-NN-Assisted Calibration  
(1 material)     
Machine time (h:m) 0:16   
Operator time (h:m) 0:30   
Iterations 4   

 

 
Figure 7. Test patterns produced by automatically generated control parameters 
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Conclusion 
The time and effort required to gather data for these experiments, hence the small training 

data set, has limited the statistical significance of any conclusions.  Qualitatively, the SVM 
algorithm is superior to k-NN with materials not in the training data set. This qualitative 
observation is supported by the leave-one-out errors, as seen in Figure 4, Figure 5, and Figure 6. 
Experience of the operator with manual calibrations showed that parameters 2, 6, 7, and 10 are 
the least important. These are the ones where k-NN has the lowest errors, whereas the SVM has 
smaller errors for those parameters which have larger impact on the manual calibrations.  As 
Figure 7 indicates, the k-Nearest neighbor algorithm often generated control parameters that 
failed to generate any discernable material deposition at all, while the SVM always produced 
results at least as good as the first guess of a human operator.  For the time being, using learning 
algorithms to produce control parameters has brought no benefit to the deposition performance 
of the system, and does not yet allow for complete automation of the calibration process. On the 
other hand, employing the learning algorithms to produce an initial guess at control parameters 
seems to decrease the time required to obtain satisfactory manual calibration by as much as a 
factor of 2 (Table III).  If this bears out in more extensive testing, the savings in operator time, 
not to mention chemical waste are very significant.  This benefit alone warrants permanent 
inclusion of the learning algorithms into the software of the system.  It remains to be seen 
whether or not, given a sufficiently large training data set, the learning algorithms will be able to 
produce completely satisfactory or superior deposition performance without manual intervention.  
 

Future work will include the exploration of intelligent weighting schemes for attributes, 
such as described by Domingos.  These will be explored in the context of ongoing use of the 
system.  Such automated weighting schemes have the added benefit of indicating which 
attributes are most significant in generating classifications, guiding the selection of additional 
attributes, and removal of redundant attributes.   A neural network will also be explored as an 
alternative to the learning algorithms explored here. 
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