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Abstract 
 

The advent of multi-material freeform fabrication technologies has exponentially 
increased the mechanical design space available to engineers. The feature-based 
paradigm of traditional CAD software is insufficient to take advantage of the 
freedom of internal material distribution and gradients. Here we present a flexible 
evolutionary design algorithm for 3D multi-material structures that fully utilizes 
this expanded design space. The material distribution is optimized subject to high 
level functional constraints, or simple constraints such as maximizing stiffness per 
weight. The algorithm is inherently capable of shape optimization, or can simply 
optimize material distribution within a given geometry. We demonstrate 
autonomous design of freeform shapes, 3D non-uniform structures, and 3D 
compliant actuators. 

 
 

Introduction 
 Despite the ubiquity of computing power available, the field of mechanical 
synthesis has so far resisted widespread automation. At the root of this problem is the 
inability of algorithms to transfer multiple competing goals efficiently into a geometry 
which can be manufactured practically. To accomplish this, an algorithm must 
incorporate some knowledge about the manufacturing process to be used, and stay within 
the constraints of the process. These could include factors such as fixtures for a 
machining process or draft and parting lines for a molding process. However, the advent 
of freeform additive manufacturing technology allows any 3D shape and topology to be 
fabricated without penalty (Beaman et al., 1997), removing many complex constraints 
from the automated design process. 
 
 In addition to the lack of geometrical constraints when designing for additive 
manufacturing (Hague et al., 2003), with the advent of multi-material 3D printing 
(Malone et al., 2004, Objet, 2009) the mechanical design space available to engineers is 
increasing exponentially. Traditional feature-based CAD programs are generally 
insufficient to create optimal freeform geometries (Mantyla et al., 1996), and are severely 
limited in their ability to design using multiple materials both at a macroscopic and 
microscopic level. For this reason, design automation will likely play an increasingly 
important role in mechanical synthesis, especially for parts created using additive 
manufacturing processes.  
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Background 
 The ideal design process would require only the functional goals of the desired 
part to be input, and would create the optimal blueprint autonomously. Much work has 
been done in this field (Díaz and Lipton, 1997, Fernandes et al., 1999)  regarding the 
topology or shape optimization of single material structures, with the goal of maximizing 
stiffness per weight. The most established method in this field is homogenization, as 
originally demonstrated by Bendsoe and Kikuchi, 1988. This iterative process varies the 
effective stiffness of each cell within a 2D or 3D matrix according to its strain energy, 
and optimizes the structure subject to constraints on total volume and minimizing strain 
energy. Variations on this method have yielded results that maximize deflection for 
applications such as a simple gripper structure, or even utilize two materials to emulate 
an actuated structure (Buehler et al., 2004, Nishiwaki et al., 1998, Sigmund and Torquato, 
1999). 
 
 However, homogenization results are generally limited to optimizing overall 
deflection or force. This approach become unwieldy or intractable as complexity is added 
to the design problem, such as competing objectives involving multiple materials or 
specifying a desired deformed shape.  
 
 Evolutionary algorithms have also been explored for the purposes of topological 
optimization. This class of algorithms maintains a population of possible solutions, which 
are continually mutated and recombined (crossover) to improve over time. Evolutionary 
algorithms have not found widespread use in topological optimization for several reasons. 
First, they are much less efficient than the homogenization method for the single 
objective structural optimization problems that are often addressed in literature. 
Secondly, the success of genetic algorithms depends on how the object is encoded (the 
genotype) to represent the physical object (phenotype). In early attempts at using genetic 
algorithms to solve topological optimization problems, every individual pixel or voxel 
was represented explicitly in the genotype (Jakiela et al., 2000, Kane, 1996). In addition 
to the challenge of making crossover and mutation non-destructive, this method scales 
poorly to large structures.  
 
 Thus, the success of genetic algorithms in solving topological optimization 
problems depends on using a representation that efficiently defines sensible objects using 
a minimum number of parameters (Kane and Schoenauer, 1996). Various graph 
structures, generative encodings, and constrained bit-wise encodings have been proposed 
to address these challenges, as summarized in Kicinger et al., 2005. These more efficient 
representations enable genetic algorithms to overcome the functional complexity 
limitations of homogenization, although at the expense of increased computational effort. 
 

Results and Discussion 

Encoding (how the algorithm thinks about the objects) 
 Here we propose an encoding which naturally generates smooth, freeform 2D and 
3D shapes at an arbitrary level of complexity with a minimal number of parameters for 
any number of materials. The genotype consists of a series of frequency amplitudes at 
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harmonic multiples, and the phenotype is generated by applying the inverse discrete 
cosine transform (DCT) to this series. This representation was chosen for its relative 
simplicity of implementation and evolvability. By representing a three-dimensional 
object as a 3D matrix of frequency amplitude components, a number of advantages are 
realized. These include the ability to render the genotype at any resolution, complete 
dimensional independence, and naturally available symmetry. This comes at the expense 
of not being able to easily represent sharp corners and flat surfaces in the generated 
objects. The discrete cosine transform was chosen over other transforms due to its 
inherent ability to concentrate the most useful information in the lowest order frequency 
components. 
 
 The user-defined complexity metric is worth explaining in greater detail. If 
desired, the DCT encoding could contain as many frequency components as voxels 
within the physical object. This would allow any possible configuration of voxels to be 
generated, but defeats the purpose of having an indirect encoding. As we decrease the 
number of parameters in the frequency matrix, the ability to create any possible object is 
lost. However, the encoding was chosen such that sensible, smooth objects suitable for 
additive manufacturing would be generated with only a few parameters. The complexity 
metric is defined as the maximum number of frequency components in the longest 
dimension. If a sample workspace was 40 voxels long, a complexity metric of 10 would 
result in a minimum feature size of approximately 4 voxels (40/10). 
 
Fitness (How the algorithm evaluates possible solutions) 
 An integral part of the genetic algorithm is the fitness evaluation. At this step, the 
algorithm evaluates each design according to user defined criteria. Here, we are 
concerned with the mechanical reaction of our structures to various conditions, calculated 
using the linear direct stiffness method as illustrated in Figure 1. For each experiment, 
certain regions of voxels were defined as fixed to ground or subject to an applied force. 
Each voxel has an associated stiffness and poisson’s ratio, based on the output of the 
inverse DCT. This defines the global stiffness matrix for a given geometry, which was 
then solved using the highly optimized PARDISO solver (Schenk and Gärtner, 2006, 
Schenk and Gärtner, 2004) library to yield the resulting displacements and internal 
stresses of each voxel of the structure under load.  
 

  
(a) (b) 

Figure 1: The direct stiffness method was used for physical evaluation of multi-material cantilever beams. 
Shown here are the deformations resulting from a homogenous material (a) and an automatically generated 
multi-material distribution (b). 
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Algorithm Details 
 The genetic algorithm used here is outlined in Figure 2. When two individuals are 
selected for crossover, each frequency component of the offspring is randomly chosen 
from either parent. The parent which contributed the greatest number of frequency 
components is stored as the "most similar" parent for the selection process.  To mutate an 
individual, random variations were introduced into the frequency amplitudes of the 
genotype. These variations were kept small, such that any value could not change more 
than 10% for any given mutation. For all experiments presented here, deterministic 
crowding selection was used with a population of 10-25 individuals and 20% probability 
of mutation. In this method, each individual was paired with a random mate and 
crossover was performed. If the child was more fit than its most similar parent, the child 
replaces the parent in the population. Otherwise, the offspring is disregarded. 
 
 

 
Figure 2: Flowchart of the multi-material genetic algorithm used for design automation. The discrete 
cosine transform encoding allows freeform objects to be encoded with a minimal number of parameters. 
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Shape Optimization 
 Given any set of loading and constraint conditions, the algorithm is successful in 
creating and optimizing the stiffest shape. Here, the result of the inverse DCT was simply 
thresholded to determine which voxels were instantiated. The case of a cantilever beam is 
shown in Figure 3. Here, the population size was set at 25 and the domain used while 
evolving was 24x6x12 voxels. The algorithm was allowed to run for approximately 3500 
generations, although the gains past 1200 generations were negligible.  
 

 

(a) (b) 
Figure 3: A cantilever beam was autonomously designed to maximize stiffness and minimize weight (a) 
using the proposed algorithm. The physical printed beam is shown in (b). 
 
Multi-material gradated material optimization 
 The optimization of multiple, gradated materials presents a more interesting 
problem which is not addressed in previous research. In these experiments, a qualitative 
material model was used to generalize the ability of additive manufacturing processes 
which simultaneously print high stiffness and low stiffness materials. A two-material 
system was assumed, where both stiff and flexible materials can be placed and combined 
in any combination at both the macroscopic and microscopic level. In effect, the material 
property can vary continuously between the two extremes, as is demonstrated to be 
reasonable in Hiller and Lipson, 2009. The resulting material property of each location is 
calculated from the density output by the discrete cosine transform, according to a 4th 
order exponential weighting. 
 
 Two different cases were chosen to illustrate the use of genetic algorithms in 
designing composite structures with high-level functionality. First, we considered the 
deflected shape of the top surface of a cantilever beam. Secondly, we considered an 
actuator that maximizes the two-dimensional deflection of a beam tip subject to applied 
forces in the mutually orthogonal direction to the desired deflections.  
 
Deflected beam shapes 
 Given a cantilever beam, a variety of desired deflected profiles were selected, 
departing to varying degrees from the normal third-order polynomial profile. The 
resulting geometries are shown in Figure 4, along with plots showing the desired 
deflected shape overlaid onto the actual, evolved deflected shape.  
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 The algorithm was very successful in meeting these high-level goals. The straight 
profile (Figure 4 a & d) was considered as a simple geometry which ideally needs only 
simple regions of stiff and flexible material for the ideal solution. The result shows the 
expected distribution of flexible material near the grounded edge and stiff material 
composing the rest of the beam, but does even better by accounting for the zero slope 
boundary condition imposed by the fixed end of the cantilever beam. A discontinuous 
slope (sharp bend) was also considered, with similarly successful results (Figure 4b & e). 
Also, we defined a 4th order polynomial profile involving both positive and negative 
curvature that matches the fixed zero slope boundary condition of the cantilever beam 
(Figure 4 c & f). Remarkably, the algorithm found a solution to this problem, which is in 
a fundamentally different material distribution domain than the other solutions. 
 

 
(a) (b) (c) 
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(d) (e) (f) 

Figure 4: Evolved geometries (a-c) show stiff regions of material as solid red transitioning to transparent 
yellow for lower stiffness. The results for the deflected shape of each evolved cantilever beam (d-f 
respectively) demonstrate the ability to control the deflected profile of the cantilever beam to a high degree of 
accuracy, including slope discontinuities and non-intuitive upward curvatures. 

  
 
Two-Force actuator 
 The optimization of a planar actuator was also considered. The loading conditions 
are shown in Figure 5. Two input forces are applied midway down the beam parallel to 
the major axis of the beam, and the output was the displacement of the tip of the beam in 
the two orthogonal directions to the major axis of the beam. Fitness was defined as the 
reachable area of the center of the tip of the beam.  
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(a) (b) 

 
(c) 

Figure 5: The design automation algorithm is able to solve a high-level, non-intuitive compliant 
actuator problem. Given the loading conditions for actuator optimization (a), the solution achieves a 
large reachable area (b) from the evolved geometry shown in (c). Here, red represents stiff material and 
transparent yellow is flexible. 

 
 In the solution, the algorithm came up a material distribution that make intuitive 
sense upon examination. A thin row of stiff material connects the grounded face of the 
beam to the mid-plane of the beam where the forces are applied. Regions of stiff material 
connect this strand to the two locations of applied force. The outer half of the beam 
essentially has no forces acting on it, so this region was effectively ignored, leading to a 
mostly random material distribution within it.  
 
Case Study: Bracket 
 To further demonstrate the usefulness of this algorithm, we considered a case 
study where an engineer has already designed the geometry of a bracket, but would like 
to optimize the internal material distribution to maximize strength vs. weight. Here, we 
assume that the stiff material is proportionately heavier than the flexible material. The 
desired geometry and resulting material distribution is shown in Figure 6. The algorithm 
was successful, and in this case generated a material distribution that makes intuitive 
sense upon examination. 
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(a) (b) 

Figure 6: The design automation algorithm optimizes the internal material distribution of a pre-designed 
bracket (a), in order to maximize stiffness and minimize weight. The results are shown in (b), where red 
represents stiff, dense material transitioning to transparent yellow, which represents flexible, lightweight 
material. 

 
Conclusions 
 Genetic algorithms are suitable for designing the complex multi-material objects 
that have recently become possible to fabricate using additive manufacturing techniques. 
The lack of existing software design tools to fully take advantage of the capabilities of 
these fabrication processes enables genetic algorithms to fill a new niche in the 
mechanical design space.  Instead of designing an object using traditional CAD 
programs, genetic algorithms allow an engineer to simply set high-level goals to be 
fulfilled and the blueprint is autonomously generated. Likewise, existing geometries can 
be optimized for multi-material printing. 
 
 We have demonstrated this using several examples. The algorithm is successful at 
optimizing the geometry of a single material cantilever beam. Additionally, by specifying 
the desired deflected shape of a multi-material beam, or defining vague goals of 
maximizing deflection area of a compliant actuator, we solve a problem that cannot be 
easily addressed using current state-of-the-art topological optimization tools. 
Additionally, by introducing multiple objectives such as minimizing weight in addition 
meeting the previous criteria, we demonstrated the flexibility of genetic algorithms to 
easily adapt to competing objectives of very different problems. These results open the 
door to robust, high-level design tools for complex design problems that can fully utilize 
the capabilities of multi-material additive fabrication techniques. 
 
This work was supported in part by a National Science Foundation Graduate Research 
Fellowship and NSF Creative-IT grant 0757478. 
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