
Digital Data Processing Strategies for Large Area Maskless

Photopolymerization
Anirudh Rudraraju, Suman Das, Georgia Institute of Technology

Abstract:

Large Area Maskless Photopolymerization (LAMP) utilizes scanning spatial light

modulators that require layer slice data in the form of high‐resolution bitmaps. Three different

strategies have been implemented to fill this need. First, bitmaps were generated by direct slicing

of CAD models using Spatial Technology’s ACIS kernel. Second, bitmaps were generated from

STL files through ray‐tracing. Finally, an approach involving reconstruction of topological

information from STL files for efficient slicing and image generation is being developed. This

paper gives a brief description and implementation details of each of these strategies as well as

data compression techniques being pursued by the authors. This work is sponsored by DARPA

grant HR0011‐08‐1‐0075.

Introduction:

 Large Area Maskless Photopolymerization (LAMP) technique is an integral rapid

manufacturing process which uses a spatial light modulator to expose whole areas in a single

flash. The spatial light modulator in our case is a Digital Micro-mirror Device (DMD) chip

developed by Texas Instruments. It is essentially a small chip with millions of tiny mirrors that

can be turned on and off by feeding an 'exposure bitmap'. Light from the UV-source is shone

onto the DMD chip and the various mirrors turn on and off accordingly to project the input

image on to the photocurable resin surface. The head, consisting of the light source and the DMD

chip, raster scans the entire exposure region which gives much higher speeds than conventional

prototyping processes where typically a laser beam is used to raster scan the exposure region line

by line. Also, because of the high scanning speeds extremely large areas (of the order 100 square

inches) can be exposed without compromising on feature resolution. The feature resolution

achievable in this process is only limited by the size of the tiny mirrors on the DMD chip (16-17

microns). Thus using this technique, macro sized parts with extremely high resolution features

can be obtained with good process speeds.

 The DMD chip takes high resolution bitmap images as input for exposure. Consequently

all the CAD slice data needs to be output in this format. Most commercial slicing programs

output slice data in the form of contours or scan patterns specific to the prototyping process they

are designed for. Moreover, they work mostly only on STL files which are just an approximation

of the original CAD models thus compromising on feature accuracy and resolution. Also, these

commercially available programs do not offer much flexibility to modify the output data to suit

the needs of the LAMP process. Hence new data processing algorithms that can efficiently

handle both native CAD files and STL files for generating slice data specific to this technique

need to be implemented.

Also, owing to the high feature resolutions (16-17 microns), slice images need to be

generated at very high resolutions (1500 dpi). This can generate enormous amounts of data. Each

uncompressed slice image is typically of the order of several megabytes, and at this scale the

rosalief
Typewritten Text
299

slice data for an entire part can run into several terabytes. Having data on this order of magnitude

poses severe storage issues and also hinders fast data transfer between the controlling computer

and the prototyping machine. Thus, efficient data compressions schemes and innovative data

transfer techniques also need to be investigated.

In this paper, the various slicing strategies, both direct slicing and STL file slicing,

investigated so far have been presented. The basic approach and the brief implementation details

of each of these approaches are described in the sections that follow.

Direct Slicing:

In the Rapid prototyping industry 3D CAD models are first tessellated and converted into

an intermediate file called the STL file format. This format has become the defacto industry

standard for slice data generation. An STL file just contains a list of all the facets in the model in

no particular order. Since it is a mere approximation of the original CAD part, many inaccuracies

occur in the tessellated model and hence unsuitable for high resolution builds. Through LAMP,

we intend to achieve feature sizes of the order of 16-17 microns and hence the more preferred

approach would be to directly slice the original CAD models without the intermediate meshed

approximations. Consequently, a direct slicing approach has been investigated. There has been

some work in this area of direct slicing in the past. Guduri et al. proposed a direct slicing method

for slicing a constructive solid geometry (CSG) representation of a part [1]. Vuyyuru et al.

directly sliced solid models built by the SDRC’s I-DEAS and segmented NURBS-based (non-

uniform rational B-spline) contour curves [2]. Chen et al. directly sliced PowerSHAPE Models

[3]. Cao et al. proposed a method for directly slicing AutoCAD models [4]. In this paper, we

present an approach for directly slicing CAD models using the ACIS kernel.

I) Using ACIS:

The ACIS kernel is a commercially available 'C++' CAD library marketed by Spatial

systems, a subsidiary of Dassault Systemes. It offers robust APIs and function calls for most of

the basic CAD operations. These APIs have been integrated into the slicing software to produce

CAD slices. The produced CAD slices were then 'rasterized' to obtain the bitmaps used for

exposure. The basic algorithm is outlined in Fig. 1.

The original CAD part that needs to be sliced is first loaded into the Algorithm using

ACIS's load functions. ACIS libraries can only work with the "SAT" file format and hence CAD

files in other formats need to be converted into the SAT format either by using commercial CAD

softwares or by using ACIS's inbuilt file format translation functions. During the translation,

numerical or topological inaccuracies could creep into to the part. In severe cases, error checking

and correction schemes need to be implemented. Once the part has been loaded, its bounding box

is computed to get an estimate of the size of the bitmaps that would be generated. A slicing plane

is then created and intersected with the part using ACIS's Boolean APIs to get an intersection

wire. Once the intersection wire is obtained, it is "rasterized" to obtain the bitmaps. This

essentially involves shooting rays for each row of pixels in the image and computing the

intersection points with the intersection wire. Pixel values are then filled with alternating white

and black segments in between each of these intersection points as shown in Fig. 1 (e). The

rosalief
Typewritten Text
300

bitmap images obtained are then compressed using CCITT fax4 compression scheme which

compresses the data by three orders of magnitude without any loss. (CCITT fax4 is an industry

standard lossless compression scheme for efficiently compressing 1-bit TIFF images). These

bitmaps are then fed to the DMD chip for exposure.

Fig. 1: Direct slicing algorithm: (a) Original CAD part loaded into the program. (b) Bounding

box computed. (c) Slicing plane created. (d) Intersection between the part and the slicing plane

computed. (e) Intersection wire rasterized to create bitmap images. (f) Slice bitmaps obtained

and compressed in CCITT FAX4.

STL file slicing:

Since STL files are the defacto industry standard and the direct slicing approach using ACIS

cannot handle these files, several alternate methods have been investigated. The implementation

details of each of these approaches are given in the following sections.

II) Using POVRAY:

 POVRAY is an open source ray tracing software that is routinely used in the computer

graphics industry to render high resolution photo realistic images. The schematic in Fig. 2 shows

the principle of ray tracing:

rosalief
Typewritten Text
301

A small routine was used to convert an STL file into a POVRAY recognizable mesh

object. The object is then sliced with a thin cuboid (thickness equal to slice thickness) using

POVRAYs Boolean functions. The resulting intersection body is then positioned an

as shown in the Fig. 2. The positions of the light sources and the camera

to obtain the slices at the correct scales. An "inside vector" was defined to identify the inside

from the outside. When the scene is rendered, the camera shoots a ray for every pixel in the

image to determine if it is inside the s

image. The images obtained were then compressed using CCITT Fax4 scheme an

DMD chip for exposure.

III) Reconstructing Topology of Tria

One of the major weaknesses of the STL file format is that it

of facets in no particular order

information (e.g. edge connectivity, adjacency, no. of shells in the model) can be

using information in the file, it can

and thus could be used to translate the STL file into a format that ACIS can deal with. ACIS's

robust feature set can then be used to manipulate and slice

topological data using information from the STL file will enable us to implement err

and file manipulation routines which could prove to be very powerful in many applications. This

was the premise in investing time in researching

There are a quiet a few data structures and algorithms avail

topology information from a "bucket" of facets. Stephen Rock and Michael Woz

algorithm for extracting the adjacency information and for implementing basic error

detection/correction [5]. There are others in

address this issue [6] [7] [8]. Many of these algorithms use complex multidimensional data

structures for sorting three dimensional data which are difficult to implement.

A small routine was used to convert an STL file into a POVRAY recognizable mesh

object. The object is then sliced with a thin cuboid (thickness equal to slice thickness) using

functions. The resulting intersection body is then positioned an

. The positions of the light sources and the camera are adjusted

Fig. 2: Concept of ray tracing.

to obtain the slices at the correct scales. An "inside vector" was defined to identify the inside

outside. When the scene is rendered, the camera shoots a ray for every pixel in the

image to determine if it is inside the slice object or outside thereby rendering

image. The images obtained were then compressed using CCITT Fax4 scheme an

Reconstructing Topology of Triangular Mesh:

One of the major weaknesses of the STL file format is that it just contains a random list

no particular order and does not contain topological information. If the topology

edge connectivity, adjacency, no. of shells in the model) can be

can be used to populate the ACIS data structure from bottom up

d to translate the STL file into a format that ACIS can deal with. ACIS's

robust feature set can then be used to manipulate and slice the STL file. Also,

information from the STL file will enable us to implement err

and file manipulation routines which could prove to be very powerful in many applications. This

time in researching this method for slicing STL files.

There are a quiet a few data structures and algorithms available in literature to rebuild the

topology information from a "bucket" of facets. Stephen Rock and Michael Woz

extracting the adjacency information and for implementing basic error

There are others in the computer graphics and visualization domain that

]. Many of these algorithms use complex multidimensional data

structures for sorting three dimensional data which are difficult to implement. J Rossignac et al.

A small routine was used to convert an STL file into a POVRAY recognizable mesh

object. The object is then sliced with a thin cuboid (thickness equal to slice thickness) using

functions. The resulting intersection body is then positioned and ray traced

adjusted so as

to obtain the slices at the correct scales. An "inside vector" was defined to identify the inside

outside. When the scene is rendered, the camera shoots a ray for every pixel in the

lice object or outside thereby rendering the slice bitmap

image. The images obtained were then compressed using CCITT Fax4 scheme and sent to the

just contains a random list

topological information. If the topology

edge connectivity, adjacency, no. of shells in the model) can be constructed

be used to populate the ACIS data structure from bottom up

d to translate the STL file into a format that ACIS can deal with. ACIS's

STL file. Also, constructing this

information from the STL file will enable us to implement error correction

and file manipulation routines which could prove to be very powerful in many applications. This

this method for slicing STL files.

able in literature to rebuild the

topology information from a "bucket" of facets. Stephen Rock and Michael Wozny presented an

extracting the adjacency information and for implementing basic error

the computer graphics and visualization domain that

]. Many of these algorithms use complex multidimensional data

J Rossignac et al.

rosalief
Typewritten Text
302

of Georgia Tech proposed a simple integer array based data structure called the corner table data

structure that is an elegant solution for working with triangular meshes [9, 10]. This data

structure has been leveraged for our purpose and brief implementation details are discussed

below.

Corner Table:

The Corner table data structure stores all of the topology and connectivity information in

two simple integer arrays. The schematic in Fig. 3 shows the nomenclature and the integer arrays

that hold the information. The region around a vertex in a facet is loosely referred to as a 'corner'.

The vertex that corresponds to that corner is referred to as 'v(c)'. The corner opposite to the

current corner 'c' is referred to as 'o(c)'. The left and the right corners are respectively referred to

as 'l(c)' and 'r(c)'. The next and previous corners are given by 'n(c)' and 'p(c)' respectively

(assuming the vertices are listed in a counterclockwise manner). The triangle to which the

current corner belongs is referred to as 't(c)'. [Refer to figure 3(a)]. The two integer arrays that

store the connectivity information are the Vertex array 'V[c]' and the Opposite array 'O[c]' as

shown in figure 3(c).

For any given corner 'c', the corresponding vertex and opposite corner indices can be

obtained from the Vertex array 'V[c]' and Opposite array 'O[c]' respectively. Once these two

arrays are populated the adjacency information is available. For example, starting from a random

corner 'c', we can access the left triangle by querying t(o(p(c))), the right triangle by t(o(n(c)))

and the opposite triangle by t(o(c)). An edge array 'E[c]' can also be constructed in a similar

manner to store the edge connectivity information. It would store the edge index of the edge

opposite to a given corner 'c'.

'V[c]' can be constructed by implementing a simple hash table and 'O[c]' can be

constructed by identifying all the corners associated with a vertex and revolving around each

vertex, marking the opposite corners. For more specific implementation details, refer to the

original publication on corner table [9, 10]. Once the required arrays are populated, a simple

command called 'swirl' can be easily implemented to identify the number of shells in the model.

Refer to [9, 10] for more details.

In this way, once all the required topological information is extracted from the STL file,

it can easily be translated into a format that ACIS can recognize and work with. An algorithm

with these ideas has been implemented and STL files were successfully sliced with the ACIS

kernel.

IV) Direct Slicing of STL files:

An algorithm for directly reading and slicing STL files has also been implemented. One

of the major issues in efficiently slicing an STL file is being able to quickly identify those facets

that lie in the intersection region from the rest of the facets in the file. Tata et al. proposed a facet

grouping strategy for this purpose [11]. Luo et al. proposed yet another strategy for identifying

these facets quickly [12]. The algorithm presented here is very similar to theirs with minor

modifications for speed improvements and to suit the needs of LAMP process. The schematic in

rosalief
Typewritten Text
303

Fig. 4 illustrates the procedure for identifying the intersecting facets. In order to identify the

intersecting facets, first each facet's maximum and minimum z-coordinates are computed and

stored in memory (slicing assumed to be along the z-direction). Then, for a given slicing plane,

first all the facets whose minimum z-coordinate is lesser than the slice plane height are selected

(fig. 4(b)). Out of these selected facets, only those whose maximum z-coordinate is greater the

slice plane height are identified and retained while the rest are discarded. This way, only those

facets that intersect with the given slicing plane are isolated from the rest of the facets in the file

(fig.4(c)).

Fig.3 : Corner table data Structure: (a) Nomenclature. (b) sample triangular mesh with indexed corners,

vertices and triangles. (c) Vertex table "V[c]" and Opposites Table "O[c]". (Note: in a manifold triangular

mesh, there will not be any empty cells in the O[c] array as shown here. This is the case here because the

array has been populated for a small portion of the mesh only).

rosalief
Typewritten Text
304

In order to do this, a data structure consisting of linked lists is implemented. It consists of

a primary linked list sorted in the increasing order of z-values. Each node in this linked list

consists of its specific z-value and a pointer to a secondary list that contains all facets with the

same minimum z-coordinate value as the z-value of that node. Once all the facets in the given

STL file are populated in this data structure, it is straightforward to implement the rest of the

operations required to accomplish the steps depicted in figure 4.

Fig. 4: Direct slicing of STL files: (a) Sample triangular mesh and slicing plane. (b) Facets with

minimum z-coordinate lesser than the slice plane height selected. (c) Of the facets selected in (b),

only those facets with maximum z-coordinate greater than the slice plane height are kept and the

rest discarded.

Once the facets in the intersection region are identified, a simple parametric intersection

is computed between the facets and the slice plane to yield the various edges of the intersection

wire. Since the facets are listed in a random order, the wire edges are also computed in a random

order. In conventional contour planning operations, these edges need to be sorted and the

intersection loops need to be constructed. But for LAMP process, it is sufficient to generate a

bitmap image of the slice. This can be directly accomplished by shooting rays for each row of

pixels and computing intersection points and then using these points, the pixel values could be

filled. This process of rasterizing the intersection wire is exactly the same as the one discussed in

section I. The images thus obtained are saved in CCITT fax4 format and sent to the DMD chip

for exposure.

(a) (b)

(c)

rosalief
Typewritten Text
305

Results

Various data processing strategies for the LAMP technique have been investigated. A

direct slicing algorithm has been implemented using ACIS kernel. This is the most preferred way

of generating slice data for LAMP process because it doesn’t have the inherent inaccuracies

associated with an STL file. It is an efficient and accurate method to generate slice data and is

especially suitable for LAMP process owing to the high feature resolutions. But through this

approach, we can only handle specific CAD file formats ("SAT" file format or an equivalent

format that is translatable to SAT). Since STL files are the defacto industry standard, several

methods to process STL files have also been investigated. Slicing using POVRAY is a simple

and elegant way to produce the data as it directly renders the bitmaps needed for LAMP process

thereby alleviating all the intermediate steps that could lead to inaccuracies. But this approach is

inherently slow owing to the underlying computationally intensive ray-tracing process. An

alternate method to use ACIS for slicing STL files by reconstructing the topology information

was investigated. An efficient data structure for extracting the topology information was

implemented and the STL files were successfully translated to SAT files which were then

processed using ACIS. This holds immense potential for implementing various STL file

manipulation and error corrections routines using the robust inbuilt functionalities of ACIS. But

the inherent drawback of this approach is that the resulting SAT files can be extremely large

(several gigabytes) for complex STL files, because of the millions of entities in terms of vertices,

edges and facets in the resulting CAD model and such enormous SAT files can be difficult to

handle. Finally, to overcome these limitations, an efficient algorithm for directly reading and

slicing STL files has been implemented. In conclusion, the ACIS approach was best suitable for

direct slicing of CAD parts while the algorithm for directly reading and slicing triangular meshes

yielded best results for STL files.

rosalief
Typewritten Text
306

References

1. Guduri S, Crawford RH, Beaman JJ, "A method to generate exact contour files for solid

freeform fabrication", Proceedings of the Solid Freeform Fabrication Symposium,

Austin, Texas, pp 95–101, August 1992.

2. Vuyyuru P, Kirschman CF, Fadel GM, Bagchi A, Jara-Almonte, " A NURBS-based

approach for rapid product realization", Proceedings of the 5th International Conference

of Rapid Prototyping, Dayton, Ohio, pp 229–239, June 1994.

3. X. Chen, C. Wang, X. Ye, Y. Xiao and S. Huang, "Direct slicing from PowerSHAPE

models for rapid prototyping", Int. J. Advanced Manufacturing Technology, 17(7), pp.

543–547, 2001.

4. W. Cao, Y. Miyamoto, "Direct Slicing from AutoCAD Solid Models for Rapid

Prototyping", International journal of Advanced Manufacturing Technology, 21(10), pp.

739-742, July 2003.

5. Stephen J. Rock, Michael J. Wozny, “Generating Topological Information from a bucket

of facets”, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas,

1992.

6. H. Lopes, and G. Tavares, “Structural operators for modeling 3-manifolds”, Proc. ACM

symposium on Solid Modeling and Applications (SMA), ACM press 10-18, 1997.

7. B. Baumgart, “Winged Edge Polyhedron Representation”, AIM-79, Stanford University

Report STAN-CS-320, 1972.

8. M. Kallmann and D. Thalmann, “Star-vertices: a compact representation for planar

meshes with adjacency information, Journal of Graphics Tools, 6(1), p.7-18, Sept. 2001.

9. J. Rossignac, A. Safonova and A. Szymczak “Edgebreaker on a Corner Table: A simple

technique for representing and compressing triangulated surfaces,” Hierarchical and

Geometrical Methods in Scientific Visualization pp. 41- 50, 2003.

10. J. Rossignac, "Solid and Physical Modeling", Chapter in the Wiley Encyclopedia of

Electrical and Electronics Engineering. Ed. J. Webster, 2007.

11. Kamesh Tata, G. F., Amit Bagchi, Nadim Aziz (1998). "Efficient Slicing for Layered

Manufacturing", Rapid Prototyping Journal 4(4), p. 151-167.

12. Luo, R. C., P.-T. Yu, et al. "Efficient 3D CAD model slicing for Rapid Prototyping

manufacturing systems", IECON proceedings San Jose, CA, USA, IEEE, 1999.

rosalief
Typewritten Text
307

