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Abstract 
 

Recent research has shown that constrained bistable structures can display negative 
stiffness behavior and provide extremal vibrational and acoustical absorptive capacity. 
These bistable structures are therefore compelling candidates for constructing new 
metamaterials for noise reduction, anechoic coatings, and backing materials for 
broadband imaging transducers. To date, demonstrations of these capabilities have been 
primarily theoretical, because the geometry of bistable elements is difficult to construct 
and refine with conventional manufacturing methods and materials. The objective of this 
research is to exploit the geometric design freedoms provided by selective laser sintering 
(SLS) technology to design and construct constrained bistable structures with negative 
stiffness behavior.  The static and dynamic behaviors of resulting bistable structures are 
experimentally investigated.  Initial bistable designs and test results are presented in this 
paper.   

 

1. Introduction 

Negative stiffness elements have been identified as unique mechanisms for enhancing 
acoustical and vibrational damping.  Examples of negative stiffness mechanisms include 
mechanical systems with negative spring constants (Prasad, 1991) and materials with 
negative moduli (Lakes, 2001a, 2001b). Negative stiffness elements contribute to 
damping behavior because they tend to assist rather than resist deformation as a result of 
internally stored energy (Lakes, 2001a, 2001b).  
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Figure 1: Stages of snap-through movement of a buckled beam. (i) The beam is in an initial stable buckled 
state. (ii) A force is applied to the spring and sends the beam to the meta-stable state. (iii) The spring is 
constrained, and a slight change in displacement sends the beam to (iv) the second stable buckled state. 

Image from Haberman, 2007. 

A simple negative stiffness structure can be created from a buckled beam, as 
illustrated in Figure 1. Such systems are bistable when unconstrained and include one 
metastable equilibrium point. Figure 1 illustrates a buckled beam with pinned ends 
moving though the three points of equilibrium. In (i) the beam is in the first stable 
equilibrium state and when a force is applied, it is pushed to the metastable state (ii-iii) 
and through to the second stable state (iv).  

 

Figure 2: Plot of the force vs. displacement of the center of a beam in the transverse direction. The line with x’s 
represents a beam that is critically buckled, while the line with circles represents a beam that is past the critical 
buckling range and is displaying negative stiffness in the region marked k<0. The solid line shows the response 
for an unbuckled beam. The stages of snap-through in the buckled beam on the left are marked on the graph. 

Image from Haberman, 2007. 
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Figure 3: Plot of strain energy vs. transient displacement. Points (1), (2) and (3) match those in Figure 2 as well 
as the legend for the unbuckled, critically buckled and completely buckled states. Image from Haberman, 2007. 

The force versus transverse displacement of a buckled beam is plotted in Figure 2, 
and the strain energy versus transverse displacement is plotted in Figure 3.  In both 
figures, the behavior of a completely buckled beam is plotted alongside the behavior of 
an unbuckled beam.  As illustrated in Figure 3, the equilibrium positions of the buckled 
beam correspond to local minima and maxima of the strain energy curve. Since the 
stiffness of the beam corresponds to the spatial derivative of its strain energy, the buckled 
beam exhibits negative stiffness over the interval indicated in Figure 2.  Therefore, 
negative stiffness can be elicited by applying a transverse force to the center of a beam in 
state (1) or state (3), each of which is characterized by a strain energy minimum, and 
transiting the metastable state (2). The buckled beam is a simple 1D example of a bistable 
structure, and negative stiffness behavior is implicit to constrained bistable elements of 
any configuration (Prasad, 2006; Qiu, 2004).  

This behavior has been confirmed by experimental studies of buckled tubes and 
carbon nanotubes which found decreased force with increasing strain response and higher 
damping levels for buckled tubes relative to unbuckled tubes under sinusoidal forcing 
(Lakes, 2000; Yap, 2007). These findings confirm that buckled beams are negative 
stiffness elements under specific conditions and that they can therefore be used for 
damping purposes.  However, it is difficult iteratively design and tune negative stiffness 
elements with conventionally manufacturing methods.  Our research is focused on 
designing, tuning, and testing negative stiffness elements by fabricating them with SLS 
technology.  This research is part of a larger project to test these mechanisms at 
macroscopic scales and then miniaturize them to create metamaterials or waveguides 
with very high damping capacity.    

The process of using additive manufacturing technologies to create structures or 
materials that provide acoustic or vibrational damping has not been studied extensively.  
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For example, SLS has been used to produce a passive destructive interference acoustic 
absorber (Godbold, 2007). The absorber minimized sound at specific frequencies by 
sending acoustic waves through two channels of different lengths thereby creating 
destructive interference at the exit. However, destructive interference is very different 
from the negative stiffness mechanism investigated in this research, and negative stiffness 
has not been investigated with SLS technology. SLS offers the benefit of increased 
design freedom for fine-tuning the geometry, rapidly iterating through design 
permutations, and consolidating parts, relative to conventional manufacturing techniques.      

2. Research Methodology 

The methodology for the research study is presented in Figure 4.  This paper follows 
the methodology through the initial macroscale design phase and reports results of 
material characterization and design, fabrication, and testing of macroscale designs. 
Future work will involve miniaturizing our results into smaller-scale and multiscale 
designs and tuning those designs for specific examples.  The results of task clarification 
are reported in Section 3, followed by materials characterization in Section 4, and 
macroscale design and empirical testing results in Section 5.   

 

Figure 4: Research Methodology  
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3. Task Clarification and Overall Experimental Design 

A simple apparatus was designed for testing and tuning the negative stiffness 
behavior of a buckled beam.  As shown in Figure 5, the apparatus consists of a beam 
connecting two end plates.  The endplates are connected together with bolts that can be 
tightened to pre-buckle the beam.  By adjusting the relative tightness of the bolts, the 
beam can be initialized into an unbuckled state, a metastable state, or a fully buckled 
state.  The spring serves to constrain the specimen; its stiffness is tuned to stabilize the 
beam in its metastable state when the bolts are tightened to the appropriate length.  As 
described in Section 5, the apparatus is placed on top of a shaker table, with 
accelerometers attached to the beam and the base of the structure to measure the relative 
amplitude of the beam’s motion and the transmissibility of the beam.  The amplitudes of 
resonance peaks from the pre-buckled beam are expected to be much lower than those of 
a beam in its free state, demonstrating the dampening effect of the bistable element.  The 
negative stiffness behavior of the apparatus is very sensitive to the material properties of 
the beam and the spring.  Since the apparatus is being constructed with SLS technology 
and Nylon 11 material, for which various material properties are not widely documented, 
it is important to begin the study with material testing.      

 

Figure 5: SolidWorks model of a buckled beam system 

 
4. Material Characterization 

Static materials testing is a common and relatively straight-forward method for 
obtaining material properties of sintered parts. However, it may not always be the most 
appropriate method when parts are used in dynamic applications. Because the stiffness 
properties of materials such as Nylon 11 change with strain rate, it is very important to 
employ dynamic tests to determine properties at a specific frequency. These tests are of 
added value to this research because limited material property data is available in the 
literature for sintered Nylon 11. For the purposes of this study, Young’s modulus, shear 
modulus and loss factor are determined using dynamic tests and static tests. All parts are 

rosalief
Typewritten Text
869



made using the 3D Systems Sinterstation HiQ SLS machine and the build parameters 
outlined in Appendix A.  

 

4.1. Shear Modulus 

For this system, shear modulus must be determined to calculate spring coefficients for 
the spring element that will be included in the test model. The shear modulus is related to 
the spring coefficient using 

 

  !"#$%&' ( )*+
,&-. , (1) 

 
where G is the shear modulus, d is the coil thickness, n is the number of active coils and 
D is the mean coil diameter. The shear modulus is determined using this relationship for 
both static and dynamics tests of sintered spring elements. 

For the static test, two sets of springs (one set seen in Figure 6) with varying coil 
thicknesses and outer diameters (see Table 1) are produced with one set sintered 
vertically and the other horizontally. The springs are each loaded in an Instron 3345 
Tension Tester machine to obtain force versus displacement curves, thereby directly 
obtaining kspring by finding the slope of the resulting curves. 

 

Figure 6: Three types of spring designs used in static testing 

Table 1: Dimensions of springs for static and dynamic tests                                                                                     
*note that n refers to the number of active coils, not total coils. In the case of the springs used in this system, n is 

the total number of coils minus one.  

Static!Test!"!tested!at!strain!rate!of!
5!mm/s!

Dynamic!Test!–!tested!from!5!to!60!Hz!

! n* d (mm) D (mm)  n* d (mm) D (mm) Mtot (kg) # Springs 
/! 9 2.75 5.00 1 2.5 4.6 49.9 0.12 2 
0! 8.5 2.76 9.88 2 4.5 4.1 20.2 0.11 3 

1! 8.5 3.32 10.18       
 

The parts fabricated for the dynamic test can be seen in Figure 7. These parts are 
designed to be simple mass-spring systems consisting of two or more springs to insure 
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the stability of the mass during forced vibration (see Table 1). This configuration is 
chosen for its simplicity and its well-known mathematical model. 

 

 

Figure 7: Two different mass-spring systems used for dynamic testing. The system on the left contains three 
springs and the one on the right has two springs in a “double helix” configuration for stability of the mass 

 

Figure 8: Schematic for dynamic shear modulus test 

The test used to determine the dynamic shear modulus is a standard vibration 
transmissibility test schematized in Figure 8. The spring-mass element is fixed to the top 
of a shaker table, which is driven by a frequency-swept sinusoidal voltage signal. During 
the sweep, the acceleration of the base of the sintered part and the top of the mass is 
measured using two matched accelerometers (PCB 333B30). A ratio of the mass 
acceleration to the base acceleration yields the transfer function of the system. The peak 
of this function occurs at the resonant frequency of the system, which for the case of light 
damping is related to the spring constant by 

 

  2& ( 3
!"#$%&'

45  , (2) 

 
where !n is the natural angular frequency at resonance, and M is the mass of the blocks 
shown in Figure 7 plus the accelerometer and 1/3 the total mass of the springs. The 
measurements of the shear modulus from both these tests are given in Table 2. 
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Table 2: Results from shear modulus static and dynamic tests. Six springs were each tested ten times for the 
static tests, while two mass-spring systems were each tested five times.   

G Measurements
 Static (Pa) Dynamic (Pa) 
Average 4.77x108 6.44 x108

Standard 
Deviation 

1.38 x108 8.04 x107

 
Results for the static test are very close to the published values of shear modulus for 

molded or extruded Nylon 11: 4.38 x 108 – 4.63 x 108 Pa (Granta, 2008). The dynamic 
test results are outside this range. This result is likely due to the fact that Nylon 11, being 
a polymer, has strain rate dependent (i.e. frequency dependent) moduli and that the test 
measured the modulus at the resonant frequency.  

 

4.2. Young’s Modulus 

The Young’s modulus of sintered Nylon 11 is also found using both static and 
dynamic methods. The static method used a tensile testing apparatus and follows ASTM 
D638, including strain rates specified therein. As Young’s modulus is highly rate 
dependent, simply determining this value from tensile testing may not provide adequate 
information, especially for systems that operate over a range of frequencies. It is for this 
reason that the material is also tested under dynamic conditions, specifically using the log 
decrement method for a cantilevered beam (Jones, 2001). 

Three sets of rectangular beams are designed with a range of dimensions and built in 
the 3D Systems Sinterstation HiQ SLS. The test beams are clamped to a table (as seen in 
Figure 9) with an accelerometer affixed to the end of the beam.  

 

 

Figure 9: Schematic for Young’s modulus dynamic test 

The beam is struck on the end to induce motion primarily at its resonant frequency. 
Output from the accelerometer, an example of which is shown in Figure 10, is captured 
on the oscilloscope and transferred to the lab computer for analysis. The resonant 

Clamp

Nylon!11!Bar

Acceler
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Table

Signal!Conditioner
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frequency of the beam is a function of its length, thickness, density, and Young’s 
modulus. Multiple tests can therefore be run on each beam by shortening the free length 
in order to obtain modulus information for a range of frequencies. The resonant 
frequency of this system can be determined using a discrete Fourier transform of the time 
signal and the Young’s modulus is then calculated as follows (Thompson, 1987):  
 

  6 ( 789:;<;=.
>?  . (3) 

 
Note that Mtot includes the entire mass of the accelerometer plus 0.23 times the mass of 
the beam, I is the area moment of inertia of the beam, and L is its length. 

 

Figure 10: Sample output from Young’s modulus dynamic test 

Over two hundred trials are run with this setup, and a chart of the resulting Young’s 
modulus calculated from the tests is presented below in Figure 11. The bin numbers 
underneath each column represent the highest value within that column. No correlation to 
frequency could be determined for these beams as the frequencies sampled are mostly too 
low (less than 100 Hz), however the Young’s modulus would be expected to increase 
significantly at higher frequencies.  
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Figure 13: The buckled beam system made of Nylon 11 

The left wall of the system is free to slide towards the right to compress the structure. 
Threaded rods (not shown) were inserted through the left and right end plates of the part 
and were used to progressively compress the system by small increments. Holes in the 
base allow for direct attachment of the part to the shaker table (Labworks Inc. model ET-
139). The vibration transmissibility of the apparatus is then determined with the 
experimental setup shown in Figure 14, which is nearly identical to the test used to 
determine the shear modulus.  

  

Figure 14: Schematic of dynamic buckled beam test 

Vibration transmissibility tests are run at multiple levels of axial pre-strain. The tests 
begin with the beam in a completely uncompressed position and the beam is 
progressively pre-strained until the beam is in a stable buckled equilibrium position, after 
passing though the metastable position. Each round of testing begins by compressing the 
beam by approximately 0.1 mm. The shaker table then excites the system in a sweep 
from 30 to 200 Hz, a range that contains the first resonance peak. Several representative 
transmissibility curves are shown in Figure 15. Table 3 matches each curve in Figure 15 
with an exaggerated and approximate image of the pre-stressed beam before the shaker 
test began. 
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This is equivalent to an 87% decrease in damping which is notable considering that the 
total compression of the system is 0.772 mm. Furthermore, these negative stiffness 
systems can also be used to tune the natural resonance of a system by increasing or 
decreasing the amount of buckling accordingly. This experiment demonstrates that 
negative stiffness systems are remarkably effective as damping agents.  

Table 3: This table outlines the actual compression during each stage in Figures 15 and 16. The image 
shows the exaggerated stages of deflection of the beam at each point. At peak 6, the beam reaches the end of 

its metastable condition and becomes completely buckled. 

Peak 
Number 

Total Amount of 
Compression (mm) 

Exaggerated Beam Deflection 

 
1 

 
0 

 
2 

 
0.045 

 
3 

 
0.213 

 
4 

 
0.285 

 
5 

 
0.409 

 
6 

 
0.604 

 
7 

 
0.772 

 

6. Closure 

The goal for this project is to ultimately develop metamaterials that can achieve 
higher damping than currently available materials, via negative stiffness behavior. 
Towards this goal, macroscale proof-of-concept tests were conducted on a bistable 
element, specifically a pre-buckled beam, that has been shown theoretically to exhibit 
negative stiffness behavior. The apparatus was built with SLS technology and Nylon 11 
material.  A preliminary design for the apparatus was created, and material properties for 
sintered Nylon 11 were measured using both static and dynamic tests. Using those 
properties, the initial design could be tuned to obtain the correct damping behavior and 
fabricated with SLS. The results from dynamic experiments indicate that a simple 
negative stiffness system has the ability to increase damping, as resonance peaks for the 
pre-buckled beams (i.e., bistable elements) are lower in amplitude and broader than those 
for unbuckled beams. The next step will be implementing more complicated negative 
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stiffness systems, in two and three dimensions, and with composite materials. From there, 
the ability to use negative stiffness inclusions within materials will be explored.  
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Appendix A 

Table 4: 3D Systems Sinterstation HiQ SLS machine settings for Nylon 11 

Parameters Settings 
Part Bed Temperature 187oC 
Left/Right Feed Bin Temperature 142oC 
Laser Power 38 W 
Inner/Outer Ratio 0.8 
Scan Spacing 0.01 in 
Layer Time 20 s 
Layer Thickness 0.0004 in 
Roller Speed 10 in/s 
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