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ABSTRACT 

The benefits of component design with cellular structures have been demonstrated in a wide 
variety of applications.  The recent advances in additive manufacturing and high performance computing 
have enabled us to design a product component with adaptive cellular structures to achieve significantly 
better performance. However, designing a product component with such structures, especially its shape 
and topology, poses significant challenges.  Many approaches in topology optimization have been 
developed before for the purpose.  In this paper, we present a novel structural optimization method based 
on the principal stress line analysis of a continuum domain.  We first present the theoretical basis of our 
optimization method.  We then discuss the properties of principal stress lines and their computation in a 
given design domain.  Accordingly a novel structural optimization method is presented including size, 
shape and topology optimization.  Related mathematical formulations and algorithms are also given for 
generating a beam structure with the minimum compliance.  Three test cases are presented to illustrate 
the presented method. 
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1. INTRODUCTION 
Over the last twenty years, solid freeform fabrication (SFF) has been developed based on the layer-based 
additive principle.  Recent advances in material, process and machine development have enabled the SFF 
processes to evolve from prototype usage (rapid prototyping) to direct product manufacturing.  Examples 
such as Boeing’s F/A-18 components and Siemens’s hearing aid shells have been reported for applications 
in aerospace and medical industries.  SFF is a direct manufacturing process that can fabricate parts 
directly from CAD models without part-specific tooling or fixtures.  Therefore, for the first time in history, 
we have a set of manufacturing processes that can cost-effectively fabricate truly complex 3-dimensional 
shapes.  As identified in (Bourell, et al., 2009; Hopkinson, et al., 2006), a primary advantage of SFF is its 
capability to allow revolutionary new designs when complex geometry is no longer a limiting factor.  

Even though SFF provides tremendous design freedom that was unavailable before, the capability 
of using SFF’s unlimited geometric capabilities for better design is still limited and mainly untapped.  As 
pointed out in (Bourell, et al., 2009), it is crucial to develop new design methods and related CAD tools in 
order to fully utilize the design freedom provided by SFF.  Since beam structure is a type of design that 
can well demonstrate the SFF’s geometric capability, we focus on the design optimization of beam 
structures in this paper, including those of size, shape/geometry and topology.   

Topology optimization of trusses is a classical subject in structural design.  The study of 
fundamental properties of optimal grid-like continua was made by Michell (1904).  In the last three 
decades, a considerable amount of work has been carried out on structural optimization.  Two developed 
computational methods that are the most well-known for truss topology design are the Homogenization 
and the Ground Structure methods.  More detailed description of them and related methods are given in 
Section 2.  Even though the two methods are well-established, problems such as the generated design 
needs to be interpreted and in many cases unnatural to users have also been noticed.  In addition, both 
methods are computationally expensive; hence it is rather difficult for designers to control the generated 
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results.  Motivated by Michell’s work, we present an intuitive method of designing beam structures with a 
minimum compliance or maximum stiffness.  Our method is based on the principal stress line analysis of 
the given design domain.  The mathematical foundation of our method is presented in Section 3.  A high-
level comparison of our approach with the homogenization and ground structure methods is given in 
Figure 1.  We believe our approach is much simpler and faster.  In addition, the generated structures have 
no issues that are common to the homogenization and ground structure methods such as gray area and 
disconnected structures as pointed out by (Lu and Kota, 2006).   

 
Figure 1.  A comparison of our method with Homogenization and Ground Structure methods (Lu and Kota, 2006). 

2. RELATED WORK 
Topology optimization is a classical subject in structural design. Introductions to truss topology problems 
can be found in (Topping, 1993; Kirsch, 1993; Rozvany, et al., 1995a; Achtziger, 1997; Bendsøe and 
Sigmund, 2002).  Topology optimization of discretized and continuum structures are two broad categories 
in the structural optimization. We focus on discrete structure optimization in this paper. Hemp and Chan 
(1970), and Dorn, Gomory and Greenberg (1964) considered a ground structure to overcome the 
infeasibilities of Michell structures. Given the same design domain, the analogous boundary conditions 
and external loads, they obtained the trusses coincide with the principal stresses directions of an optimal 
continuum structure (Achtziger, 1997). Nowadays the ground structure method is a well-known approach 
in the discrete topology optimization.  

Ground structure is composed of uniform spaced nodes connected with each other by boundary 
conditions and external loads or forces. The ground truss structure is thought to encompass the potential 
optimal structure. Introductions to ground structure approach can be found in (Topping, 1993; Achtziger, 
1997; Bendsøe and Sigmund, 2002).  The numerical computational theories on ground structure approach 
are mainly founded on minimization of compliance or maximization of stiffness. This objective function 
has been utilized in many literatures (Bendsøe and Sigmund, 2002; Achtziger, 1997; Bendsøe, 1995; 
Rozvany, et al., 1995a; Svanberg, 1990; Svanberg, 1994). 

In order to solve this objective function of minimization of compliance, linear or non linear 
programming techniques have been developed (Achtziger, 1997; Achtziger, et al., 2008; Achtziger and 
Stolpe, 2009). There are some other numerical computational approaches used to find the optimal truss 
structure from a ground truss structure (Hajela, et al., 1993; Xie and Steven, 1997).  Node positions in a 
ground structure are to be optimized as well as topology and truss bar cross sectional size optimization. 
This further node positions optimization is called geometric approach (Topping, 1993). In geometric 
approach, the node coordinates are also considered to be variables as well as bar cross sectional size. 
Research on both topology and geometry of ground structures can be found in (Ben-Tal, et al., 1993; 
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Achtziger, 2007).  The complexity of ground structure approach is )( 2nO , where n  is the number of the 
nodes. When n  is large, the ground structure is very dense; and the numerical computation of LP or 
nonlinear LP techniques is unstable; and some unreasonable structures are obtained (Burns, 2002). 

Rozvany, et al. (1995b) noticed that many literatures focused on truss structures rather than beam 
structures.  They also pointed out that the beam structures are more practical than truss structures. For 
truss structures, pin-jointed by only considering the axial forces and buckling is unavoidable. Beam 
structures are rigid-jointed and considering the shear forces which are matched with the engineering 
purpose. Theories on beam structure optimization can be found in (Rozvany, 1994; Rozvany and Prager, 
1976). However, these theories are targeted for the continuum or partial continuum beam structure 
optimization. They cannot be simply applied in numerical computation.  Some people combined the 
ground structure approach with the continuum based material optimization method to design the beam 
structures with joints (Fredricson, et al., 2003; Fredricson, et al., 2003; Fredricson, 2005; Kim, et al., 
2008). These beam structures with joints are optimized with their sizes and can be manufactured directly. 
They are called compliant assemblies. Basically their physical model is a 3D solid one. Either sensitivity 
analysis or SIMP (simple isotropic material with penalization (Bendsøe and Sigmund, 1999) are utilized to 
optimize the size of each beam. Their optimization methods are continuum based. 

Motivated by simplifying the complexity of ground structure, we proposed a principal stress line 
method for the beam structure design.  For the purpose, we also extended uniform strain energy density 
from truss structure to beam structure topology optimization.  The remainder of the paper is organized as 
follows.  Section 3 introduces the topology optimization problem and related mathematical formulations.  
The principal stress lines and their properties are also discussed in the section.  Section 4 presents an 
overview of the principal stress line method.  Details of the method are then presented in the following 
sections.  Section 5 discusses the numerical method to compute the principal stress lines of a given design 
domain.  Section 6 discusses the initial structure generation for a given design domain.  Section 7 presents 
our size optimization method based on the uniform strain energy density principle. Section 8 discusses the 
topology growth of a candidate beam structure based on the principal stress lines. A test example is 
presented in Section 9. Finally Section 10 concludes the paper. 

3. PROBLEM FORMULATIONS AND OUR APPROACH 

3.1. Problem Formulation of Beam Optimization 
The optimization problem considered in the paper is to minimize the compliance on the total structural 
volume of a beam structure under static loads and constraints with the cross-sectional areas, the nodal 
coordinates, and the beam connections as design variables. Hence all the three types of optimization 
problems are considered including (1) size optimization by changing cross-sectional areas; (2) shape 
optimization by changing the nodal coordinates; and (3) topology optimization by changing the beam 
connections.  Even though most discrete optimization literatures consider truss structures, we focus on 
beam structures since they are more appropriate for SFF. 

Based on the linear elasticity theory (Eschenauer and Olhoff, 2001), the beam structure in our 

problem follows the basic equations: ,
2
1 uFKuu TT −=−=∏ WU                                          (3.1) 

where u, K an F are the global displacement vector, the stiffness matrix and the load vector.  Hence, the 
problem of minimizing the work done by external forces at equilibrium can be formulated as: 

min ( )
χ B

W
∈

u  subject to ,FKu =                                                                                      (3.2) 

Where B is a specific volume of body given by  { }fixedB dx Vχ χ
Ω

= =∫ , and χ  denotes the design 

variable.  By applying the equation WU
2
1

= at equilibrium, the given optimum problem can also be 

alternatively written as:       )(min uU
Bχ∈

 subject to ,FKu =                                                       (3.3) 
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3.2. Michell Problem and Principal Stress Lines 
Michell (1904) first studies the fundamental properties of optimal grid-like continua and contribute exact 
analytical solutions for several well-known truss structures.  One of them is Michell-cantilever, which is 
shown in Figure 2. Modern layout theory was founded by Prager and Rozvany (Prager and Rozvany 
1977).  Rozvany, et al. (1995a) also state that Michell trusses have the maximum stiffness for a given 
volume.  According to Strang and Kohn (1983), the Michell problem is defined as follows: 

0=σdiv  in Ω , fn =:σ  on Γ                                                                                      (3.4) 

 
Figure 2.  Least-weight truss for a cntilever with a point load (Rozvany 1998). 

Hence, one can imagine that the bars of a truss-like continuum are placed in the directions of 
principal stresses.  That is, the Michell structure composes of infinite number of truss bars perpendicular 
to each other at the intersection (Strang and Kohn, 1983; Prager, 1974).  And the slope of the principal 
stresses with respect to the x-axis is given in (Hill, 1950) as: 
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2tan                                    (3.5) 

From (Pilkey, 2002), we have the stress strain relation as: 
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where E is the elastic or Young’s modulus; v  is Poisson’s Ratio; xε , yε are strain in x and y direction 

respectively; xyγ  is shear stress in the xy plane. Hence we have 

yx

xy

εε
γ

θ
−

=2tan                                   (3.7) 

Therefore the principal stress lines are defined as the two orthogonal families of curves whose 
directions at every point coincide with those of the minimum shear stress in a state of plane strain. 

3.3. Principal Stress Line Analysis for Structural Optimization 
From the conditions of elastic equilibrium, given the design domain, external forces and boundary 
conditions, in a finite element system of isotropic material, the following properties hold:  

Property 3.1 The displacement vector u  is proportional to the external force vector F . 

Property 3.2 The displacement vectoru  is inversely proportional to the stiffness matrix K or the elastic 
modulus E. 

Property 3.3 The direction of the principal stress is not related to the scaling of the external forces, nor 
the material type for an isotropic material within the range of elastic deformation.  

Property 3.4 The principal stress field is mainly related to the topologic variables of the given structural 
design such as the position of external forces and the types of constraints.  

As an example, we present the principal stress field of a simple cantilever beam as shown in Figure 
3.  For a single load with various sizes and different material properties, the principal stress lines are 
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virtually the same.  This suggests that their optimal topology and shape design should be identical.  Hence 
both load sizes and material properties will not affect topology design results. We also present the 
principal stress field for the same cantilever beam with different load or constraint positions.  As shown in 
Figure 4.(a), the external force F  is moved from the middle to the bottom of the right edge.  As shown in 
Figure 4.(b), two point constraints are used instead of a line constraints in Figure 3.  Since the principal 
stress fields have been changed, their optimal topology and shape design should also be different. 

     
(a) Steel, E=2.0e11[Pa], F=10[N]   (b) Aluminium, E=7.0e10[Pa], F=100[N] 

Figure 3. The principal stress fields varied loads and material properties. 

 
(a) Different load position   (b) Different types of constraints 

Figure 4. Principal stress lines distribution in the continuum design domain. 

4. THE PRINCIPAL STRESS LINE METHOD 
Motivated by Michell structures and the properties of principal stress lines, we developed a principal 
stress line method for designing a beam structure with the minimum compliance and maximum stiffness 
under any given loads and constraints.  The optimization of size, topology, and shape of beam structure 
are all considered in our method.  The design process of our method is shown in Figure 5 by using a 
single loaded Michell structure as illustration.  There are five major steps including: (1) design domain 
specification, (2) principal stress lines computation, (3) initial structure generation, (4) size optimization, 
and (5) topology growth.   

For a given design domain specified by a user, the finite element method (FEM) is used to analyze 
the design domain based on the specified loads and constraints, the material information, and the 
maximum space that the resulting structure can occupy.  Accordingly the principal stress lines can be 
computed and visualized. An initial structure is generated to connect all the constraints and loads.  Based 
on the initial structure, size optimization is then carried out, which modifies the cross section area of each 
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beam for improved performance.  More principal stress lines can be added in topology growth, which will 
accordingly add more nodes and beams to the beam structure.  Hence a new beam structure with different 
topology and shape will be generated for size optimization.  The process is repeated until no performance 
improvement is found or a limit on number of beams has been reached.  Sections 5~8 will explain in 
detail each of the five steps in the above process.   

Compute and visualize 
principal stress lines

Initial structure 
generation

Size optimization

F

F

Design 
domain

Proposed 
Structure 
DesignF

Topology growth

FEM run with constant 
cross section areas

Variation of cross section 
areas and scale to the 

given volume

FEM run with varied 
cross section areasSection 5

Section 6

Section 7

Section 8
No Yes

Iterations end?
No

Yes

Result 
OK?

 
Figure 5. An overview of the principal stress line method for beam structure design. 

5. PRINCIPAL STRESS LINE COMPUTATION  
Hegemier and Prager (Hegemier and Prager, 1969) utilizes the mathematical equations to compute the 
Michell truss bars based on the analytical computation of the directions of principal strains for a single 
loaded truss structure. The similar complementary slip lines are computed analytically in (Hill, 1950). In 
this paper, we develop a general numerical computation method to compute the directions of the principal 
stress lines. In addition to simple cases with a single load such as Michell truss bars, our numerical 
computation method can handle general cases with more complex boundary conditions and various 
external loads. 

5.1. Computing Principal Stresses at Any Point 
The given design domain with loads and constraints is first analyzed based on the finite element method.  
As shown in (3.6) and (3.7), the sizes and directions of the principal stresses are well defined for any 
given point in the stress field of a continuum 2D solid. However, in the 2D plane static analysis results 
generated by a FEM system (we used COMSOL3.2: www.comsol.com), the finite elements are a set of 
triangles and all the post-processing data of normal stresses xσ , yσ  and shear stress xyτ  correspond to 
triangle vertices. In order to query the post-processing data in any position in the design space, we 
compute the stresses based on linear interpolation. That is, suppose the stresses at position P  is needed 
and assume P  is located in a triangle element 321 PPPΔ . The corresponding post-processing data (i.e. xσ , 

yσ  or xyτ ) for 1P , 2P  and 3P  are 1D , 2D and 3D  separately. The post-processing data D  at the 

position P  can be computed as: 321 wDvDuDD ++=                 (5.1)  

where 
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w .  Hence the principal stresses 1σ  , 2σ  and the 

corresponding direction parameterized by θ  at P  can be computed.   
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Figure 6. Principal stress line search based on stress field points. 

5.2. Generating 2D Principal Stress Lines in a Continuum Domain 
Based on the principal stresses computed for a given point in the design domain, we will have four 
principal directions (i.e., in θ , 90 θ+D , 180 θ+D , and 270 θ+D ).  Hence four principal stress lines can 
be generated beginning from a stress field point with the four principal directions. For simplicity and 
without loss of generality, we will discuss the principal stress line search strategy in one direction. As 
shown in Figure 6.(a), from point 1iP− , we can search one of its principal stress direction 1iv −

G
and compute 

point iP  for a given approximation stepδ .  Accordingly the resulted principal stress line is shown in 
Figure 6.(b). 

Hence, we have the following iterative equations:  
⎩
⎨
⎧

≥⋅+=
=

−− 1
0,

11

00

ivPP
ivP

iii
G

G

δ
                      (5.2) 

Where 00 ,vP G
 are the starting position and the principal direction; δ is the search step; ivG  is one of the 

four principal directions at position iP  closest to the search direction 1−ivG . The closest direction selection 
is finished by comparing the angle with the search direction 1−ivG .  

Sufficient number of starting points is needed for generating principal stress lines that are dense 
enough to cover the entire design domain. We used two strategies in generating principal stress lines that 
are uniformly distributed in the design space.  

(1) For a simple design space, we add a guide curve and sample the curve uniformly.  The sampling 
points are used as the starting points to generate the principal stress lines.  

(2) For a complex design space, we used the design space boundary as the guide curve and sample the 
curve uniformly.  The sampling points are used as the starting points to generate the principal stress lines. 

6. DOMAIN SPECIFICATION AND INITIAL STRUCTURE GENERATION 
As shown in Figure 5, our method starts from the user specifying the loads and constraints, and also the 
maximum domain space that the resulting structure can occupy.  Based on the computed principal stress 
lines, the user can identify the principal stress lines that connect the constraints and loads.  We called such 
lines skeleton principal stress lines.  An initial structure can then be generated from the skeleton principal 
stress lines.  The generation of the initial structure can be performed automatically or by the user.  For 
example, Figure 7.left shows the design domain for the Michell cantilever.  The physics properties we 
used in the test are: H = 1.0 m; F = 1000 N; Young’s modulus E = 2.0e11 Pa; Poisson’s ratio ν = 0.33; 
Density = 7850 3/kg m ; Shape of a beam’s cross section = square; Given volume of the material = 0.015 

3m . Figure 7.right shows the computed principal stress lines.  The skeleton principal stress lines are also 
shown that connect the load and constraints.  Accordingly an initial structure can be generated. 
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Figure 7. The design domain and initial structure of a Michell cantilever beam case. 

Notice after a candidate principal stress line is selected, we use a straight line connecting its two 
nodes in the beam structure instead of approximating the exact stress line by a set of polylines. This is 
because, for two given nodes in a beam structure, a straight line connecting them will lead to a smaller 
compliance of the structure than any other curves to connect them.   

7. SIZE OPTIMIZATION OF BEAM STRUCTURES 
In our beam structure design, we follow energy principles which present the basis for both topology and 
size optimization of discrete and continuum structures.  

7.1. Theoretical Basis – Axiom of Uniform Strain Energy Density 
Based on the assumption of the positive definiteness of the global stiffness matrix, Achtziger (Achtziger, 
1997) proved that the strain energy density is uniform among the truss structure.  However, no references 
were found on beam structures.  Here we will extend some conclusions of topology optimization of truss 
structures to the topology optimization of beam structures. 

As shown in (Achtziger, 1997), for the maximum stiffness topology optimization of loaded truss 
structure, the optimization problem (3.2) can be reformulated as:   

)( strEnP                               }{minmax
1

uKuuf i
T

2
VT

miRu n
−

≤≤∈
                                                        (7.1) 

Where f is a vector consisting of the external loads; u is the displacement vector consisting of all 
displacement components for all bars i  and mi ≤≤1 ; iK  is the stiffness matrix of the i th bar.  The 
proof can be extended to the minimization compliance or maximization stiffness topology optimization of 
discrete beam structures.  To satisfy the optimality conditions in the uniform strain energy density, we 

know:                         { })()(max
)()(:

2
1

1

2
1

xuKxu
xuKxuxx

j
T

mj

i
T

i
new
i

≤≤

=                                                                       (7.2) 

For all mi ,,1…=  beams, )()(2
1 xuKxu i

T  is the strain energy density. When a beam structure achieves 
the equilibrium, the strain energy density is uniform. 

7.2. Computation Approach 
We used 3D Euler Beam module in COMSOL Multiphysics 3.2 as the FEM tool to compute and analyze 
the beam structures. In order to exploit the post-processing data from COMSOL and do the further 
computation and optimization work, we developed a set of automation tools for the analysis process based 
on a programming language, COMSOL script, provided by COMSOL.  We also use the COMSOL script 
language to compute the strain energy of a beam structure. After a beam structure is analyzed, the strain 
energy is computed and saved in post-processing data. The strain energy density is expressed as strain 
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energy per unit length of a beam in COMSOL.  As shown in Section 7.1, the objective in size 
optimization is to achieve the maximal stiffness of the beam structure.  Based on the method of uniform 
strain energy density, to maximize stiffness also means to minimize the strain energy of the beam 
structures.  In addition, the beam structure achieves the minimal potential energy when the strain energy 
density is uniform in the entire beam structure.   

We define the strain energy density as strain energy per unit volume of a beam, denoted by κ with 
unit of 3/ mJ . Hence we can optimize the cross section size of each beam for a given beam structure 
based on a process that is similar to the Fully Stressed Design Stress-Ratio Method in truss structures 
(Topping, 1993). However, different criteria are used.  That is, instead of stress ratio, we use the strain 
energy density ratio to modify the cross section area of beam members after each stress/strain analysis of 

beam structures.  In each iteration, we use: 
2
1

1
}{max ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅=

≤≤ imi

i
ioldinew AA

κ
κ                                                 (7.3) 

After cross section areas of all beams are resized by the strain energy density ratio method, all cross 
section areas of beams are scaled to fit the given volume VX (note zero cross section beams still have the 
threshold cross section area ratio). With the resized beam structure, a new FEM stress/strain calculation is 
carried out, in which the cross section area in the bigger strain energy density beams gets bigger and 
bigger( in a relative way), and the cross section area in the smaller strain energy density beams gets 
smaller and smaller. The process repeats until the strain energy distribution in the whole beam structure is 
close to uniform. An example of size optimization based on the above process is shown in Figure 8. 

 
(a) A beam structure with uniform cross section;      (b) resulted beam structure after size optimization 

Figure 8: An test example of size optimization based on uniform strain energy density. 

8. TOPOLOGY GROWTH BASED ON PRINCIPAL STRESS LINES 
The theoretical Michell structure has infinite number of bars and each bar is infinitely small.  Hence such 
exact analytical solution is not practical for a beam structure design.  Instead we would like to balance the 
number of beams and the performance of beam structure.  For the purpose, we present a topology growth 
method based on the principal stress lines.  From an initial structure, the main process of our method is:  

(1) Identify new principal stress lines that can reduce the approximation errors between the beam 
structure and the principal stress lines the most;  

(2) Use the identified principal stress lines to compute a set of intersection points as the positions of 
inserted nodes (shape optimization);  

(3) Construct a beam structure by connecting the computed nodes following the connection of the 
principal stress lines (topology optimization).   

(4) Optimize the cross section size of each beam for the constructed beam structure (size 
optimization). The strain energy of the whole beam structure can be computed, which can 
measure the stiffness of the beam structure. 

The above process repeats until desired performance is reached or the maximum number of beams 
is exceeded.  This is illustrated in Figure 9 based on a Michell cantilever beam as shown in Figure 7.  As 
shown in Figure 9, based on the initial structure in iteration 0, the maximum errors from the principal 
stress lines and the related beams are 1aP and 1bP .  Accordingly two new principal stress lines are added 
which will lead to a new node 1cP .  Therefore, a new beam structure can be constructed in iteration 1.  
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After size optimization, the strain energy of the new beam structure is 3.61 mJ, which is significantly 
reduced from that of the beam structure in the previous iteration (4.15 mJ). Hence the stiffness of the 
beam structure has been increased for the same amount of material.  The process can be repeated with 
more nodes and beams added.  In the above topology growth process, it can be noticed that as more 
principal stress lines are used, the beam structure is closer to the Michell structure. The strain energy of 
the entire structure is getting smaller. However, the performance improvements are getting smaller after 
several iterations.   

P1a

Iteration 0

Iteration 1

Iteration 2

Strain Energy 
= 4.149 mJ

Strain Energy 
= 3.608 mJ

Strain Energy 
= 3.599 mJ

Iteration 3

Strain Energy 
= 3.530 mJ

Topology and shape of beam structures Beam structures after size optimization

P1b

P1c

P2a

P2b

P2c

P3b

P3a

P3c

P2d

P2e

P3d

P3e

 
Figure 9. The topology growth of a Michell cantilever beam structure in 4 iterations. 

In our beam structure design process, we use the principal stress line as a bridge between the 
continuum design domain and the discrete beam structure design. This is different from other methods 
such as Homogenization, Ground Structure, and other expansion and growth methods for truss structure 
optimization (Kirsch, 1997; Martinez 2009).  Compared to them, our method is dramatically faster. In 
addition, our method is easier to control.  Hence the user can easily terminate or add more beams in the 
designed beam structure.  However, a limitation of our method is that it can only be used for the 
minimum compliance or maximum stiffness structural optimization problem. 
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9. TEST EXAMPLE: BRIDGE STRUCTURE 
To demonstrate the presented principal stress line method, another example of a bridge structure is 
presented.  Similar to the Michell cantilever beam, the bridge structure is also a classical topology 
optimization test case.  The design domain of a bridge structure is shown in Figure 10.left.  The domain is 
fixed at the two end points of the bottom and a concentrated force is added in the middle of the bottom 
edge. The principal stress lines of the design domain based on the method discussed in section 5 are 
shown in Figure 10.right. 

         
Figure 10. a bridge like design domain and the principal stress lines.  

Based on the computed principal stress lines, the skeleton principal stress lines to connect the 
constraints and loads are shown in Figure 10.right.  Notice the principal stress lines at two constraints 
have 45 degrees tangent with the horizontal axis.  Accordingly, an initial structure can be generated which 
is also shown in the figure. The topology growth process of the structure is shown in Figure 11. After 
three iterations, the strain energy of the beam structure decreases from 1.33 mJ to 1.11 mJ. Hence the 
stiffness of the beam structure has been increased for the same amount of material used in the structure.   

 
Figure 11. The topology growth of a bridge structure in 3 iterations. 

10. CONCLUSIONS 
For the minimum compliance design of beam structures, we presented a new structural optimization 
method based on principal stress lines.  The mathematical basis of our discrete beam structure 
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optimization method has been presented.  We also presented a numerical method for computing the 
principal stress field of any given design domain. Accordingly a topology growth method for refining 
beam structures has been presented.  In addition, based on the uniform strain energy density proposition 
in discrete truss structure, we extended the axiom of strain energy density to the discrete beam structure. 
The axiom of strain energy density is used in our size optimization of beam structures.  Three examples 
were given to illustrate the design process of the principal stress line method. The results have 
demonstrated the effectiveness of our method. Compared to the ground structure method, the principal 
stress line method is much faster and easier to control.  It is also more predicable and can overcome the 
numerical computation instability and results of unreasonable structures when the ground structure is 
highly dense. 
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