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Abstract 

 
Additive manufacturing (AM) is expanding the range of designable geometries, 
but to exploit this evolving design space new methods are required to find 
optimum solutions. Finite element based topology optimisation (TO) is a 
powerful method of structural optimization, however the results obtained tend to 
be dependent on the algorithm used, the algorithm parameters and the finite 
element mesh. This paper will discuss these issues as it relates to the SIMP and 
BESO algorithms. An example of the application of topological optimization to 
the design of improved structures is given. 
 

Nomenclature 
FR = Filter radius 
ER = Evolution rate 
VF = Volume Fraction 

bη  = Sensitivity of node b 

aV  = Volume of element a 

aλ  = Sensitivity of element a 

s = Number of elements connected to node 

1+mV  = Iterative new target volume 

mV  = Current volume 

abd  = Distance between centre of an element a and node b 
th
delλ  = Element sensitivity threshold value (deleting) 
th
addλ  = Element sensitivity threshold value (adding) 

tol = Convergence tolerance, 1e-5 
m = Current iteration number 
T = Number of iterations over which convergence is measured, 5 

sE  = Young’s Modulus Solid 

vE  = Young’s Modulus Void 
TO = Topology Optimization 
V* = Volume fraction constraint 
SE = Strain Energy 

SE∆   = change in strain energy 
y = Distance between the centre and a node of same element. 

eu  = Elemental displacement vector 

ek  = Elemental stiffness matrix 
P = Penalization factor 

ex  = Elemental density distribution 
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mµ  = Displacement field at iteration m 

minρ  = Parameter used to prevent singularity 

mρ  = Density at the previous cycle 

ζ  = Move limit 
η  = Tuning parameter 

mΛ  = Lagrange multiplier at cycle m 

fH
)

 = Convolution operator 

),( yxL = Distance between centres of element x and y. 
 

I Introduction 
 

Additive manufacturing (AM) is a relatively recent approach to manufacturing 
whereby a component is built up [1-3] layer by layer, usually from sliced 3D CAD 
data. It is a contrasting approach to traditional manufacturing techniques such as 
subtractive (e.g. machining) or formative (e.g. casting). This layer by layer approach 
requires less manufacturing constraints. Its ability to build components with intricate 
complexities opens up the design domain significantly, enabling the production of 
optimal parts with improved structural performance. Established topology 
optimization algorithms (TO) could be adopted for AM by relaxing constraints within 
these algorithms originally meant for traditional manufacturing routes. 

 
TO is a type of structural optimization that seeks the optimum layout of a design 

by determining the number of members required and the manner in which these 
members are connected. Unlike shape and size optimization, TO achieve designs that 
are not greatly constrained by the nature of the initial design. Hence, TO is a better 
route to take towards optimum parts. Several algorithms have been developed for TO. 
These include homogenization [4, 5], solid isotropic microstructure with penalization 
(SIMP) [6-8], and bi-directional evolutionary structural optimization (BESO) [9-11]. 
Stochastic algorithms used in the broader field of optimization have also been adopted 
for TO, among which are genetic algorithms [12-14] and ant colony optimization 
[15]. Optimum topologies depend on which of these algorithm is used, starting 
design, finite element mesh, parametric settings. A detailed study of these is necessary 
if AM’s design flexibility is to be completely exploited. In this paper, we investigate 
the effects of these factors on optimum achieved by the SIMP and BESO algorithm, 
since they have been widely implemented in literature to achieve practical designs. 

 
 

II Method 
 

SIMP and BESO are the most widely used TO algorithms, owing to their 
efficiency and simplicity. The section describes the main features of these two 
algorithms. 

 
A BESO 
 

The BESO algorithm is a combination of additive evolutionary structural 
optimization (AESO) [9] and evolutionary structural optimization (ESO) [16]. Querin 
et al [9, 11] originally proposed and implemented BESO to improve results and 
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convergence time of both AESO and ESO. Huang and Xie [10] presented a different 
version to BESO to solve compliance problems. BESO is a finite element based TO 
method, where inefficient material is iteratively removed from a structure as efficient 
material is simultaneously added to the structure. Figure 1 show a BESO flow chart 
for the minimization of strain energy (SE) for a given volume fraction constraint (V*). 
An evolution rate (ER), filter radius (FR), V* and design domain are supplied to the 
algorithm. The ER is the rate at which the volume is allowed to change per iteration. 
FR is a distance limit. Sensitivity values of nodes within FR from the centre of an 
element are used to recalculate elemental sensitivity values of the same element when 
filtering sensitivities. This is done to eliminate the occurrence of undesired 
checkerboard patterns in optima. 
 

 
 

Figure 1: BESO Flow chart 
 

The design domain is discretized and a finite element analysis (FEA) is 
performed. An initially fully (fig 2a) or partially (fig 2b) solid design domain has 
often been used in past works. Where a partially solid design domain has been used, 
the solid elements have been concentrated in a particular region of the design domain. 
This sort of starting design is intuitive in nature and might have constrained the 
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topology to a local minimum. This is illustrated later by stochastically distributing 
solid elements in the design domain. 

 
(a) 

 

 
(b) 

 
Fig 2: Starting designs (a) fully solid start design  

(b) Partially solid start design  
 
Elemental sensitivities are then filtered by first distributing them into nodes, to 

which they are connected using equation 1, 
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The sensitivity of node b, bη  is computed by finding all elements a connected to this 

node, and averaging their sensitivities values aλ  according to equation 1. Elemental 

sensitivities are then recomputed by finding nodes whose distance to the centre of an 
element a, is less than or equal to FR. Sensitivity values of these nodes are averaged 
according to equation 2 to obtain elemental sensitivity values.  
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Where abab dFRdv −=)( . Structural detail might be lost while eliminating 
checkerboards in this manner. These filtered sensitivities are averaged with values 
they assumed in the previous optimization iteration to further improve these 
sensitivities. The volume fraction (VF) of the design domain is checked against the 
target volume fraction V*, if they were not equal a new iterative target volume is 
computed equation 3, 
 

mm VV =+1 (1±ER)    (3) 
 

Elemental sensitivity values can then be ranked. Solid elements having sensitivity 
values below th

delλ  are reclassified as having void property. Void elements have been 

modelled in this work by multiplying the elemental stiffness matrix of element 
concerned by 1e-12. This is done to reduce the stiffness contribution of these elements 
before the global stiffness matrix is assembled. Reducing the structural stiffness this 
way is a soft kill approach to TO. This has been adopted in this work to avoid 
connectivity problems associated with hard kill [10] optimization procedures. The 
numbers of void elements reclassified as solid brings the current volume of solid 
elements to 1+mV  at iteration m. The TO is repeated until SE∆  is less than a specified 

tolerance (tol) and the specified volume fraction is reached. SE∆  is computed using 
equation 4, 
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The mesh does not change from the start to the end of the TO. BESO algorithm might 
be constrained by the starting design, ER, FR and the finite element mesh. In the next 
sections we investigate these effects. 

 
 

B SIMP 
 

Rozvany et al [7] developed the SIMP algorithm to achieve practical designs for 
generalized shape optimization (optimization involving higher volume fraction). 
Figure 3 shows flow chart for the SIMP algorithm to minimize SE for a volume 
fraction constraint. Sigmund [17] implementation of SIMP is described in this paper. 
The compliance problem can be expressed mathematically as, 
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The penalty factor P is a main feature of the SIMP algorithm. This factor 

suppresses the occurrence of fractional densities in the optimum design. Its inclusion 
has been justified by assuming a high expense of making fractional densities.  
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Figure 3: SIMP flow chart 

 
According to Zhou and Rozvany [6], “ the extra manufacturing cost of cavities 

would increase with the size of the cavities if we consider a casting process 
requiring some sort of formwork for the cavities”.  This is not true for AM, since 
manufacturing cost of AM is independent [2] of part complexity. Most commercial 
TO software have implemented SIMP for TO, hence raising questions about their 
suitability for AM. 

 
An initial distribution of density in the design domain is used as the starting 

design. Sigmund suggests [17] an initial even distribution of these densities, Bendsoe 
[4] terms it an initial guess. There isn’t any rigorous mathematical proof for 
choosing an even density distribution. It is unclear the sort of initial density 
distribution implemented in commercial TO software. In later sections we 
investigate the effect of random density distribution. Using these densities, an FEA is 
performed; the displacement vector from the FEA is used to calculate the SE 
(equation 6) and sensitivities. These sensitivities are calculated by differentiating 
equation 6 to get 
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Sensitivities are filtered to eliminate the existence of checker board patterns in 
the optima using equation 7, 
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where ),( yxLFRH f −=  

 
Other methods to eliminate checkerboard patterns [4, 18, 19] include perimeter 

control, filtering the densities, patch smoothing, image processing, higher order 
elements and monotonic scale length based control. Each of these techniques bring 
new challenges into the TO. Filtered sensitivities are then used to update densities 
using the optimality criteria method as expressed in equation 8. The process is 
continued until convergence is reached.  

 
{ }},)1max{( min1 ρρζρ mm −=+  If { }},)1max{( minρρζρ mmm B −=  

{ }}1,)1max{(1 mm ρζρ +=+  If { } min1 ,1,)1min( ρρρζρ mmm ≤+=+  

Otherwise mmm B ρρ η=+1 , 
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p
mm uExpB µεερ −−Λ=   (8) 

 
Again as with BESO, most applications of SIMP in the literature has been with a 

constant mesh. The continuous change in topology during a TO suggest results might 
by improved by an iterative mesh improvement. 

 
 

III 2D Example  
 

A cantilever plate problem (figure 4) is solved to show the effect of the different 
aspects of the BESO and SIMP algorithm on the optimum topologies.  

 

 
Figure 4: Cantilever plate 
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The objective is to minimize SE for a VF constraint of 0.5. The cantilever plate 
was meshed with 16000 quadrilateral elements. The left side of the plate is fixed 
while a 100N force is imposed at the middle of the right side of the plate. 

 
A  BESO 
 
Figure 5 shows results of BESO algorithm at different parametric settings and starting 
point. FR was set at 3mm for ER=10% to achieve figure 5a. Reducing both FR and 
ER to 1mm and 0.5% results in topology shown in figure 5b. Figure 5c is for a 
random starting point where solid elements are randomly distributed in the design 
domain. It can be seen from this figure that the parametric settings does affect the 
nature of an optimal topology since figure 5a and 5c and different. 

 

        
(a)    (b)    (c) 

 
Figure 5: BESO topologies 

(a) FR=3mm, ER=10%, solid start, SE=1.87Nmm 
(b) FR=1mm, ER=0.5%, solid start, SE=1.84Nmm 
(c) FR=3mm, ER=1%, random start, SE=1.82Nmm 

 
Also, the random start converged to a different topology with lower SE. Hence the 
starting point also affects the nature of the optima. Starting with a fully solid domain 
moved the TO towards a local minimum. Figure 5c might not be the best design 
possible for this problem as it differ from known Mitchell’s [7] analytical solutions to 
this problem. A detail study of the parameters and starting point might improve the 
BESO algorithm. 
 

 
B  SIMP  
 

Figure 6 shows the SIMP topologies for different starting points and parametric 
values. As shown in Figure 6a, a low FR of 1mm does not totally eliminate 
checkerboard pattern. If both the FR and P are kept at 1 (Figure 6b), checkerboards 
disappear but there is a large grey region owing to unpenalized intermediate densities. 
While the main feature of SIMP is to steer TO towards feasible topologies without 
grey region, there might be an interpretation for intermediate densities in AM as this 
has the lowest SE. If P=3 and FR=1.5, the grey regions disappear (Figure 6c).  

Unlike figure 6(a-c), figure 6d was carried out with a random starting point. As 
before symmetrical constraint were imposed to attain figure 6d by ensuring the 
density distribution of the upper half of the plate was a mirror image of the lower half. 
This topology (figure 6d) is characterized by an SE of 3.8Nmm which is lower than 
SE for figure 6a and 6c where and even density distribution was used at the start of 
the TO.  
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(a) (b) 
 

  
 

(c)      (d) 
 
Figure 6: SIMP topologies 

(a) P=3, FR=1mm, SE=4.0Nmm, 0.5 even density start 
(b) P=1, FR=1mm, SE=3.3Nmm, 0.5 even density start 

(c) P=3, FR=1.5mm, SE=3.9Nmm, 0.5 even density start 
(d) P=3, FR=1.5mm, SE=3.8Nmm, Random density start 

 
 

IV 3D BESO application 
 

The BESO algorithm is used to solve a practical 3D problem of an aerospace 
arm shown in figure 7. All degrees of freedom are constrained in surface A, while 
pressure of 594KPa is imposed on surface B. This arm is meshed with approximately 
300,000 tetrahedral elements to investigate the effects of changing FR and ER on the 
optima. The red part is set to non-design while the green is the design domain. 

 

 
 

Figure 7: 3D Aerospace metallic arm 
 

Two sets of experiments are conducted, in the first set the ER is set at 5%, while 
the FR is varied by setting it as a multiple (FRF-filter radius factor) of the distance 
between the centroid of a tetrahedral element and a node on that element. This factor 
is set at 1.5, 2.0, 2.5, 3.0. The FRF is fixed at 2.0 while the ER is set at 1%, 3%, 7% 
and 10% in the second set experiments. 
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A FR Results 
Figure 8 shows the optimum topologies for the different FRF. A plot of SE 

against iteration is shown in figure 9. 
 

  
 

(a) (b) 
 

 

  
 

(c)       (d) 
 

 
(e) 

 
Figure 8: Optimum topologies for FR Experiment (ER=5%) 

(a) FRF=1.5, (b) FRF=2.0, (c) FRF=2.5, (d) FRF=3.0 (e) Unfiltered 
 

 
 

Figure 9: SE against iteration (FR) 
The Structures appear truss-like but are significant different since the location and 
number of trusses are significantly different. The number of trusses decrease as the 
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FRF is increased. This orients the BESO algorithm towards a less optimal part as 
shown in Figure 9 and 10. 

 

 
Figure 10: SE and Number of members against FRF 

 
 

B ER Results 
 

Fig 11 shows the results for the ER experiments. Optimum topologies appear 
truss-like, similar to results for FR experiments. The locations of these trusses are 
again different, significantly dependent on the ER. Though the graph of SE against 
ER suggest a quadratic relationship (figure 12), the TO is less sensitive to increasing 
ER as compared to FR. 
 

  
 
 

(a) (b) 
 
 

  
 
 

(b) (d) 
 

Fig 11: Optimum topologies for ER Experiments (FRF=2):  
(a) ER=1%, (b) ER=3%, (c) ER=7%, (d) ER=10% 
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Figure 12: SE and Number of members against ER 

 
 

IV  Conclusion 
 

Though BESO and SIMP attains optimal topologies efficiently, these topologies 
are often local since the TO is constrained by starting design, finite element mesh and 
parametric values. These less complex optima are suitable for traditional 
manufacturing; AM’s ability to make complex parts allows the production of truly 
optimal parts. Hence this algorithms needs to be improved for AM. 

In the BESO algorithm an increase in FR decrease the complexity in the part 
and orients the TO towards less optimum topologies. In the three dimensional case, 
the FR has a greater influence on the TO than the ER. The optimum ER occurs at 6%, 
though more data point is needed to confirm this. 

The basis for inclusion of a penalty factor in the SIMP might be inappropriate 
for AM, since its manufacturing cost is independent of complexity. A different 
penalization approach might resolve this problem. 

The stagnant mesh often used for the iterative FEA in both BESO and SIMP 
needs to be improved. Numerical errors might have constrained the TO, since 
topologies achieved while solving the cantilever problem differ significantly from 
Michell’s analytically optima [7]. Also, the issue of different optima topology for 
different starting point might have been caused by these errors. While mesh 
refinement might solve this, computational cost limits resolution attainable. An 
adaptive mesh improvement strategy could be incorporated in these algorithms to 
focus refined elements at new boundaries and coarsen mesh away from boundaries. 
Old void elements could be purge from the design domain to allow the introduction of 
smaller new elements at the boundaries while reducing computational cost. Further 
work would investigate these proposed amendments. 

These improvement might cause the TO to efficiently attain highly complex 
topologies with improved performance. These topologies can be made via AM. 
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