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Abstract

Additive manufacturing (AM) is expanding the range of designable geometries,
but to exploit this evolving design space new metls are required to find

optimum solutions. Finite element based topology dmisation (TO) is a

powerful method of structural optimization, howeverthe results obtained tend to
be dependent on the algorithm used, the algorithm grameters and the finite

element mesh. This paper will discuss these issugs it relates to the SIMP and
BESO algorithms. An example of the application of dpological optimization to

the design of improved structures is given.

Nomenclature

FR = Filter radius

ER = Evolution rate

VF = Volume Fraction

, = Sensitivity of nodé

V, = Volume of elemera

A, = Sensitivity of elemera

S = Number of elements connected to node

V., = Iterative new target volume

vV, = Current volume

d, = Distance between centre of an elenaeahd nodd
A = Element sensitivity threshold value (deleting)
A, = Element sensitivity threshold value (adding)

tol = Convergence tolerance, 1e-5

m = Current iteration number

T = Number of iterations over which convergencmeasured, 5
E, = Young’'s Modulus Solid

E, = Young's Modulus Void

TO = Topology Optimization

V* = Volume fraction constraint

SE = Strain Energy

ASE = change in strain energy

y = Distance between the centre and a node of séeneent.
u, = Elemental displacement vector

K, = Elemental stiffness matrix

P = Penalization factor

Xy = Elemental density distribution
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H, = Displacement field at iteration m

Puin = Parameter used to prevent singularity

Pm = Density at the previous cycle

J = Move limit

n = Tuning parameter

N, = Lagrange multiplier at cycle m

H, = Convolution operator

L(x,y)= Distance between centres of elemeandy.
I Introduction

Additive manufacturing (AM) is a relatively receapproach to manufacturing
whereby a component is built up [1-3] layer by layesually from sliced 3D CAD
data. It is a contrasting approach to tradition@naofacturing techniques such as
subtractive (e.g. machining) or formative (e.g.tica3. This layer by layer approach
requires less manufacturing constraints. Its ghibttbuild components with intricate
complexities opens up the design domain signifigar@nabling the production of
optimal parts with improved structural performancé&stablished topology
optimization algorithms (TO) could be adopted fdvl Ay relaxing constraints within
these algorithms originally meant for traditionadmufacturing routes.

TO is a type of structural optimization that settes optimum layout of a design
by determining the number of members required dmd rhanner in which these
members are connected. Unlike shape and size aptiom, TO achieve designs that
are not greatly constrained by the nature of tlit@alrdesign. Hence, TO is a better
route to take towards optimum parts. Several aigms have been developed for TO.
These include homogenization [4, 5], solid isotcomiicrostructure with penalization
(SIMP) [6-8], and bi-directional evolutionary sttucal optimization (BESO) [9-11].
Stochastic algorithms used in the broader fieldaifmization have also been adopted
for TO, among which are genetic algorithms [12-a#jd ant colony optimization
[15]. Optimum topologies depend on which of thesgodthm is used, starting
design, finite element mesh, parametric settingdeiled study of these is necessary
if AM’s design flexibility is to be completely expited. In this paper, we investigate
the effects of these factors on optimum achievethleySIMP and BESO algorithm,
since they have been widely implemented in liteato achieve practical designs.

Il Method
SIMP and BESO are the most widely used TO algosthowing to their
efficiency and simplicity. The section describe® timain features of these two
algorithms.
A BESO
The BESO algorithm is a combination of additive letionary structural

optimization (AESO) [9] and evolutionary structuggdtimization (ESO) [16]. Querin
et al [9, 11] originally proposed and implementeBES® to improve results and
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convergence time of both AESO and ESO. Huang aed 2] presented a different
version to BESO to solve compliance problems. BES® finite element based TO
method, where inefficient material is iterativegnmoved from a structure as efficient
material is simultaneously added to the structbigure 1 show a BESO flow chart
for the minimization of strain energ$) for a given volume fraction constraint (V*).
An evolution rate (ER), filter radius (FR), V* am#sign domain are supplied to the
algorithm. The ER is the rate at which the volusmallowed to change per iteration.
FR is a distance limit. Sensitivity values of nodethin FR from the centre of an
element are used to recalculate elemental semgitiglues of the same element when
filtering sensitivities. This is done to eliminatihe occurrence of undesired
checkerboard patterns in optima.

Finite No
Element
Analysis

ASE < tol

A

No

\ 4
Filter
Sensitivities

Set Propert
to Solid

A 4

Yes
No New Taget
Volume Set Pro_perty
to void

Figure 1: BESO Flow chart

The design domain is discretized and a finite el@manalysis (FEA) is
performed. An initially fully (fig 2a) or partially(fig 2b) solid design domain has
often been used in past works. Where a partiallig sfesign domain has been used,
the solid elements have been concentrated in eplartregion of the design domain.
This sort of starting design is intuitive in naturand might have constrained the
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topology to a local minimumThis is illustrated later by stochastically distiting
solid elements in the design domain.

Fixed edge

Force

All element solid in
design domain

@)

Void Elements

P i

| v
Solid Elements
(b)

Fig 2: Starting designs (a) fully solid start desig
(b) Partially solid start design

Elemental sensitivities are then filtered by fidsstributing them into nodes, to
which they are connected using equation 1,

zva/]a
Ty :6:15— 1)
2Va
a=1
The sensitivity of nodé, 7, is computed by finding all elemerdsconnected to this
node, and averaging their sensitivities valugsaccording to equation 1. Elemental

sensitivities are then recomputed by finding nodbsse distance to the centre of an
elementa, is less than or equal to FR. Sensitivity valueshese nodes are averaged
according to equation 2 to obtain elemental sesityitvalues.
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Where v(d,)=FR-d_ . Structural detail might be lost while eliminating
checkerboards in this mannerThese filtered sensitivities are averaged withues
they assumed in the previous optimization iteration further improve these
sensitivities. The volume fraction (VF) of the dgsidomain is checked against the
target volume fraction/*, if they were not equal a new iterative targetuwoe is
computed equation 3,

Vm+l = Vm (1iER) (3)

Elemental sensitivity values can then be rankedidSgements having sensitivity
values belowAy, are reclassified as having void property. Voidvedeats have been
modelled in this work by multiplying the elementsiiffness matrix of element
concerned by 1e-12. This is done to reduce thimesi§ contribution of these elements
before the global stiffness matrix is assemblediuRang the structural stiffness this
way is a soft kill approach to TO. This has beeopaeld in this work to avoid
connectivity problems associated with hard kill ][dptimization procedures. The
numbers of void elements reclassified as soliddsrithe current volume of solid
elements to/,,, at iteration m. The TO is repeated uiiBE is less than a specified
tolerance tol) and the specified volume fraction is reachA8E is computed using
equation 4,

T

Z (SEm—i +1 SEm—T—Hl
ASE == 4)

T
z SEm—1+1
i=1

The mesh does not change from the start to theetite TO. BESO algorithm might
be constrained by the starting design, ER, FR hedinite element mesh. In the next
sections we investigate these effects.

B SIMP

Rozvany et al [7] developed the SIMP algorithm ¢biave practical designs for
generalized shape optimization (optimization inwaodv higher volume fraction).
Figure 3 shows flow chart for the SIMP algorithm rfonimize SE for a volume
fraction constraint. Sigmund [17] implementationSIMP is described in this paper.
The compliance problem can be expressed matheriyatisa

N
min:SE = > (x,) ulk.u, ,
X e=1

subject to \% =V* 0<p,, <X <1 (5)

o

The penalty factoP is a main feature of the SIMP algorithm. This ¢act
suppresses the occurrence of fractional densitiglsei optimum design. Its inclusion
has been justified by assuming a high expense kingdractional densities.
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Figure 3: SIMP flow chart

According to Zhou and Rozvany [6]the extra manufacturing cost of cavities
would increase with the size of the cavities if wensider a casting process
requiring some sort of formwork for the cavitigs This is not true for AM, since
manufacturing cost of AM is independent [2] of peoimplexity. Most commercial
TO software have implemented SIMP for TO, hencsimgi questions about their
suitability for AM.

An initial distribution of density in the design main is used as the starting
design. Sigmund suggests [17] an initial even ithistion of these densities, Bendsoe
[4] terms it an initial guessThere isn’'t any rigorous mathematical proof for
choosing an even density distributiorit is unclear the sort of initial density
distribution implemented in commercial TO softwaren later sections we
investigate the effect of random density distribntiUsing these densities, an FEA is
performed; the displacement vector from the FEAuged to calculate the SE
(equation 6) and sensitivities. These sensitiviaes calculated by differentiating
equation 6 to get

- p(X ) p—lu(;l' keue (6)
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Sensitivities are filtered to eliminate the existerof checker board patterns in
the optima using equation 7,

oE) 1 ENZQ . O(sE) @
ox, N T oy,
XEZHf

f

=

whereH,; = FR-L(X,Y)

Other methods to eliminate checkerboard patternd§419] include perimeter
control, filtering the densities, patch smoothinmage processing, higher order
elements and monotonic scale length based coiiealh of these techniques bring
new challenges into the TO. Filtered sensitivittge then used to update densities
using the optimality criteria method as expressedequation 8. The process is
continued until convergence is reached.

Pmn :{max{(l_Z)pm’pmin}} If PmbBnm :{max{(l_Z)pm’pmin}}
pm+1 = {maX{(1+ Z)pm’l}} If pm+1 = {mln(1+ Z)pm '1} s pm’pmin
Otherwisep,,,, =B p..,
B, = A po(x) ™™ Ei?kl & (Up)ey () (8)
Again as with BESO, most applications of SIMP ia titerature has been with a
constant mesh. The continuous change in topolognga TO suggest results might
by improved by an iterative mesh improvement.

11 2D Example

A cantilever plate problem (figure 4) is solvedsttow the effect of the different
aspects of the BESO and SIMP algorithm on the aptinopologies.

H 160mm —

F=100N
s\ T~

§ E=100GPa

s Poisson Ratio=0.3 100mm
N

Figure 4: Cantilever plate

685


rosalief
Typewritten Text
685


The objective is to minimiz&E for a VF constraint of 0.5. The cantilever plate
was meshed with 16000 quadrilateral elements. Efteside of the plate is fixed
while a 100N force is imposed at the middle ofrilgat side of the plate.

A BESO

Figure 5 shows results of BESO algorithm at diffiengarametric settings and starting
point. FR was set at 3mm for ER=10% to achieverédgba. Reducing both FR and
ER to 1mm and 0.5% results in topology shown irugg5b. Figure 5c is for a

random starting point where solid elements are aary distributed in the design

domain. It can be seen from this figure that theapeetric settings does affect the
nature of an optimal topology since figure 5a ancbd different.

(b) ()

Figure 5: BESO topologies
(a) FR=3mm, ER=10%, solid start, SE=1.87Nmm
(b) FR=1mm, ER=0.5%, solid start, SE=1.84Nmm
(c) FR=3mm, ER=1%, random start, SE=1.82Nmm

Also, the random start converged to a differenblogy with lower SE. Hence the
starting point also affects the nature of the optitarting with a fully solid domain
moved the TO towards a local minimum. Figure 5c hhigot be the best design
possible for this problem as it differ from knowntthell’'s [7] analytical solutions to
this problem. A detail study of the parameters ataiting point might improve the
BESO algorithm.

B SIMP

Figure 6 shows the SIMP topologies for differemirtshg points and parametric
values. As shown in Figure 6a, a low FR of 1mm does$ totally eliminate
checkerboard pattern. If both the FR and P are &egt (Figure 6b), checkerboards
disappear but there is a large grey region owingnigenalized intermediate densities.
While the main feature of SIMP is to steer TO tadgafeasible topologies without
grey region, there might be an interpretation faeimediate densities in AM as this
has the lowest SH. P=3 and FR=1.5, the grey regions disappear (Ei¢a).

Unlike figure 6(a-c), figure 6d was carried outhwé random starting point. As
before symmetrical constraint were imposed to mtfegure 6d by ensuring the
density distribution of the upper half of the platas a mirror image of the lower half.
This topology (figure 6d) is characterized by an @B.8Nmm which is lower than
SE for figure 6a and 6¢ where and even density thstion was used at the start of
the TO.
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(c) (d)

Figure 6: SIMP topologies
(a) P=3, FR=1mm$SE=4.0Nmm, 0.5 even density start
(b) P=1, FR=1mmSE=3.3Nmm, 0.5 even density start
(c) P=3, FR=1.5mm§E=3.9Nmm, 0.5 even density start
(d) P=3, FR=1.5mnSE=3.8Nmm, Random density start

v 3D BESO application

The BESO algorithm is used to solve a practical@bBblem of an aerospace
arm shown in figure 7. All degrees of freedom aoastrained in surface A, while
pressure of 594KPa is imposed on surface B. Thmsiarmeshed with approximately
300,000 tetrahedral elements to investigate thectffof changing FR and ER on the
optima. The red part is set to non-design whilegiteen is the design domain.

All dof fixed >94KPa
on Surface A

[ Design domain

Il Non-design domain
Surface A Surface B

Figure 7: 3D Aerospace metallic arm

Two sets of experiments are conducted, in the §iesthe ER is set at 5%, while
the FR is varied by setting it as a multiple (FRtef radius factor) of the distance
between the centroid of a tetrahedral element andda on that element. This factor
is set at 1.5, 2.0, 2.5, 3.0. The FRF is fixed.atvhile the ER is set at 1%, 3%, 7%
and 10% in the second set experiments.
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A FR Results
Figure 8 shows the optimum topologies for the défe FRF. A plot ofSE
against iteration is shown in figure 9.

(@) (b)

(c) (d)

Checkerboard
Pattern

(e)

Figure 8: Optimum topologies for FR Experiment (536
(a) FRF=1.5, (b) FRF=2.0, (c) FRF=2.5, (d) FRF=&)Unfiltered

4.50 -
4.00 -
~ 3.50 1
£
Z 3.00 -
>
2 2.50
2
'-'CJ 2.00 A — Unfiltered
T 1.50 A ~-1.5
)
) -2
1.00 A
o —-—-2.5
0.50 A o3
0.00 T T T T T 1
0 20 40 60 80 100 120

Iteration
Figure 9:SE against iteration (FR)

The Structures appear truss-like but are signifigifierent since the location and
number of trusses are significantly different. Thenber of trusses decrease as the
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FRF is increased. This orients the BESO algoritomards a less optimal part as
shown in Figure 9 and 10.
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Figure 10:SE and Number of members against FRF

B ER Results

Fig 11 shows the results for the ER experimentdin@pn topologies appear
truss-like, similar to results for FR experimeni$ie locations of these trusses are
again different, significantly dependent on the HRough the graph o®E against
ER suggest a quadratic relationship (figure 12, T is less sensitive to increasing
ER as compared to FR.

&g &==-@

(@) (b)
(b) (d)

Fig 11: Optimum topologies for ER Experiments (FRF=
(a) ER=1%, (b) ER=3%, (c) ER=7%, (d) ER=10%
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Figure 12:SE and Number of members against ER

v Conclusion

Though BESO and SIMP attains optimal topologie&iefftly, these topologies
are often local since the TO is constrained bytisdesign, finite element mesh and
parametric values. These less complex optima argabde for traditional
manufacturing; AM’s ability to make complex partéoas the production of truly
optimal parts. Hence this algorithms needs to h@aved for AM.

In the BESO algorithm an increase in FR decreasectmplexity in the part
and orients the TO towards less optimum topolodieghe three dimensional case,
the FR has a greater influence on the TO than BieTlee optimum ER occurs at 6%,
though more data point is needed to confirm this.

The basis for inclusion of a penalty factor in 8P might be inappropriate
for AM, since its manufacturing cost is independeftcomplexity. A different
penalization approach might resolve this problem.

The stagnant mesh often used for the iterative kERAoth BESO and SIMP
needs to be improved. Numerical errors might hawastained the TO, since
topologies achieved while solving the cantileveohpem differ significantly from
Michell’'s analytically optima [7]. Also, the issuaf different optima topology for
different starting point might have been caused thgse errors. While mesh
refinement might solve this, computational costitémresolution attainable. An
adaptive mesh improvement strategy could be incatpd in these algorithms to
focus refined elements at new boundaries and coarssh away from boundaries.
Old void elements could be purge from the desigmaia to allow the introduction of
smaller new elements at the boundaries while reducomputational cost. Further
work would investigate these proposed amendments.

These improvement might cause the TO to efficieatiyain highly complex
topologies with improved performance. These tope®gan be made via AM.

690


rosalief
Typewritten Text
690


References

1.

10.

11.

12.

13.

14.

Tuck, C.J., Hague, R.J.M., Ruffo, M., Ransley,, Mdams, P.,Rapid
manufacturing facilitated customization. International Journal of Computer
Integrated Manufacturing, 20081(3): p. 15.

Gibson, 1., Rosen, D.W., Stucker, Bgditive Manufacturing Technologies.
2009, New York: Springer.

Hopkinson, N., Hague, R., Dickens, Rapid Manufacturing: An industrial
revolution for a digital age. Book. 2006: John Wiley and Sons. 285.

Bendsoe, M.P., Sigmund, Qgpological optimization: theory, methods and
applications. 2004, Berlin: Springer-Verlag. 370.

Bendsoe, M.P., KikuchiGenerating optimal topologies in structural design
using a homogenization method. Computer Methods in Applied Mechanics
and Engineering, 19881 p. 28.

Zhou, M., Rozvany, G.I.N.,The COC algorithm, Part Il: Topological
geometrical and generalized shape optimization. Computer Methods in
Applied Mechanics and Engineering, 1999. p. 28.

Rozvany, G.I.N., Zhou, M., Birker, T.Generalized shape optimization
without homogenization. Structural Optimization, 1992: p. 3.

Rozvany, G.I.N.,A critical review of established methods of structural
topology optimization. Struct Multidisc Optim, 20098B7: p. 21.

Querin, O.M., Steven, G.P., Xie, Y.MEyolutionary Structural optimization
using an additive algorithm. Finite Element in Analysis and Design, 2000a.
34: p. 18.

Huang, X., Xie, Y.M.Convergent and mesh-independent solutions for the bi-
directional evolutionary structural optimization method. Finite Elements in
Analysis and Design, 20043 p. 11.

Querin, O.M., Young V., Steven, G.P., Xie, Y,\omputational Efficiency
and validation of bi-directional evolutionary structural optimization. Comput
Methods Applied Mechanical Engineering, 200089 p. 15.

Chapman, C.D., Saitou, K., Jakiela, MGenetic algorithms as an approach
to configuration and topology design. Journal of Mechanical Design, 1994.
116105): p. 8.

Chapman, C.D., Jakiela, M.&genetic algorithm-based structural topology
design with compliance and topology simplification consideration. Journal of
Mechanical Design, 19961889): p. 10.

Jakiela, M.J., Chapman, C., Duda, J., Adewudya,Saitou, K.,Continuum
structural topology design with genetic algorithms. Computer Methods
Applied Mechanics and Engineering, 20086 p. 18.

691


rosalief
Typewritten Text
691


15.

16.

17.

18.

19.

Luh, G., Lin, C.Sructural topology optimization using Ant colony algorithm.
Applied Soft Computing, 2009: p. 11.

Xie, Y.M., Steven, G.PEvolutionary Structural Optimization. 1997, London:
Springer-Verlag.

Sigmund, O.A 99 line topology optimization code written in Matlab. Struct
Multidisc Optim, 200121 p. 8.

Kim. H., Q.0.M., Steven, G.RFOn the development of structural optimization
and itsrelevance in engineering design. Design studies, 20023: p. 18.

Zhou, M., Shyy Y.K., Thomas, H.LCheckboard and minimum member size
control in topology optimization. Struct Multidisc Optim, 200121: p. 7.

692


rosalief
Typewritten Text
692




