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Abstract

Most topology (TO) algorithms involve the penalization of intricate structural features to elim-
inate manufacturing difficulties. Since additive manufacturing is less dependent on manufacturing
constraints, it becomes necessary to adapt these algorithms for AM. We propose a hybrid algorithm
consisting of an adaptive meshing strategy (AMS) and a modified form of the bidirectional evolu-
tionary structural optimization (BESO) method. By solving a standard cantilever problem, we show
that the hybrid method offers improved performance over the standard BESO method. It is proposed
that the new method is more suitable for optimizing structures for AM in a computational efficient
manner.

Introduction

Topology optimization (TO) is the structural optimization method least sensitive to the initial design
and so has the greatest capacity for realizing improved design for additive manufacture (AM). It began
when Mitchell [1] established principles for the TO of truss-like structures and later, work by Rozvany
and Kirsch [2, 3] extended this to allow the optimization of grillages and bar systems. Bendsoe and
Kikuchi’s [4] homogenization technique significantly advanced TO as it reduced the optimization of con-
tinuum structures to that of determining the optimum parameters of holes in unit cells that constituted
such structures. Rozvany and Zhou [5] further simplified TO by introducing the SIMP (Solid Isotropic
Microstructure with Penalization) algorithm to obtain practical designs. Steven and Xie [6] also proposed
a simple approach to TO, called evolutionary structural optimization (ESO), though Zhou and Rozvany
[7] attribute much of its ground work to Mattheck et al. [8] who used a similar procedure in adaptive
biological growth. Querin et al. [9] enhanced the efficiency of the ESO algorithm with the bi-directional
evolutionary structural optimization (BESO) algorithm. Huang and Xie [10] improved on this to solve
mesh dependency and non-convergent problems. Stochastic optimization algorithms have also been used
for TO. Sandgren et al. [11] and Chapman et al. [12, 13] performed genetic algorithm based TO. Kaveh
et al. [14], and Luh and Lin [15] used ant colony optimization algorithms. Luh et al. [16] applied particle
swarm optimization while Bureerat and Limtragool [17] preferred simulated annealing. Hybrids have
also emerged, Zuo et al. [18] combined BESO and a genetic algorithm and Garcia-Lopez [19] coupled
SIMP with simulated annealing. These stochastic algorithms operate on a population of solutions for
a complete exploration of the design space. However, computational cost increases significantly when
they are used to solve complicated three dimensional problems. Similar to non-stochastic algorithms,
stochastic algorithms rely on results from a finite element analysis (FEA) to move an initial topology to
an optimum.

FEA is a numerical technique used to estimate solutions for problems governed by partial differential
equations [20]. It assumes a piecewise form of the equation for a given domain. An assembly of each
piece or element constitutes a mesh improved either by h−, p− or r− refinement [21]. A common ap-
proach to TO involves prior preparation and improvement of the mesh to an acceptable quality, with
the mesh remaining fixed for the duration of the TO. Authors illustrate the practicality of their TO
algorithm by solving simple problems with this sort of meshing strategy. For three dimensional problems
with complicated geometry, satisfactory mesh quality can only be achieved with a high number of ele-
ments. Following TO, post processing operations are often a necessity owing to the characteristic rough
boundaries of optima. Again, using a finer mesh would reduce the extent of the roughness, however the
computational resource required for this often makes them undesirable, especially for three dimensional
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problems. Both Kim et al. [22] and Mariano et al. [23] developed algorithms that achieve smoother
boundaries at reasonable mesh sizes. However, similar to other TO, their reliance on a fixed mesh limit
the appearance of intricate features that could potentially enhance structural performance.

Until recently, the appearance of such intricate features was not desirable due to manufacturing con-
straints. These small feature were penalized either during or after a TO to allow manufacturability.
Recent developments in the field of additive manufacturing (AM) have enabled a significant increase in
the level of geometric complexity achievable without a significant increase in the cost of manufacture. This
is due to the inherent layer-by-layer approach to manufacturing which eliminates the need for tooling or
fixtures [24, 25]. According to Hague et al. [26] “the advent of additive manufacturing will have profound
implications for the way in which designers work.”. Rosen [27] commenced a domain exploration based
on sizing optimization of cellular materials called mesostructures. Interestingly, the versatility of this
exploration could be enhanced by coupling an adaptive meshing strategy (AMS) with TO algorithms. In
this paper, we couple the BESO algorithm to an AMS to solve a two dimensional problem. The discrete-
ness of intermediate topologies in the BESO algorithm makes it suitable for our strategy. To demonstrate
the performance of our method, a cantilever plate problem was solved to minimize total strain energy, C,
for a given area fraction constraint, A∗. This work is an aspect of a project titled “Topological optimized
additively manufactured structural metallic components” funded by the engineering and physical science
research council (EPSRC) and the innovative manufacturing and construction research centre (IMCRC).

Method

Certain aspects of Huang and Xie’s [10] BESO algorithm were modified to allow an effective coupling
of the AMS with the BESO algorithm. This hybrid method was then based on an iterative improvement
of an unstructured triangular mesh by refining elements at boundaries of intermediate topologies and
coarsening other regions. Using Engwirda’s [28] code, elements were selectively refined while coarsening
was achieved by edges collapse. This necessitated the development of a logic for recognition of elements to
refine and edge to collapse. A consequence of this strategy was the degradation of mesh quality minimized
by subjecting the emergent mesh to Laplacian smoothening [31] (an r−refinement method) method. To
illustrate performance, we solve a cantilever plate problem with area, Ai, at iteration, i, experiencing
load, F , with an objective to minimize C given A∗. Expressed mathematically as,

min : C =
1

2
Ftu, subject to :

Ai

A0
= A∗ (1)

where u is a displacement vector.

Modified BESO

The BESO algorithm was modified to involve,

• FEA,

• Computation of elemental strain energies, λa,

• Calculation of filtered elemental strain energy densities, χa,

• Calculation of a target area, A1,

• Deletion and addition of elements based on thresholds, χth
del, χ

th
add

• Adaptive mesh improvement,

• Comparison of change in strain energy, ∆C, against a tolerance, θ,

• Iterations of steps 1 to 5 until ∆C is lower than θ,
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We implemented this BESO version by passing a discretized design domain, filter radius factor, R
′
,

and evolution rate, v, to the algorithm. The R
′

was a scalar multiple used to include contributions
of neighboring nodes to the filtered strain energy densities of an element being filtered. The v was
the iterative rate of change of area of the undeleted elements. An explicit description of their use is
given later. The first step, FEA, was performed using MSC Nastranr (MSC Software, California, Santa
Ana). Elemental strain energies, λa, were outputted from MSC Nastranr and inputted into MATLABr

(Mathworks, Natick, Massachusetts) where subsequent steps of the BESO were implemented. We then
computed elemental strain energy densities, χa, from λa through

χa =
λa
Aa

(2)

where Aa was the area of element, a. Filtering χa suppressed the appearance of checkerboard patterns,
and was achieved in two stages. The first involved a distribution of χa over connecting nodes to obtain
nodal sensitivities, ηb, by

ηb =

N∑
a=1

Aaχa

N∑
a=1

Aa

(3)

where N was the last element connected to node b. Secondly, calculating filtered elemental strain energy
densities, χa, from ηb and R

′
through,

χa =

N∑
b=1

ψ(dab)ηb

N∑
b=1

ψ(dab)

(4)

where ψ(dab) = R′y − dab, y was the radius of a circle that circumscribed the element, a and dab was
the distance between node b and the center of element a. Next, a target area, A1, was computed from v
according to

A1 =

{
Ai(1− v), if Ai

A0
> A∗

A∗A0, if Ai

A0
≤ A∗

(5)

A set of areas, Ω̂, belonging to undeleted elements was sorted in descending order of χa. This order
allowed the construction of a cumulative area set, κ̂, for each element through,

κ̂(a) =
a∑

j=1

Ω̂(a) (6)

The χa of an element whose corresponding cumulative area, κ̂a was nearest to A1 was assigned as a
threshold, χth

del. Undeleted elements with χa below χth
del were deleted. The was achieved by re-associating

a predefined void property to them with an insignificant Young’s modulus (1% of that of undeleted
elements). A similar process was then applied to pre-existing deleted elements. The χa of the element

whose cumulative area, Ω̂(a), approximately equaled A1−Ai was assigned to a different threshold, χth
add.

Elements with χa above this threshold were reassociated to the existing property for undeleted elements.
The mesh was then improved through the AMS detailed in the next section.

Adaptive Meshing

The AMS was basically composed of selecting, refining, coarsening and smoothening. We define the
following sets to enhance the description of the AMS:
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• Û = {All elements in design domain},
• Q̂ = {Undeleted elements connected to boundary edges},
• Â = {Elements in Q̂ whose A exceed a lower limit, Amin },
• R̂ = {Elements to refine},
• N̂ = {New elements derived from R̂},
• Ô = {Old elements,}
• Ĉ = {Elements to delete by collapsing (thereby coarsening the mesh).}
• X̂ = {Points whose X Cartesian coordinates lie on the design domain boundary},
• Ŷ = {Points whose Y Cartesian coordinates lie on the design domain boundary},

The first stage in the AMS was to select the elements at the edeges of the current topology that would be
subject to re-meshing. A connectivity matrix, L, was constructed to contain the total number of elements
in the mesh, h. Each row, a in L held the node identification numbers, b, of nodes connected to element,
a. An edge matrix E with 3h rows and 2 columns was then constructed from L through

Ei,k = Lx,y (7)

where,

x =

{
i− b ihc, if i− b ihc 6= 0

h , if i− b ihc = 0
, y =

{
d ihe+ (k − 1), if d ihe < 3

1 , if d ihe = 3
, 1 ≤ i ≤ 3h, and 1 ≤ k ≤ 2

Each row in E held node numbers connected to each edge. Subsets occurring only once represent edges
lying on the boundary of the domain. These subsets were placed in a matrix E1. The set of elements,
Q̂, connected to these edges was then determined by

Q̂ = {a : E
j

1 ⊆ La,(1,2,3)} (8)

where j is an integer used to select edges in E1 for each element, a. The size of Q̂ was further reduced by
subjecting it to two further criteria. The first involved a lower area limit, Amin, imposed on members of
Q̂ so that only elements with area, A, above Amin were passed to a new set R̂. Secondly, R̂ was reduced
by removing elements whose Aa falls below a certain percentile (90%). These two steps prevented an
infinite growth in the number of elements.

As mentioned earlier, Engwirda’s [28] method was employed for refinement purposes. This replaced

elements in R̂ with new smaller elements based on two refinement templates. This was achieved by first
storing edges of elements to refine in E1. The mid point of these edges were computed and including in the
mesh. Elements with all three edges belonging to E1 were divided into four elements, while elements with
a single edge in E1 were divided into two on the edge found in E1. A much detailed description of this
algorithm can be found in [28]. Elemental properties of refined elements were inherited by corresponding

new elements. After refinement, Ô was constructed from N̂

Ô = N̂ c = Û \ N̂ (9)

Construction of Ĉ was accomplished by extracting the smallest 1% of elements in Ô. This lower range
was appropriate to prevent excessive distortion of elements in the mesh. Also, elements lying on the
boundaries of the design domain were removed from Ĉ. The Ĉ and the mesh were then passed to the
coarsening subroutine where the element collapsing [30] operation was performed. The flow chart for

this subroutine is shown in Fig. 1. Set Ĉ was iteratively checked until it was empty which initiated the
termination of the coarsening operation. However, a populated Ĉ caused a move into a loop where a
restoration point was initiated by duplicating the current mesh into Nmesh. The nth edge of the first
element in Ĉ was then collapsed in Nmesh by setting both the first and second nodes of the edge to the
mid point, Pmid, of that edge. This operation caused a degeneration in elements connected to the edge
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Figure 1: Flow chart for coarsening subroutine based on element edge collapse.

and an enlargement of other elements connected to just one node of same edge. Degraded elements were
then simply removed from Nmesh without compromising it’s topology. The quality, Qa, of elements in
the vicinity of the deleted edge was evaluated according to Bhatia and Lawrence [29] metrics expressed
as

Qa =
4
√

3Aa

l21 + l22 + l23
(10)

where l1, l2, l3 are the element edge lengths and 0 ≤ Qa ≤ 1. For degenerate elements Qa approaches
a value of zero while regular elements were characterized by a Qa value of one. The variable mesh was
replaced by Nmesh only if low quality elements (Qa < 0.01) were absent from Nmesh. Otherwise, a move

is forced to the next edge and the collapsing process repeated. An element was removed from Ĉ once col-
lapsed or if no collapsing operation for its three edges resulted in adjacent elements of acceptable quality.
Further improvement in the quality of mesh was achieved by Laplacian smoothening [31]. Convergence
of the Laplacian smoothening algorithm was based on the quality metric stated earlier with a minimum
quality of 0.05. The mesh was passed back to BESO after each improvement and convergence tested by
calculating ∆C

∆C =

|
T∑

k=1

(Ci−k+1 − Ci−T−k+1)|

|
T∑

k=1

Ci−k+1|

(11)

where T = 5, k is a counter varying from 1 to T , used to selectively pick C for the last T iterations.
Variable ∆C was compared against θ to either terminate or repeat the BESO algorithm. θ assumed
a value of 1 × 10−3. We hypothesize that coupling our AMS with the BESO algorithm would provide
greater efficiency, reduced sensitivity to the starting mesh and smoother boundaries thereby reducing
subsequent geometric post processing. We proceed to give a detailed account of experiments conducted
to investigate these hypotheses by solving a cantilever plate problem to minimize C.
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Test Problem

To test the performance of the AMS, we solved a cantilever plate problem (Fig. 2) with an objective
to minimize C subject to an area fraction constraint, A∗ of 0.5. A Young’s modulus of 100GPa and
Poisson’s ratio of 0.3 was assumed.

Figure 2: Cantilever plate subject to a point load, F , and constrained on the left side.

We investigated the validity of our hypotheses with two difference set of experiments. Using different
mesh sizes we compared our strategy with the original BESO [10]. The R

′
and v were fixed at 1.5 and

1% respectively for all experiments. It was anticipated that by selecting these values for the optimization
parameters, penalization of finer features would be minimized. Experiments were performed on a desktop
computer with Intel(R) Core(TM) CPU, 3.20GHz and 3.24GB of RAM. Where the results are labelled
’BESO’, this refers to Huang and Xie’s version [10].

Test of Efficiency

Four experiments were performed to ascertain the computational efficiency for both the AMS and
BESO algorithm (table 1). The starting mesh size and area limit, Amin, were varied across these ex-
periments. An initial value of 0.1mm2 was assumed for Amin, while solving the problem with the AMS
algorithm with 2000 elements initially in the design domain (Exp.1). A corresponding uniform mesh was
created with elemental areas equal to 0.1mm2 (40,000 elements) was utilized in Exp. 2 where the BESO
algorithm was applied. Two other experiments were performed using a lower value of Amin (0.02mm2).
Starting with a mesh populated with 40,000 elements, the first experiment was repeated (Exp. 3). The
corresponding uniform mesh for this value of Amin amounted to 200,000 elements in Exp. 4 where the
BESO was applied. Optima truss-like topologies for these four experiments are shown in Fig. 3.

Table 1: Optimization run details and results for Exps. 1 to 4 comparing CPU time used, iterations to
convergence and converged strain energy, C∞ and stiffness, K∞.

Exp. Algorithm Start No. elems. Amin Time No. iterations C∞ K∞
(mm2) (hr:min) (Nmm) (N/mm)

1 AMS 2,000 0.1 0:18 75 2.21 27.11
2 BESO 40,000 0.1 0:39 78 2.21 26.85
3 AMS 40,000 0.02 1:42 77 2.25 27.03
4 BESO 200,000 0.02 9:39 78 2.28 27.00

It can be seen that the boundaries of the topologies shown in Figs. 3a and 3c appear darker than
the interior regions. A magnified view B shown in these Figs. allows a better visualization of the mesh.
This is due to the higher density of smaller elements at these boundaries, in contrast to an even shade
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(a) (b)

(c) (d)

Figure 3: Optima topologies and a magnified view B for (a) Exp.1 (b) Exp. 2 (c) Exp. 3 (d) Exp. 4

observed in Figs. 3b and 3d due to a near constant element size. We characterize each experiment by the
CPU time consumed, number of iterations to convergence and the asymptotic strain energy, C∞. Results
for these measures are contained in table 1.

Exps. 1 and 2 converged to the same C∞, however Exp. 2 took twice as long as Exp. 1, also requiring
a greater number of iterations. A similar trend is repeated for Exp. 3 and Exp. 4, though Exp. 3
converged approximately five times faster than Exp. 4. Also while Exp. 1 and 2 attained the same C∞,
Exp. 3 and 4 differed slightly. Similarity in C∞ for Exp. 1 and 2 can be attributed to approximately the
same number of nodes at the end of both Exps. as shown in Fig. 4a.

The number of nodes increased in Exp. 1 as the TO progressed to end with a similar number of
nodes to Exp. 2. However, Exp. 3 and Exp. 4 have a significantly different number of nodes at the
last iteration as shown in Fig. 4b. The different number of degrees of freedom makes it difficulty to
fairly compare these C∞ values since different levels of FEA errors will exist in the calculation of C.
Distortions at the loaded node compound this problem, necessitating a post analysis. Since the main
aim of a strain energy minimization problem is to minimize deflection, the post analysis was performed
to determining the stiffness of the topologies. Stiffness in this context refers to the ratio between load
F and the magnitude of a nodal displacement. The chosen node was in the vicinity of the loaded node,
however far enough to avoid FEA errors caused by distortion. The location of this node was fixed for all
topologies.

Boundaries of topologies were first extracted, followed by a smoothening process to eliminate the
rough boundaries without violating V ∗. All, topologies were then remeshed with second order elements
and then analyzed. The number of elements was increased until a converged stiffness, K∞ was reached.
The K∞ for the four topologies are shown in table 1. The K∞ for Exp. 1 was slightly greater (0.01%)
than that of Exp. 2. Also, K∞ of Exp. 3 was slightly greater (0.001%) than that of Exp. 4. This
suggested topologies achieved by the AMS were marginally stiffer than those using the BESO algorithm.
While it could be argued that the K∞ values of Exp. 1 to 4 were approximately equal, the computational
efficiency offered by the AMS makes it attractive for TO for AM.
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(a) (b)

Figure 4: Plots of C and nodes against i for (a) Exps. 1 and 2 (b) Exps. 3 and 4

Sensitivity Test

A second set of experiments was performed to compare the sensitivity of the AMS to the starting
mesh compared to that of the original BESO. Eight experiments were formulated for this purpose (table
2), the first four were performed with the AMS and the second four using the BESO algorithm. The
Amin was set at a low value of 0.001mm2 for the AMS experiments while the initial mesh was populated
with a different number of elements for the four experiments. The four experiments using the BESO
algorithm had different fixed meshes corresponding to the initial meshes of the AMS experiment. Optima
the topologies for these experiments are shown in Fig. 5. Again, these topologies appear truss-like, noting
that Exps. 11 and 12 correspond to Exps. 2 and 4 respectively.

Table 2: Sensitivity test of AMS and BESO algorithms involving eight experiments (Exps. 5 to 12)
characterized by their M , Dmin, Lmin, C∞ and K∞. Standard errors, σm, are also shown.

Exp. Algorithm Start No. elems. Amin M Dmin Lmin C∞ K∞
(mm2) (mm) (mm) (mm) (Nmm) (N/mm)

5 AMS 2,000 0.001 28 0.36 0.37 2.25 27.11
6 AMS 20,000 0.001 26 0.38 0.42 2.29 27.18
7 AMS 40,000 0.001 31 0.23 0.38 2.31 26.99
8 AMS 75,000 0.001 28 0.34 0.32 2.30 27.10

σm: 1.03 0.03 0.02 0.04
9 BESO 2,000 - 10 3.64 10.66 2.09 26.23
10 BESO 20,000 - 24 1.66 1.20 2.18 26.79
11 BESO 40,000 - 25 0.38 0.38 2.21 26.84
12 BESO 75,000 - 35 0.74 0.64 2.23 26.94

σm: 5.14 0.73 2.48 0.32

It was difficult to ascertain the sensitivity of the AMS and the BESO to initial mesh by simple vi-
sual inspection of the topologies. Therefore, these topologies were quantified with the number of strut
members, M , occurring in the optima (table 2), the minimum member thickness, Dmin, the minimum
member length, Lmin and K∞. For both the AMS and BESO algorithm, variability in each sample set
was quantified with the standard error in the mean, σm, of these characteristics stated as,

σm =
σ√
4

(12)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Optima topologies for (a) Exp. 5 (b) Exp. 6 (c) Exp. 7 (d) Exp. 8 (e) Exp. 9 (f) Exp. 10 (g)
Exp. 11 (h) Exp. 12

where σ was the standard deviation of each sample set. The σm for both algorithms can be seen in table
2. These values show that there is less variability in the topological data collected for the AMS than with
the BESO algorithm. Secondly, it was observed that the AMS realized members with smaller Dmin and
Lmin than the BESO. Attaining these dimensions with the BESO, or any other fixed mesh algorithm,
would require a much finer mesh, and have high computational time. These finer details are important
as we are now able to produce part with such details via AM. A typical limit of minimum feature size in
AM is about 10µm [32]. With regards to C∞, these could not be reliably used to estimate variability in
the performance for the reasons mentioned in the previous section. A useful measure was the standard
error in the K∞, which was also observed to be less for the AMS than that of the BESO as shown in table
2. It should also be noted that Figs. 3a and 3b, Figs. 3c and 3d shared similar boundary roughness
since the size of boundary elements in both sets were largely similar. However, Figs. 3a-3d had smoother
boundaries Figs. 3e-3h since elements at their boundaries were much smaller (0.001mm2) than that of
the uniform meshes used in Figs. 3e-3h. This demonstrates that the AMS is able to achieve smoother
boundaries than the BESO algorithm at a lower computation cost.

Conclusion and further work

A hybrid TO algorithm is proposed constituted by a modified form of the BESO algorithm and
an adaptive meshing strategy (AMS). The BESO algorithm was modified so that it was based on strain
energy densities since the AMS caused a progressive variation in elemental sizes. A two dimensional plate
problem was solved to benchmark performance of the hybrid against that of the BESO algorithm. The
AMS was found to be substantially more efficient, with a reduction in computation time of 52% and 82%
respectively for the cases investigated, with similar performance. It was also less sensitive to the starting
mesh and able to attain smoother boundaries with a lower number of elements. Also, finer features
are achievable with the AMS, starting with relatively coarse meshes. This is particularly interesting for
topologies to be made via additive manufacture (AM). Since AM can achieve parts with high degrees of
complexity. Further work could involve the determination of an element size that corresponds to AM’s
resolution. Also, the AMS could be extended to practical three dimensional parts experiencing single and
multiple load cases.
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