
Proceedings of International Solid Freeform Fabrication Symposium 2011  

An Additive Manufacturing Conference 

             August 8-10. 2011, Texas, USA 

1 

 

 
 

Octree Approach for Simulation of Additive Manufacturing Toolpath

 

 
Ch. Sweta Dhaveji 

Department Of Manufacturing Engineering 
Missouri University of Science and Technology 

Rolla, Missouri,USA 

Todd E. Sparks 
Department of Mechanical and Aerospace 

Engineering 
Missouri University of Science and Technology 

Rolla, Missouri, USA 
  

 

Jianzhong Ruan 
Department of Mechanical and Aerospace 

Engineering 
Missouri University of Science and Technology 

Rolla, Missouri, USA 

Frank W. Liou 
Department of Mechanical and Aerospace 

Engineering 
Missouri University of Science and Technology 

Rolla, Missouri, USA 
 
 
 

ABSTRACT 

 

Machine simulation is an effective way of checking additive manufacturing tool paths for both interferences and errors in part 

produced. This paper presents an algorithm to visually simulate a multi axis additive manufacturing system as it executes a process 

plan.  Simulation results are intended to be used as a verification step before   physically producing the part.  Verification is 

particularly important for large builds of expensive materials.  The algorithm uses an octree approach to efficiently model the 

deposition of part geometry and its changes.  This paper discusses development of the simulation algorithm, including both the 

representation of the additive manufacturing machine and the octree data model of the part being produced. 

 

1 INTRODUCTION 

 

 

Rapid prototyping also known as solid freeform fabrication, is one of the widely used techniques for visualization in industries. By 

using rapid prototyping methods, prototypes can be completed rapidly by adding and bonding materials layer wise [2,6]. Some factors 

that would not allow additive fabrication are: specific material need, end use requirements, or explicit tolerance demands. In such a 

case subtractive manufacturing is used.[10] But rapid construction of physical models before real life production is of grave 

importance due to the need of the hour ‘cost and time  reduction criteria’ as well as ‘quality increment’. [7] This paper investigates an 

octree approach to produce a rapid prototyping model. 

 

Information about 3D surfaces/models can be stored in an Octree and hence they can be used to represent a solid model. Octrees have 

particular advantages over other representations when the volumes contained are highly connected or blobby [4]. Briefly, the octree 

data structure is a tree composed of octants. Each octant defines a cubical volume and each octant will possess its own data wherein 

every cube is denoted as empty, full or neither (i.e., partially full). Octants that are partially full have eight child octants again and 

these child octants together exactly fill the space occupied by their parent. Like its parent, each child octant may be empty, full or 

divided into another eight octants [1, 4, 5]. Refer to Figure1, wherein the parent geometry is divided into eight octants namely C1, C2, 

C3, C4, C5, C6, C7 and C8. Octant C1 is partially full and hence is again divided into another eight octants. C1 is now a parent to 

octants – 1, 2, 3, 4, 5, 6, 7, 8. The octants C2, C3, C5 and C7 are full whereas octants C4, C6, and C8 are empty. This process is 

recursively continued until all octants are described in terms of empty or full octants with a certain degree of resolution.  
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FIGURE 1. DIVISION OF A GEOMETRY BY OCTREE METHOD 

 

Octree decomposition: The object that needs to be decomposed is enclosed by the smallest possible box so that it completely 

contains the entire object inside it. This cube is then divided into 8 sub-cubes and each of them is again either divided into octants or 

the subdivision is not performed as per containancy.[5]  There is a set level of so as to determine the final size of the smallest octants. 

 

Laser Aided Manufacturing Process (LAMP) lab uses a Fadal 5-axis CNC machine (model VMC3016) as shown in Figure 2, as the 

motion driver. The deposition nozzle is mounted at the side of the spindle, which forms a hybrid manufacturing system on a single 

workstation. These are used to restore a damaged part to its original geometry. [9] 

 

 
 

FIGURE 2. LASER METAL DEPOSITION PROCESS 

 

This paper aims to address the difference between octree method for subtractive and additive manufacturing, visualization of the 

original geometry and division of the damaged surface into octants for the purpose of reconstruction using the octree approach. The 

paper will summarize how each geometry can be represented in a generic format using a text document, presents a pseudo code for 

octree additive operation and also explains the reason for conversion of a CAD model into STL format for this method. 

 

2 RELATED WORK 

 

Rapid prototyping is a different way, compared to conventional means, for manufacturing parts which are difficult to produce using 

general methods. Complicated shapes and geometries can be easily manufactured using solid freeform fabrication. However this is 

possible easily with the use of voxel modeling. This paper aims at using a voxel based octree method for the layer based production. 

 

Octree decomposition has been in application since a long time from now, for subtractive manufacturing. However applying octree 

method on additive manufacturing is a challenge due to its different nature. 
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A major problem that comes across with the use of simulation for layered manufacturing is that these geometries can be fairly large in 

size and the size is unknown for an estimate. In case of octree decomposition, the size of the geometry is known and hence the size of 

the bounding box for the same can be decided and then recursive division of this box into octants happens until a desired resolution is 

reached. Refer to Figure 3, where A is the geometry with known dimensions and B is the bounding box that encloses the shape. 

 

 
FIGURE 3. ILLUSTRATION OF BOUNDING BOX 

 

The ordinary octree implementation begins with a single octant and unfortunately, this scheme does not allow for modelling of objects 

that grow or objects that appear outside the original working volume. That is because generally there is a CSG model or some kind of 

representation of the object from which its octree structure is derived. 

 

Current visualization for additive manufacturing has the following disadvantages: 

1) High computational time 

2) High cost related process 

3) Large amount of memory space is used for data storage in the case of layered manufacturing 

This paper aims at overcoming the above disadvantages. In this paper, a generic method has been developed to represent the very first 

octant for any geometry in the form of numbers and letters in geometry input document, addition of parent octants and division and 

sub-division of the existing octants into several children and the advantages and disadvantages of this method are described. 

 

3 CONCEPTS OF THE ALGORITHM 

 

This paper discusses the following concepts 

1) A 3D CAD model of the geometry 

2) An octree data document 

3) The implementation of layered addition. 

 The details about each of the above will be discussed in different sections in the paper. The flow of data, represented in Figure 4 

below, is as follows – the 3D CAD model undergoes a transformation to STL format, in order to make it compatible with the solid 

freeform fabrication defacto standards after which it undergoes another set of transformations as per the algorithm and the data 

document in order to give the desired results. 

 

The CAD model of the geometry is converted into STL format for ease of use. A geometry input format containing the initial size of 

the octree and the desired resolution, the two of which are inputs from the user is noted. The algorithm which helps in octree division 

and octant building is used resulting in the desired geometry in the form of octants. 
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FIGURE 4. FLOW OF DATA 

 

4 3D CAD MODEL TO STL FORMAT 
 

The introduction of the first commercial SFF technology, stereolithography, was accompanied by the introduction of STL, a 

descriptive format to specify the solid shape to be produced. STL has become the de facto standard exchange format for the SFF 

industry. STL is faceted, the facets being triangles [1], as shown in Figure 5. In this Figure the front surface is depicted in the form of 

triangles. Such STL files are  transmitted as three 3-D vertex coordinates and a normal vector. Using the 3D CAD model of a 

geometry to be made using octree approach, data needed for the actual dimensions of the part is known. This is important in order to 

compare the results of the octree based building and in turn becomes a verification step. 

 

 
FIGURE 5. STL SURFACE DEPICTION 

 

Most Rapid Prototyping machines, require polygonal models in STL format as the input solids. The CAD model as shown on the left 

side of Figure 6 is transformed into a faces object as shown on the left side of Figure 6, which is an array primitive consisting of one 

sided triangles. 
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FIGURE 6. CAD MODEL & FACES DEPICTION  

 

 

5 GEOMETRY INPUT FORMAT 

 

Table 1 illustrates the input format for the generic representation of geometry. This format contains data in columns with each column 

separated by a tab space. Below is a list of the data contained in each column against the respective column numbers. 

 

1 The initial size of the octant 

2 The desired resolution until which the octree building must take place 

      3-5    The origin of the first octant in local co-rdinates(X, Y, Z), that is the co-ordinate frame of the part. 

      6-8    The colors in the form of vectors, that is, in RGB format. 

       9   The names of the geometry files. 

 

The first column in table 1 consists of the initial size of the octant defined by the user as ‘5 mmᶟ’. The second column shows the 

maximum resolution until which the octant addition must take place. As per the table it is ’40 mmᶟ’. This means that Octant building 

can be done 1 more time at the maximum. The number of times octant addition actually happens depends upon the part volume. The 

origin of the first octant is defined by the user in columns 3 to 5 as ‘1 0 0 ’. The color of the octant can be given by the user in the form 

of a vector in columns 6-8 as ‘1 1 0’. The last column consists of the geometry file ‘Y.STL’ to be used for verification. 

 

TABLE 1. EXAMPLE OF MACHINE CONFIGURATION 

 

 

 

Initial Size 

Of Octant 

 

 

Resolution 

 

 

Origin 

 

 

Color Vector 

 

 

File name 

 

 

5 
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1 

 

 

0 

 

 

0 

 

 

1 

 

 

1 

 

 

0 

 

 

Y.STL 

 

 

6 ALGORITHM ILLUSTRATION 
 

The proposed approach draws data from the geometry input file. The algorithm implementation is illustrated as follows. The first 

octant is made of the dimensions as per the initial volume size given in the geometry input document. Then a verification step takes 

place where it is found out if the bounding box encompasses the entire geometry or if the geometry to be created is outside the box. 

 

In case the bounding box encompasses the geometry to be created as shown in Figure 3, no octant building takes place inspite of the 

desired resolution and this is because the desired resolution given by the user is to indicate the maximum number of times octant 
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building can take place. However, the actual number of times the octant building takes place depends upon the geometry to be layered 

with just one rule that it should not exceed the desired resolution. 

In case, the bounding box does not enclose the part geometry, another octant is created whose volume is eight times that of the initial 

octant. This becomes a parent to the initial octant. Seven more children are created for this parent octant, the eighth child being the 

initial octant. Six of the children are marked empty and the seventh child is filled with the data of the new geometry. This process is 

recursively continued until the desired resolution is reached or until the entire geometry is enclosed inside the bounding box. This 

entire process is depicted in the Figure 7. 

 

 
 

 

FIGURE 7. DEPICTION OF THE RECURSIVE PROCESS 

 

 
 

FIGURE 8. DEPICTION OF THE RECURSIVE PROCESS 
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As per Figure 8, I1 is the initial octant that is created. Since it does not enclose the entire geometry, another parent octant is created. 

Seven more children are created of the same size as the initial octant out of which six are marked empty- I3, I4, I5, I6, I7, I8. I2 

consists of the data of the remaining geometry. I1 is also completely full. The final parent is partially full and hence it has children.  

 

6 RESULTS & ADVANTAGES 

 

The memory occupied by the six empty children is zero. Thus this method helps in saving memory space. All an octant consists of is 

its data in the form of pointers and usually an octant which is full occupies six bit of memory. The following is the pseudo code of the 

algorithm, wherein each function is described 

 

Algorithm: 

 

Oct_create  

# ‘creates an octant of dimensions of initial size of     the octant, specified by the user in the geometry data document’ 

for Oct_size==desired resolution or for Oct_size==dimensions of the geometry 

Oct_box_Geo_check 

# ‘checks the geometry to see if the bounding box of the octant encloses the geometry recursively for the following conditions’ 

If Oct_box==Geo: 

 End; 

elseif Oct_box==desired resolution: 

 End; 

else: 

new_parent_Oct_create 

# ‘creates a new octant which is the parent octant, the size of which is 8 times the initial octant’ 

 new_children_Oct_create 

# ‘creates 7 more children of the initial size for the parent octant and makes six of them empty 

 new_child_Oct_data store 

# ‘stores the data of the geometry that is not encompassed by the initial octant in one child’ 

 

 

 
      FIGURE 9. DEPICTION OF THE ALGORITHM ON AN IMAGE 

 

The above Figure 9, shows how an image is built by octree addition (left image). The image on the right [9] is the actual geometry. 

The octant building process can approximate curves to a large extent. However, it has to be made more accurate, so that the final 

image and the actual image are the same. 

 

 The most important properties of this method are: 

(1) Robust: This method presents a general volumetric approach for approximating the surface of a solid defined by Boolean 

operations. 

(2) Accurate: This method has an adaptive recursive octree addition and a related algorithm as well as a verification step to judge 

when the octree creation can be stopped. The reconstructed approximation is guaranteed to be topologically equivalent to the exact 

surface, and the approximation error is bounded by a user specification. 

(3) Efficient: This algorithm  is based on both uniform and adaptive cell representations.  

(4) Sharp features:  Sharp corners and edges can be captured as per user specification in the Booleanresults. It is especially suitable 

for engineering applications.[8] 

(5) User defined resolution: The initial size of the octant and the desire resolution decide the accuracy with which the geometry is 

created. 

(6) Generic: This algorithm can be applied and changes as per the user to any geometry. 
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7 CONCLUSIONS AND FUTURE WORK 

 

Octree decomposition has been in use for the past two decades or more. But this concept was only applied to subtractive 

manufacturing. Using the reversal of octree decomposition, that is, octree addition for additive manufacturing is a relatively new 

approach. Octree addition is used for the depiction of layered processes where in there is geometric growth of the part. Thus in this 

paper a new octree based approach has been created for additive manufacturing representation wherein a verification process is also 

included and this helps as 
1) An effective way of checking additive manufacturing tool paths for both interferences and errors in part produced. 

2)  The results are used to check the part geometry before   physically producing the part as the materials are very expensive. 
3) The algorithm uses an octree based additive approach to efficiently model the deposition of part geometry and also newly 

incorporated changes.   
4) Also, this method is generic with more user defined features, thus making it more flexible and user friendly. 

Another new concept in this paper is the generic format of taking user input. This makes it more user friendly and flexible.Future work 

for this includes improving on some of the following disadvantages: 

1) Non-uniform data sizes in the octants because some areas of the input have greater detail [5] 

2) In mechanical engineering, octree approach for additive manufacturing can be  used for the verification of numerical 

command tool paths, for interference detection in five axis machining and in robotics.  

3) The model does not yet acquire relatively high accuracy 

The accuracy of the octree based layered method must be carefully determined, because if it is too high, it will dramatically increase 

computing time. Nevertheless, it must not be too small as well, as the part geometry then, cannot be accurately represented. 

 
8 ACKNOWLEDGEMENT 

 

This research was supported by the National Science Foundation grants IIP-0822739 and IIP-1046492.  The support from Boeing 

Phantom Works, Product Innovation and Engineering, LLC, Missouri S&T Intelligent Systems Center, and the Missouri S&T 

Manufacturing Engineering Program, is also greatly appreciated. 

 

REFERENCES 

 

[1] Sara Anne McMains. Geometric Algorithms and Data Representation for Solid Freeform. A dissertation submitted in partial 

satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the graduate division of the University 

of California, Berkely, Fall 2000. 

 [2] Frank W. Liou. A multi-axis rapid prototyping system. In SME Rapid Prototyping and Manufacturing Conference, page 565, 

April 1999 

[3] Ju-Hsien Kao. Process planning for additive/subtractive solid freeform fabrication using medial axis transform. A dissertation 

submitted to the department of mechanical engineering and the committee on graduate studies 

of Stanford university in partial fulfillment of the requirements 

for the degree of doctor of philosophy, June 1999 

 [4] Don Libes. Modeling Dynamic surfaces with Octrees multi-axis hybrid manufacturing process. In Contribution of the National 

Institute of Standards and Technology, 1989 

[5] Olivier Kerbrat, Pascal Mognol, Jean-Yves Hascoët. Manufacturability Analysis to combine Additive and Subtractive 

Manufacturing Processes. In Rapid Prototyping Journal 16, 1 (2010) 63-72 

[6] Yong Chen. A 3D texture mapping for rapid manufacturing. In Proceedings of Computer-Aided Design & Applications, Vol. 4, 

No. 6, 2007, pp 761-771  

[7] H.Medellin, J.Corney, J.B.C. Davies, T. Lim. Rapid prototyping through Octree decomposition of 3D Geometricv models. In 

Proceedings of DETC’04 ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering 

Conference September 28-October 2, 2004, Salt Lake City, Utah, USA 

[8] Yong Chen. Robust and accurate Boolean operations on polygonal models. In Proceedings of DETC'07 

2007 ASME Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference 

Las Vegas, Nevada, September 4-7, 2007 

 [9]  (n.d.). Retrieved February 10, 2011, from Laser Aided Manufacturing Processes Lab: http://web.mst.edu/~lamp/sponsors.shtml 

10] (n.d.). Retrieved April 20, 2011, from makeparts website: http://make-parts.com/services/subtractive-manufacturing/ 

 

 

 

346

http://web.mst.edu/~lamp/sponsors.shtml
http://make-parts.com/services/subtractive-manufacturing/
bjf
Text Box



 

 9  

 

347

bjf
Text Box




