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ABSTRACT 

 

Ultrasonic additive manufacturing (UAM) is a solid-state additive and subtractive 

manufacturing process that utilizes ultrasonic energy to produce layered metallic parts. 

The process is easily extended to create advanced multi-material structures, e.g., metal 

matrix composites, functionally graded metallic components, and shape memory alloys. 

This research utilizes a three point bending test to compare the elastic modulus in metal 

matrix composites (MMC’s) specimens consisting of stainless steel wire reinforcements 

with an aluminum matrix to unreinforced test specimens; both specimens are produced by 

UAM. In the MMC the volume fraction of wire is relatively low, 0.77%, yet yields an 

average increase in modulus of 8.9%. 

 
INTRODUCTION 

 
 
 Ultrasonic Additive Manufacturing also known as Ultrasonic Consolidation (UC) 

is a solid state manufacturing process that produces layered metallic components from a 

combination of ultrasonic welding and contour milling. Figure 1 is a visual representation 

of the primary components used in UAM.  The machine consists of an ultrasonic horn 
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also called a sonotrode, piezoelectric transducer, and booster to amplify vibrations, a 

heater, and a movable base.  The process begins with the placement of a thin metal foil, 

typically 5.90 mil (150 µm) thick and 0.94 inches (23.88 mm) wide, on a sacrificial base 

plate. Prior to the deposition of the foil, the base plate is in turn bolted downward and 

heated to 300°F or approximately 150°C. During the welding process the sonotrode 

compresses and rolls over the foil while simultaneously vibrating transversally at a 

nominal frequency of 20 kHz and at amplitudes ranging from 1.97x10-1 to 1.18 mils (5-

30 µm). After the foil is bonded, the process is repeated for additional foils adding new 

layers until the final size of the component is reached. The consolidated foils are 

machined as needed to produce the desired final part geometry. The commonly accepted 

theory for the mechanism of bonding is that during welding, the surface contaminants of 

both materials are removed, allowing direct metal-to-metal contact and producing 

sufficient stress to create plastic flow resulting in a metallurgical bond [1]. The primary 

foil material used for this process is Al 3003 H-18, however UAM is not limited to this 

material. Other metals such as copper, titanium, stainless steel and brass have also been 

welded together.  
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Figure 1: Basic schematic of the UAM process (not to scale). 

 
 

In recent years, few studies have attempted to determine the mechanical 

properties of parts built using the UAM process. Most studies have focused on optimizing 

process parameters to maximize the bonding area and peel strength of the initial bonds 

[2-4], studying the apparent build limit of the process, [5-9], developing  and 

performance MMCs using UAM  [10-13], and methods the placement of wires in the 

matrix of the MMC [14]. Leagon [15] examined the interlaminar shear strength of 

standard parts built with various orientations.  

 Particularly relevant to this work are the studies performed by Ram et. al [16] and 

Yang et. al [17].  The work by Ram et. al [16] is  a comprehensive study demonstrating 

that materials such as  Al alloy 2024, Inconel 600, Brass, and Stainless Steel AISI 347 

can be successfully bonded to Al alloy 3003 foils. This work also proved that it is 

possible to embed SiC and MetPreg fibers, and Stainless Steel AISI 304 wire mesh in Al 

alloy 3003 foils. 
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 Yang et. al  [17] extended the work Ram et. al [16] by embedding SiC fibers 

within UAM parts. The researchers then evaluated the resulting MMC’s mechanical 

properties compared to parts produced without fiber. In their tests the reinforced parts 

consisted of fibers running in the lateral direction of the foil. Peel tests, tensile tests, and 

three point bending tests were used to evaluate each type of part, to determine maximum 

peeling load, tensile test and interlaminar shear strength. The reinforced parts yielded 

better higher peeling loads, tensile tests but lower interlaminar shear strength when 

compared to the unreinforced UC parts.  

The present study quantifies the effective flexural modulus of a MMC produced 

from stainless steel wire and Al 3003 matrix through a three-point bending test.  The 

effective flexural modulus of the MMC is compared to the flexural modulus of an 

unreinforced test specimen also produced by UAM.  It is worth noting that in composites 

the tensile and flexural modulus may not be equal. The flexural modulus is dependent on 

ply stacking sequence of the laminate.  The manuscripts begin with an experimental plan 

detailing the materials used in this study, the development of a specialized wire 

placement fixture, and a description of the three point bending test used to determine the 

modulus of the specimens. Next, it presents the results of the bending test, compares the 

predictions to theoretical predictions from the rule of mixtures.  The manuscript ends 

with a discussion of future work and concluding thoughts.  
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EXPERIMENTAL TESTING PLAN 
 

 
This study utilized thermally stabilized 3003-H18 aluminum foils supplied by the 

United Aluminum Corp., North Haven, Connecticut. The foils were 150 µm thick and 

0.94 inch or 23.88 mm wide. We used stainless steel AISI 304 wire (75 µm diameter) 

supplied by Goodfellow Materials.  The modulus varies from 190 to 210 GPa. 

WIRE PLACEMENT FIXTURE 

 
 The test presented in this manuscript required a custom wire placement fixture to 

hold the wire at the proper angle orientation and position. Ideally, the fixture should be 

constructed of low cost materials, allow for wires to be placed at various angles, 

orientations and wire spacing. Additionally, it must be durable enough to withstand 

frequent handling. 

 Using the above criteria, the frame of the fixture is made of 9 separate, 0.25 in. x 

0.25 in. x 12 in. brass tubes.  The fixture consists of 7 tubes running along its length 

attached to 2 tubes that form its sides.  The inner tubes are attached to the outer tubes by 

threaded rods.  This effectively forms 6 slots allowing the jig to accommodate the 

manufacture of 6, 0.94 in wide specimens.  A small channel is cut down the middle of 

one side of each tube over the entire length, the wire could be held in with claw like 

features, preventing the wire from sliding out and coming loose, Figure 2.  
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Figure 2: Detailed view of fixture. 

The “claws” were made by using a wire EDM to cut 0.167 in. slots perpendicular to the 

length of each tube. Figure 3 shows a picture of the wire placement jig with wire in place. 

 
 

Figure 3: Wire fixture with wire properly placed, ready to be embedded. 
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FABRICATION OF BENDING TEST SAMPLES 

 
 The shape and size of the bending test specimens was determined in accordance 

with ASTM D 790-10 [18] standard with and without embedded SS 304 wire. Each 

specimen is of length 3.0 in., width 0.625 in., and thickness 0.125 in. The specimen is 

tested over a support span of 2.5 inches.  Ideally, we would like a span to thickness ratio 

of 60 to 1 to negate the effects of shear.  However, in this study we are comparing the 

effects of the reinforcement to normally produced UAM specimens and not focused on 

quantify the exact flexural modulus. The following process parameters were used in the 

ultrasonic welding of the specimens: amplitude of 14 microns, welding speed of 32.0 

mm/s and a normal load of 1450 N. For this first test, we restrict the orientation of the 

wires to run along the length of the specimen. Figure 4 shows the arrangement of the wire 

in the MMC; 2 wires form a group and 4 groups span the cross section of the MMC. 

 

Figure 4: Arrangement of stainless steel wires in MMC. 

 

Each group is spaced out 0.167 in. from center to center allowing for a total of 8 wires to 

be embedded. Furthermore we embedded wires every other layer, resulting in a total of 
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88 wires over the thickness of the sample; a volume fraction of wire in the specimen is 

0.77%. A photograph of the reinforced samples can be seen in Figure 5. 

 

 
 

Figure 5: Wire reinforced samples before machining. 

 
 
  Once the specimens were produced by UAM, they were then cut out into their 

overall shape using a MAXIM 1500 waterjet. Finally, the specimens were machined to 

the final thickness of 0.125 in., as shown in Figure 6. 
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Figure 6: Test samples after being cut on the water jet. 

 
When machining to the final dimensions, first the base plate and excess consolidated 

specimen was removed using a band saw with a wax-lubricated blade. The lubrication 

prevented the Al 3003 from becoming embedded into the saws teeth.  Once the rough cut 

was made with the band saw, the final thickness was achieved using a fly cutter. Using 

this tool, 0.015 in. of material was removed at each pass until the desired thickness of 

0.125 in. was reached. Due to the difficulty of machining Al 3003 precautions were taken 

to keep the material from overheating by constantly “flooding” the cutting tool with 

cooling fluid. Finally, the specimens were polished on all surfaces to remove any surface 

imperfections and scratches, Figure 7.  
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Figure 7: Final appearance of a test specimen. 

MECHANICAL TESTING 

 
The mechanical testing of the specimens is based on a three point bending test 

from the ASTM D790 standard [18]. The standard is for fiber-reinforced plastics, 

however, the equations covering strain and stress are valid since they are derived 

principles from strength of materials assuming elastic, and elastic-plastic material 

behavior.   

 In determining the elastic modulus, several quantities are needed: the rate of 

crosshead travel of the press used in the test, the maximum stress at the midpoint of the 

specimen along its outer surface, and the corresponding strain at the same point. The tests 

were conducted on a hydraulic press at a strain rate of 0.01 in./min.  The rate of crosshead 

[18] travel, R, necessary to achieve this strain rate given the geometry of the test sample 

is given by [18] 

  (1)  
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where Z is 0.01 for the desired strain rate, L is span length, 2.5 in., and d is the thickness 

of the part, 0.125 inches. The resulting cross head travel speed is calculated to be 0.083 

in./min. The stress [18] during the bend test is defined as:  

  (2)  

 
where P is the load in lbf, and b is the width, 0.625 inches. The corresponding strain [18] 

is calculated from:  

  (3)  

 

Finally, the elastic flexural modulus [18] is defined as  

  (4)  

 

where m equals load P divided by deflection at the midpoint D and is the slope of the 

straight-line portion of the load deflection curve. The moduli are calculated for both 

specimens (with and without imbedded wires) and compared to see if the wire 

reinforcements actually increase or reduce the flexural modulus EB. Figure 8 shows the 

sample in the bending fixture.  
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Figure 8: Three point bend test loading apparatus with specimen. 

 

RESULTS AND DISCUSSIONS 

 
During testing, the samples were loaded within the region elastic behavior and not 

to yielding or fracture. The stress and strain experienced by the specimen during the 

experiment are calculated using Eqn. (2) and (3). A linear least squares regression line 

was fit through the data points for the load-deflection curve of of each sample, the slope 

of this line is  

 

 

(5)  

applying this equation to bending test, n is the number of data points and the data pairs 

 represent the experimental deflection and load, and  are their respective (xi, yi ) x y
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means. Figure 9 shows a typical stress-strain curve using Eqns. (2) and (3) along with 

resulting stress-strain curves from fitting the load-deflection curve from a reinforced an 

unreinforced sample.  The gray and blued dots represent the stress strain curve dot for an 

unreinforced sample, and reinforced sample, respectively. Similarly, the gray and blue 

lines represent a linear fit of stress strain data for unreinforced sample, and reinforced 

sample, respectively. It is clear that the load tested, both samples exhibit a linear 

response. The slope of the two lines differs indicating that the samples have different 

elastic moduli.  The highlighted relationships on the plot give the one-dimensional 

constitutive relationship for each sample, blue indicates the reinforced sample and gray 

the unreinforced sample. 

 

 
Figure 9: Raw stress strain data and curve fits used to determine flexural modulus  
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 The samples were loaded 4 different times in order to evaluate the repeatability of 

the testing conditions. The results from these 4 tests were averaged together to get a 

representative value of each specimen. A total of 4 different specimens were tested, 2 of 

each type of part, reinforced and unreinforced. Figure 10 presents the results from these 

tests. The bars gives the values of modulus for each test and sample; the dashed blacked 

line indicates the average of the reinforced and unreinforced samples. The first thing to 

note is the modulus varies from sample to sample.  The most notable being variation is 

between unreinforced samples 1 and 2. It is not readily apparent why this change occurs. 

It could be due to numerous conditions such as the cleanliness of the horn during the 

manufacturing process, or variation in the modulus and surface condition of the foil. 

Changes in the previously mentioned parameters would affect bonding and thus the 

effective flexural modulus of the specimen. However, in all the tests the reinforced 

samples have a larger flexural modulus.  
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Figure 10: Elastic modulus results of the unreinforced and reinforced samples. 

 
The average modulus of the unreinforced samples is 60.59 GPa, while material 

references list Al 3003 as having a 68.9 GPa modulus [19]. This significant difference 

most likely lies in the fact that the parts tested are made using the UAM process, even the 

unreinforced ones. Assuming some percentage bonding in the layers, a material with 

lower bulk modulus would be expected due to voids. If a solid, homogenous sample of Al 

3003 was tested, the results achieved in this testing might have been closer to the 

reference value. The reinforced samples have an average modulus of 66.01 GPa. Overall, 

there is an 8.9% increase in modulus between the reinforced samples and the nominal 

samples.  Again, it should be noted that this improvement might be exaggerated due to 

variation in modulus between the unreinforced samples. More samples are needed to 
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obtain a complete analysis of the actual increase in modulus. However, this increase in 

modulus of the MMC at low fiber volume is either due to the modulus of the wire being 

nominally 2.79 times that of the foil or the development of strain hardening region 

around the fiber weld interface effectively changing the matrix in the bonding region 

[20].      

 

Figure 11: Error bar plot for modulus to determine repeatability in loading – bare 
represents one standard deviation from average. 

 

Figure 11 examines the variation in modulus in each sample due by plotting the 

mean and the standard deviation of the modulus from the 4 tests. While the average 

modulus of the samples vary in both the reinforced and unreinforced cases. If we 

examine all the samples the standard deviation is less than 0.7 GPa over the 4 tests 

indicating that the modulus of each sample is relatively constant due to bending.  
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Based on the present results UAM seemingly produces stainless steel wire 

reinforced composites that exhibit superior resistance to bending than nominally 

produced UAM specimens.  However, further studies with increased sample size are 

needed to fully confirm this observation.  

FUTURE WORK 

 
 This research may progress along several paths. The immediate follow up to this 

study is to increase the sample size, perform microscopy to examine the bond along the 

fibers to see if a strain harden region develops along the interface, and examine the 

fatigue life of the composites. However, this work represents only the initial steps in 

quantifying the performance of MMC’s produce by UAM.  Our broader plans are to 

investigate a variety of materials, diameters, and orientations of the fiber in the MMC on 

its flexural and in-plane moduli, and yield strength.     

CONCLUSION 

 
 This manuscript considers the flexural modulus of stainless steel wire reinforced 

aluminum composite through a three point bending test.  The samples used in this study 

had a relatively low volume fraction of wire, 0.77%, yet yields an average increase in 

modulus of 8.9% when compared to unreinforced samples.  However, the increase in 

modulus may be skewed due to variation in modulus of the unreinforced samples.    

.   
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