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Integration of material composition, microstructure, and mechanical properties with geometry 
information enables many product development activities, including design, analysis, and 
manufacturing.  In this paper, we investigate the application of image processing methods for 
constructing models of material microstructure.  These microstructure models can be integrated 
into CAD models to enable the utilization of material process-structure-property relationships 
during CAD modeling.  Engineering design is enabled by integration of computational materials 
design methods with these relationships.  Using 2D images and 3D voxel datasets, the image 
processing methods can be used to find microstructure features, such as grain boundaries or 
particle or fiber reinforcements, by finding edges and extracting features from those edges. This 
paper will focus on three different image processing methods, which will be applied to 
microstructure images of materials fabricated by additive manufacturing.  

1 INTRODUCTION 
For many years, practitioners in the additive manufacturing (AM) industry have complained 
about the lack of suitable engineering materials.  Others note the large variability and 
unpredictability of mechanical properties in AM processed materials.  Both sets of users would 
benefit from computer-aided design (CAD) tools that integrate material information with 
geometry.  Furthermore, the capability of deriving mechanical properties from the material and 
geometry information would greatly aid part design and engineering. [1] In heterogeneous CAD 
modeling, models of both part geometry and material composition are integrated.  In existing 
methods, material composition is typically specified parametrically using volume fractions 
where continuous distributions of material compositions are modeled. This approach is only 
appropriate for macro-scale part models, where detailed microscopic structures are not 
considered. Furthermore, such material composition models only represent the designer’s desires 
or specifications, but the physical behavior of the actual materials is not recognized. Also, the 
actual material composition may deviate from the specification due to the specifics of 
manufacturing processes, heat treatments, or other material limitations. In this paper, we 
investigate the application of image processing methods for constructing models of material 
microstructure. 

In recognition of the need of microscopic materials modeling for heterogeneous CAD systems, 
we present a new method for reverse engineering of composite materials such that models of 
material microstructure can be constructed and used as CAD representations to support 
heterogeneous part modeling. Such material models capture microscopic features and enable 
integration with structure-property relationships.   
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The proposed method for reverse engineering of materials is shown schematically in Figure 1.  A 
material sample is sliced and imaged at appropriate resolutions to capture its microstructure and 
enable construction of process-structure-property relationships at the smallest size scale of 
interest.  Before image analysis, the user specifies material compositions (i.e., which colors or 
shades correspond to which materials).  Image processing method is applied to extract the 
geometry of the material’s microstructure (e.g., grain or particle size, shape, orientation) and 
correlate it with material compositions.  Next, models are constructed that enable properties of 
interest to be determined.  For example, a material’s elastic modulus and Poisson’s ratio can be 
estimated from finite-element analysis. From the microstructure, process-structure relationships 
can also be determined.  As a result, we will have the capability of constructing heterogeneous 
models of materials that can be integrated into CAD systems and used for mechanical part 
design.  

In this paper, we will focus on the recognition of linear features of the material's microstructure 
using several image-processing methods. In the remainder of the paper, in section 2, a brief 
background review of image processing methods, surfacelet functions, edge detection method, 
and contour models, are introduced. In Section 3, feature extraction method from images based 
on the proposed image processing methods is described. Furthermore, the result of feature 
extraction and its discussion will be followed in section 4. Lastly, conclusion will be given in 
section 5.   

 
 

2 BACKGROUND 
Image processing converts an input image signal into either a different type of image or a set of 
characteristics of image [2]. This process enables a user to extract geometry features from an 
image. In microstructure images, geometric features are indicated by contours. In order to 

 
Figure 1 proposed reverse engineering of material process 
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recognize geometry entities, the contours must be detected and, preferably, be described by 
geometric entities such as line segments, circular arcs, or other analytic function.  Of interest in 
this paper is linear microstructure features, including grain boundaries, fibers in fiber-reinforced 
polymer composites, and other features that appear as line segments.  Since we are also 
interested in more general feature shapes, the image processing methods to be investigated in this 
paper will generalize to arbitrary feature shapes.  Identified geometric features will be 
characterized by their position, orientation, and size.  Automated feature extraction enables 
microstructure characterization that will aid greatly the development of material structure-
property relationship databases.  
Three general types of image processing methods will be investigated in this paper. First, the 
traditional edge detection method, the Canny method, is easy to use for extracting geometry 
characteristics in the image [3]. It uses the gradient of an image and typically produces a binary 
image as its output.  Edges are not explicitly represented, but can be recognized using contour 
generation algorithms. The second type of method is a class of active contour models that seeks 
to fit curves to regions of the image with large gradients [4].  Energy minimization methods are 
typically used to ensure that the curves are smooth and they follow image contours closely.  The 
third type of method is based on template matching methods that attempt to fit lines, line 
segments, or other shapes (templates) to regions of an image.  The methods of interest here 
include Radon [5] and Hough transforms that use lines.  Each method will be described in more 
detail in the next section. 

3 FEATURE EXTRACTION METHOD 

 
Figure 2 Process of reverse engineering with different image processing methods 

 

In this section, we present the first step of the reverse engineering of materials procedure, from 
Figure 1.  We use micro-scale images such as those from atomic force microscopy and electron 
microscopy to characterize a material’s structure. As shown in Figure 2, various image 
processing methods are used to recognize microstructure features in the image. Image processing 
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methods extract geometry features from the image. Once geometry features are detected, the 
information is converted to a microstructure model. By integrating obtained information from the 
previous step, structure-property relationships can be achieved.  
3.1 Edge detection method 
In 1986, J. Canny investigated an edge detection operator, Canny edge detector, which uses a 
multi-stage algorithm to detect a wide range of edges in images [6]. His work focused on three 
requirements, good detection, good localization, and minimal response by finding the function 
which optimize a given functional. This edge detection method includes four stages, with some 
optional refinements possible. The first stage is noise reduction, which uses a filter based on a 
Gaussian, where the raw image is convolved with a Gaussian filter. This stage causes the input 
image to become slightly blurred, which reduces the affect of a minor amount of random noise. 
At the second stage of the algorithm, four filters are used to detect edges regardless of their 
orientation (horizontal, vertical, and diagonal). The third stage is non-maximum suppression, 
which estimates image gradients and performs a search to determine if the gradient magnitude 
assumes a local maximum in the gradient direction. Then, the method traces edges through the 
image and uses thresholding with hysteresis; that is, uses two threshold values, one for strong 
edges and one for weak edges. Since it is impossible to determine a generally applicable 
threshold for the method, the Canny method utilizes user defined thresholds. After finishing this 
stage, a binary image is produced where each pixel is marked as either an edge or a non-edge 
pixel. An optional differential geometry formulation for the third stage provides a more refined 
approach to obtain edges with sub-pixel accuracy.  
The Canny algorithm plays powerful role in detecting edges. In addition, it is adaptable to 
various conditions to recognize the edges of differing characteristics depending on the particular 
requirements of a given implementation.  

The result of Canny edge detection is a binary image, with edge pixels highlighted against a dark 
background.  As such, the method does not accomplish microstructure feature extraction, since 
no higher level microstructure features are represented directly.  However, the output images for 
Canny edge detection may be useful as inputs to more powerful methods, such as those to be 
presented. 
3.2 Contour model 
Kass et al. [7] focused on "snakes" or active contour models for boundary detection. The 
classical approach is based on deforming an initial contour towards the boundary of the object to 
be detected. The method minimizes an energy functional and therefore exhibits dynamic 
behavior [7]. If  is a parameterized planar curve and  is a 
given image in which we want to detect the objects boundaries[8], then the general equation for 
active contour models can be expressed as 

        (1) 

where α,β, and λ are real positive constant. Eqn.1 consists of internal energy term and external 
energy term. Internal energy is  

         (2.a) 
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The first-order term makes the snake act like a membrane and the second-order term makes it act 
like a thin plate. Adjusting the weights α and β controls the relative importance of the membrane 
and thin-plate terms [7]. On the other hand, external energy is the rest of term of Eqn.1.  

           (2.b) 

It consists of an image force and a constraint force [7]. Some drawbacks have been observed 
such that it can often be stuck in local minima state. In addition, this energy model is not capable 
of detecting an unknown number of objects simultaneously [8]. Therefore, special topology-
handling procedures must be added.  Regarding model accuracy, it is governed by the 
convergence criteria used in the energy minimization technique; higher accuracies require tighter 
convergence criteria and hence, longer computation times.  

The geodesic active model is a particular case of the classical energy snake model that utilizes a 
level-set approach to identify contours in the image, guided by intrinsic geometric measures of 
the image [8]. Geodesic active contour is represented in the form of a zero set of a function. It is 
proved equivalent to finding a geodesic curve in a Riemannian space with a metric derived from 
the image content. Boundary detection can be considered equivalent to finding a curve of 
minimal weighted length in a certain framework [8]. The general equation is  

     (3) 

The rigidity coefficient, β, from Eqns 1-2 is set equal to 0 in the geodesic active model. The 
regularization effect on the geodesic active contour comes from curvature based curve flows, 
obtained only from the other terms in Eqn.1. This will allow achieving smooth curves in the 
proposed approach without having the high order smoothness given by β≠0 in energy based 
approaches [8]. The most interesting feature of this geodesic active contour is that it allows 
automatic changes in the topology when implemented. Thereby, several objects can be detected 
simultaneously without previous knowledge of their exact number of in the scene and without 
using special tracking procedures. However, because this model only depends on the image 
gradient, to stop the curve evolution, the model can detect objects with edges defined by gradient 
[8].  

In addition, geodesic active contour is developed to overcome the major drawbacks of the 
classical active contour model, which uses a local gradient-based edge detector to stop the 
evolving curve on object boundaries [9].  Table 1 shows the process of finding grain boundaries 
using both the classical active contour and the geodesic active contour models. The active 
contour model uses seeds provided manually by the user and only detects one grain boundary at 
one time, while the geodesic active contour model detects all grain boundaries at the same time. 
Our implementation of the geodesic active contour model provides equally spaced seeds and 
allows the user to adjust their size, number, and location. The seed evolves by itself, searching 
minimum weighted length. When it finds a minimum value, the seed stops its expansion.  
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Table 1 Result of curve evolving in both active contour model and geodesic active contour 
Active contour model Geodesic active contour 

  
a. Initial	
  stage	
  	
   b. Initial	
  stage	
  	
  

  
c. Middle	
  stage	
  	
   d. Middle	
  stage	
  	
  

  
e. Final	
  stage	
  	
   f. Final	
  stage	
  	
  

 
3.3 Surfacelet method 
As introduced in [5], surfacelet models can be generated by a combination of Radon-like 
surfacelet and wavelet transforms. In this paper, we only consider the Radon transform, a special 
case of surfacelet transform, in the analysis.  
The Radon transform is an effective method for representing line singularities in images [5].  The 
Radon transform was developed to reconstruct images from CT scans [10], which consist of sets 
of parallel scans where the source and sensor rotate around the target.  We use Radon transform 
to fit surfacelet models to microstructures. Then, by applying a wavelet transform to the results 
of the Radon transform, an image representation is produced. Mathematically, the Radon 
transform in a domain Ω is the integral along the plane (represented as the dash line in 2D), 
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which is perpendicular to a line at angle α, as illustrated in Figure 3. The plane and the line 
intersect at a point, which has the radial distance µ from the origin. Varying µ results in a vector 
of integral values, Iα(µ) in 2D and Iα,β(µ) in 3D: 

( ) ( ) ( )= + −∫∫ , cos sinI f x y x y dxdya m d a a m
                 (4) 

where δ  is the Dirac delta function. The simplest surfacelet is the ridgelet transform 

( ) ( ), , , , ,,a b a bIΨ =a b a b m y m
                                 (5) 

In general, our generic surfacelet transform is the 1D wavelet transform of the surface integrals.  

 
 
 

Microstructure feature extraction is possible from the results of a Radon transform.  Bright spots 
in the Radon transform image represent line or edge angle and location. Microstructure features 
can be found computationally from surfacelet representations with parameter values for the 
features, such as position, orientation, and size. The challenge is that features, such as a fiber or 
grain boundary, will be represented by several of these bright points close to one another in the 
Radon transformed parameter space. That only gives us location of a geometry feature but not its 
size. Therefore, a segmentation step, which gives accurate size of geometry, needs to be 
integrated into surfacelet transform. Figure 4 shows the process of discovering geometry feature 
using surfacelet transform. Figure 4a represents an image of 3D voxel dataset of microstructure. 
The first step of this process is shown in Figure 4b, where the Radon transform is utilized to 
encode straight-line microstructure feature as points. The output of this step is a matrix of Radon 
coefficients. In the next step, the peaks in the Radon coefficient matrix are identified and 
interpreted as indicating grain boundaries. These are shown as colored lines in Figure 4c. The 
third step, which is shown in the Figure 4d, constructs grains from the grain boundaries. In the 
final step, the finite element model is constructed by meshing the grains and assigning 
mechanical properties. Figure 4e briefly shows the FEM analysis result for deformation of the 
microstructure.  
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Figure 3 geometric interpretations of parameters in surfacelet transform 
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Figure 4 The process of discovering structure-property relationship for metal alloy microstructure a) 3D 
voxel dataset of microstructure, b) 2D microstructure image, c) Result of the Radon transform of microstructure, d) 
Result of tentative grain boundaries, and e) FEM analysis result with meshed grain boundaries 

3.4 2-point Correlation 
N-point correlations provide a rigorous statistical framework to define the spatial correlations of 
local states in the microstructure [11]. Local state means that any specific location in the 
microstructure is mathematically defined at the length scale of interest by averaging the 
information over all the length scales below the selected length scale. Since distributions on local 
state spaces reflect the probability density associated with finding a specific local state of 
interest, h, at a point selected randomly in the microstructure, they often are termed the 1-point 
statistics. 2-point correlations are expanded version of the basic concept that capture the 
probability density associated with finding local states h and h' at each end of finite-length 
vectors thrown randomly into a microstructure image. These correlations are only exactly 
defined over an ensemble of microstructure realizations, but can be approximated if the ability to 
process many material samples is limited.  These n-point correlation methods seek to represent 
microstructures probabilistically, rather than supporting direct microstructure feature extraction.  
As such, they represent a basis of comparison for our work, but do not support direct feature 
extraction and will be not be considered further. 
 

4 RESULTS AND DISCUSSION 
In this section, several different microstructure images made by additive manufacturing will be 
applied to different image processing methods and the result will be shown and described.  
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Figure 5 Image processing result of forged part (DIN St45) 

 
A cross sectional microstructure of the forged (DIN St45) part is shown in Figure 5 [12], which 
will be the sample image used for this example. Forged grain boundaries are of interest in order 
to quantify grain sizes and shapes. Figure 5 shows the comparison of the three image-processing 
methods. Geodesic active contour detects a complete grain in red circle area while edge detection 
can result in incomplete grain boundaries. Since grain boundaries are sometimes discontinuous 
in the image, edge detection method does not guarantee to produce a closed loop so it fails to 
extract a grain surrounded by unclear grain boundaries.  In contrast, the geodesic active contour 
model is sensitive to the starting seed location in order to expand properly. Since the surfacelet 
method does not directly provide length information, the result rarely looks like detected grain 
boundaries. Lines correspond to grain boundaries in the microstructure image. After length 
information is integrated into the method, it will detect a grain surrounded by even unclear grain 
boundaries.  
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Figure 6 Image processing result of laser sintered nylon-12 

 
Laser sintered nylon-12 is used for another example [13], as shown in Figure 6. Edge detection 
method works well to find boundaries between un-melted particles and fully melted particles. 
However, other than edge detection method, geodesic active contour model and surfacelet model 
does not figure out geometry features in the microstructure image. Un-melted parts of the sample 
image have a number of fiber-shape or particles. Small image gradients between these 
microstructure features, which were intended to be detected, prevent them from being recognized. 
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Figure 7 Image processing result of EOS DMLS Titanium 

 
The next example is a metal EOS DMLS Titanium microstructure shown in Figure 7 [14]. The 
edge detection method extracts all grain boundaries, while the geodesic active contour model 
detects only parts of grain boundaries. Geodesic active contour only gives good correspondence 
between contours and grain boundaries when seed contours are located entirely within grains.  
Hence, seed contours must be positioned and sized so that they are appropriate for the 
microstructure image. In addition, the gradient of the image gives distinct grain boundaries and 
affects the good result of geodesic active contour model. In other cases, it provides random 
results. Results of the surfacelet method show that this method was not effective in recognizing 
grain boundaries.  This is a case where grains are too small and their boundaries are too complex 
geometrically for the Radon transform to be effective.   
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Figure 8 Image processing result of EBM copper 

 
Figure 8 shows an expanded horizontal surface view (normal to the EBM build direction) for EBM 
fabricated Cu specimen [15]. The example image clearly shows oblong grains with boundaries 
that are approximately 60-70 degrees from horizontal. The surfacelet method finds them well. 
Figure 8 only indicates a result of surfacelet in certain range of angle to show the good 
correspondence between yellow lines and the bright grain boundaries. In addition, edge detection 
method and geodesic active contour model work well for this example. This is because the 
sample image includes large contrast between grain boundaries and grain materials.  
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Figure 9 Image processing result of EBM Cobalt-Chrome grains 

 

A cross section of equiaxed grain (including coherent twin grains) in annealed Co-26Cr-6Mo-0.2C 
fabricated by EBM is shown in Figure 9 [15]. Geodesic active contour finds grain boundaries well 
until seeds reach un-melted particles in bottom right side of the image. This is because un-melted 
metal particles give small gradients in the image. The surfacelet method shows good 
correspondence result between yellow line and bright grain boundaries. However, edge detection 
method does not give result in finding grains. Noise in the images is detected, although these 
boundaries are not meaningful.  Increased contrast or other image manipulations may lead to 
improved results.  
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Figure 10 Image processing result of EBM Cobalt Chrome twins 

 
The last example, Figure 10, is an optical microscope horizontal plane image expansion for a Co-
base alloy component illustrating twin-fault features at 90° for (100) surface orientation fabricated 
by EBM [15]. The cross section of this material shows strong orientations to diagonal directions. 
Since the example image includes these characteristics, the surfacelet method works very well. 
However, the complexity of the microstructure image and small gradient of the image affect the 
results of the other image processing methods. Since grains are unclear and microstructure 
features are not continuous loops, edge detection method detects geometry feature as discrete 
objects not as grain boundaries and the contour method is ineffective in following boundaries.   

Geometry features in microstructure images were extracted by three different image processing 
methods. Gradients in the image, continuous geometry features, and linearity of the geometry 
objects are the major influence on the results. Since image processing methods are based on the 
image gradient, an image with large gradients has better results than smaller gradient.  As 
expected, edge detection methods work well when microstructure features are prominent with 
large gradients.  However, their results are simply binary images with no extracted geometric 
information about the features.  The geodesic contour method worked in cases where 
microstructure images had well defined grains with closed boundaries.  The surfacelet method is 
designed to extract linear features from images, so the method worked well when grain 
boundaries were well defined and close to linear in shape.  

5 CONCLUSION 
In conclusion, in this paper, several image processing methods have been applied to 
microstructure images to detect geometry features. Several factors such as gradient of image, 
linearity, or orientation affect the result of the image processing methods.  The edge detection 
method works for finding differences in gradients across the image. However, it finds only 
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differences in gradients. In order to extract microstructure features as geometric entities and 
parameters, such as the location of the grain, size, shape, it needs to have an extra step. The 
geodesic active contour method performs well to find grain boundaries when those boundaries 
are visually apparent. Since the geometric model is implicit 2-D model, some additional work is 
needed in order to extract explicit geometric entities. The surfacelet method works well in terms 
of finding geometric features in the images, provided that segments of the grain boundaries are 
close to linear and are not too complex.  However, it still needs an automation step to construct a 
complete geometric model of grain boundaries.  
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