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Abstract 
 

 This paper aims at investigating the evolution of stresses in parts manufactured through 
large area maskless photopolymerization (LAMP). A theoretical model was established to 
understand the curing process for LAMP and a finite element analysis was performed to model 
the dynamic evolution of stresses during the layer-by-layer fabrication process using Abaqus 
software. This model serves to suggest strategies for reducing stresses, part warpage, and crack 
development in parts made through LAMP. 
 

Introduction 
 
 Large Area Maskless Photopolymerization (LAMP) is a direct digital manufacturing 
technology that can build three-dimensional objects layer-by-layer with both high speed and fine 
feature resolution. A schematic of the LAMP process being developed by the direct digital 
manufacturing (DDM) laboratory at Georgia Tech is shown in Fig 1. The core part of LAMP 
system is the spatial light modulator (SLM), which is a digital micro-mirror device (DMD). It is an 
optical chip with more than 1.3 million mirrors which can be turned on or off according to the color 
(white or black) of pixels in the corresponding bitmap image. A UV source is used to project light 
onto the DMD and expose the photocurable ceramic-loaded liquid resin according to the input 
image. The optical imaging head, with the UV lamp and DMD inside, moves in a serpentine path 
and raster scans the building area. Using this exposure mechanism, LAMP can realize massively 
parallel scanning lithography and its patterning speed is much higher than the traditional 
stereolithography in which only one single beam is used for scanning. 
 In industry, extremely complex interior cooling passages of turbine airfoils are usually 
produced by investment casting, which typically involves the creation of over thousand tools 
needed for fabricating the cores, patterns, mold, and setters. The DDM group in Georgia Tech is 
using the LAMP process to produce the integral ceramic cored molds directly. In this way, the 
production rate, casting yield and costs can be improved dramatically when compared to the 
conventional investment casting procedures. Therefore, direct digital manufacturing using LAMP 
is a kind of technology that disrupts the current state-of-the-art investment casting process, not only 
in the manufacturing of airfoils but also in many other applications involved complex components. 
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respectively. The parameter γ (-1<γ<1) is introduced to quantify the competing mechanisms 
between stress relaxation and chemical hardening [1]. Increasing γ will make the modulus increase 
more rapidly at a relatively low conversion degree. In this paper, a zero value of γ is used for the 
simulation.  

The material used in LAMP is silica particles loaded resin composite. The effective bulk 
modulus of this composite ܭഥ	can be derived according to the self-consistent method [4], shown 
in equation (2). 

                        (2) 

Where K0 and K1 are the bulk moduli of matrix (resin) and inhomogeneity (particle) respectively. ̅ߤ is the effective shear modulus of composite and c1 is the concentration of particles loading. 
The particles can be considered rigid compared to resin, thus we obtain: 

  ഥ and the effective Poisson’s ratio ν, which isܭ can be expressed as a function of ߤ̅ (3)                                
considered as constant here. 

                                (4) 

Substitute into equation (3), we obtain: 

                                                          (5) 

The relation between bulk modulus and Young’s modulus can be expressed as: 

                                                      (6) 

Make use of equations (5) and (6), we obtain the effective Young’s modulus of composite as a 
function of resin’s modulus E0, effective Poisson’s ratio ν and particles concentration c1. 

                                                          (7) 

It can be seen that the effective modulus is proportional to resin’s modulus. So, the effective 
modulus of the composite is also related to the conversion degree α of resin. 

                                       (8) 
Equation (8) is similar with (1), but here ܧത, ,ത∝ܧ  .ത∝ଵ are moduli of the composite, not resinܧ

The experimental data obtained from tensile testing according to ASTM D638 is shown in 
Table 1. 
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Properties Value ܧത∝ (MPa) 0.829 ܧത∝ଵ (MPa) 829 

ν 0.437 
Table 1. Mechanical properties of acrylic-based composite 

 
Here the modulus of uncured composite is chosen arbitrarily small due to the negligible stiffness. 
 
2. Cure Dependent Shrinkage 

This model proposes a theoretical relationship between the shrinkage strain and degree of 
conversion. The volumetric shrinkage occurring during LAMP process is related to the 
photopolymerization mechanism. The linkage of small monomer units produces large polymer 
chains and the corresponding intermolecular spacing is reduced from Van der Waals distance 
(~104Å) to covalent bond (C=C) lengths (~ 1 Å). This results in density changes and thus bulk 
contraction in the cured resin, which accumulates as the part is fabricated layer-by-layer. Thus, the 
volumetric shrinkage is a direct measure of the number of covalent bonds formed (degree of 
conversion) and an exact semi empirical relationship can be derived. Experimentally, the volume 
change per mole of acrylate groups (C=C) is 22.5cm3/mol [5] when acrylate monomer is 
polymerized. For a general case of multiacrylates with ceramic filler particles, the volumetric 
shrinkage value can be estimated through the following equation [6]: 

                        ( )(%) 22.5 (1 ) 100
( ) 100
i i i

mix
i mi i

fV FL
V M

χα ρ
χ

ΣΔ
= × × − ×

Σ
                   (9) 

Where fi is the functionality of monomer (i), χi is mole fraction of monomer (i), Mmi is molecular 
weight of monomer (i) and ρmix is the density of the mixture.  

For the material system used in LAMP, the values of above parameters are shown in Table 2. 
 

Components fi Mmi ρ(g/cm3) v/o (%) w/o (%) χi ρmix(g/cm3)
Hexanediol diacrylate, HDDA 2 226 1.02 3.4 18.6 .95 1.68 
Ethoxylated Penta erythryitol 

tetra acrylate, EPETA 
4 528 1.12 31 2.3 .05 

Filler (ceramic powder)   2.2 FL=55 72  

Table 2. Data of the material system 
 

Assuming a uniform strain contraction for all principle strain components and considering the 
volumetric strain to be smaller than 10 percent, the value of linear shrinkage strain is approximately 
one third of the volumetric shrinkage value. Thus the linear shrinkage strain εT can be expressed as: 

                          

( )1 22.5 (1 ) 100
3 ( ) 100

i i i
T mix

i mi i

f FL
M

χε α ρ
χ

Σ
= × × × − ×

Σ
                   (10) 
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