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Abstract 

 

As a single-step process, Additive Manufacturing (AM) affords full measurability 

with respect to process energy inputs and production cost. However, the parallel character of 

AM (allowing the contemporaneous production of multiple parts) poses a number of problems 

for the estimation of resource consumption. A novel combined estimator of build-time, energy 

consumption and production cost is presented for the EOSINT M270 Direct Metal Laser 

Sintering system. It is demonstrated that the quantity and variety of parts demanded and the 

resulting ability to utilize the available machine capacity impact process efficiency, both in 

energy and in financial terms. 

 

Introduction 

 

The quantification of manufacturing cost informs the decision to adopt additive 

techniques in commercial applications. A number of cost estimators have been proposed for 

various additive technology variants (Alexander et al., 1998; Hopkinson and Dickens, 2003; 

Byun and Lee, 2006; Ruffo et al., 2006b; Wilson, 2006; Munguia, 2009). 

Moreover, a precise understanding of the emissions associated with manufacturing 

processes is essential regarding decision making towards sustainability. The measurement of 

such emissions forms an important area of research in the field of industrial ecology, where a 

variety of methods are employed to analyze the interactions between human activity and the 

environment (Gößling-Reisemann, 2008). Particularly the quantification of carbon emissions, 

referred to as ‘carbon accounting’, requires a precise understanding of the energy flows 

associated with production processes (Vijayaraghavan and Dornfeld, 2010) and the emission 

characteristics of the local power grid (Jeswiet and Kara, 2008). 

No statement on the quality of a manufacturing process selection decision can be 

made without considering the manufacturing stage. For the private enterprise, the average 

manufacturing cost, normally measured per unit of output, is central. Considering the wider 

social implications of energy consumption, manufacturing process energy consumption is also 

becoming increasingly important (Taylor, 2008). 

The supply chains found in modern manufacturing are often complex and long 

(Foran et al., 2005). Industrial trends towards globalization, concentration on core activities, 

shorter product lifecycles and the increasing focus on customer needs will add to supply chain 

complexity (Blecker and Kersten, 2006). The resulting opacity poses a significant barrier to 

the measurement and minimization of resource consumption in the manufacturing stage of the 

product life cycle. The single-step nature of additive processes affords full measurability with 

respect to process energy inputs and production costs. This is especially interesting as additive 

processes are able to efficiently create complex product geometries (Hague et al., 2004; 

Rosen, 2007). 
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The Additive Manufacturing (AM) process allows the contemporaneous production 

of multiple, potentially unrelated, components. The technology has therefore been described 

as a ‘parallel’ manufacturing technology (Ruffo et al., 2006b). However, this aspect creates 

two problems for the modelling and optimization of additive production: 

1. To arrive at some summary measure of cost or energy consumption per part, it is 

necessary to attribute the total cost and energy consumption incurred during each 

build. In the single product case this can be done by dividing the total cost and 

energy consumption of the build by the number of parts contained. 

 

2. It has been shown that the degree of capacity utilization affects the resulting 

metrics of process efficiency (Ruffo et al., 2006b; Ruffo and Hague, 2007; 

Baumers et al., 2011). Therefore, to be able to claim that a build is performed at 

minimum cost and energy consumption, the available machine capacity should be 

fully utilized. In this research, the issue is approached by implementing a packing 

algorithm that fills the available capacity with parts in an optimized configuration. 

A major additive technology variant used to manufacture metal components is Direct 

Metal Laser Sintering (DMLS), belonging to the category of powder bed fusion processes 

(ASTM, 2012). This paper analyzes the EOSINT M270 platform (EOS GmbH, 2010), 

belonging to the class of DMLS technology. DMLS operates as follows: a three-dimensional 

representation of the product geometry is digitally cut into discrete slices. These slices are 

then transmitted to the DMLS machine, which recombines them in a layer-by-layer sequence. 

To this end, the EOSINT M270 selectively scans the surface of a metal powder bed with a 

200 W fiber laser, effectively creating a thin, planar slice of solid part geometry. Once the 

sintering of the layer is complete, a fresh 0.02 mm increment of metal powder (in this case 

stainless steel) is deposited and the sintering of the next layer commences. This cycle is 

repeated until the build is complete. 

The proposed model of DMLS build-time, energy consumption and cost suggests 

that average production cost and energy consumption should not be viewed as dependent on 

production quantity. This notion has been expressed implicitly for the other additive 

technology variants (Hopkinson and Dickens, 2003). Rather than being determined by 

production quantity, the current article suggests that the technology user’s ability to fill the 

available build space is the prime determinant of efficient technology operation. This 

conforms to the observation that manufacturers will ideally include as many parts as possible 

in individual builds (Ruffo and Hague, 2007). 

 

Methodology 

 

Build time estimation forms the basis for several AM production cost models in the 

literature (Alexander et al., 1998; Byun and Lee, 2006; Campbell et al., 2008). Ruffo et al. 

(2006b) propose an AM costing model viewing the total cost of a build, CBuild, as the sum of 

all direct raw material costs and the indirect costs of operating the machine. The activity 

based costing technique (Atrill and McLaney, 1999) is a suitable costing method for capital-

heavy production processes such as AM. CBuild can thus be modeled as: 

 

                                        ̇         (1) 
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The direct costs are obtained by multiplying the mass of deposited material (mMaterial) 

by the cost of the raw material (CMaterial) per kilogram (£/kg, where a $/£ exchange rate of 

1.56 is used). The indirect costs are calculated by multiplying the total build time, TBuild, by an 

indirect cost rate, ĊIndirect (£/s). For an estimate of cost per part, CBuild is divided by the number 

of parts contained in the build. 

Therefore, this method is only suitable for builds containing multiple instances of the 

same part. As a premise, this is quite alien to the idea of AM being used to flexibly build 

different parts in parallel (Ruffo and Hague, 2007). By dividing the cost estimate of the build 

(CBuild) by the number of parts contained in the build, this type of model is also used to 

describe a relationship between production quantity and average part cost. Where production 

quantities are not sufficient to fill the available build space, the model assumes that the 

available capacity remains empty. 

However, it has been observed in practice that additive technology users fill the 

available build space with as many parts as possible (Ruffo and Hague, 2007). Should the 

demand for parts not be sufficient to fill the workspace, the technology user has the option to 

sell excess machine capacity to external bidders. If the problem of excess capacity persists it 

would further be possible to reduce manufacturing cost by switching to an additive platform 

with a smaller capacity. 

For models of manufacturing cost (especially when taking the form of cost functions) 

it is normally considered necessary that only efficient technology usage is taken into account 

(Else and Curwen, 1990). Research has shown that some additive systems operate efficiently 

only where the available capacity is fully utilized (Ruffo et al., 2006b; Ruffo and Hague, 

2007; Baumers et al., 2011). However, to be able to claim that the additive process is used at 

full capacity, it is central that the build is configured with the maximum number of parts in 

the build. To approach the problem of filling build volumes, workspace packing algorithms 

have been developed (Wodziak et al., 1994; Nyaluke et al., 1996; Ikonen et al., 1997). For an 

efficient packing outcome, Hur et al. (2001) suggest using voxel approximations of part 

geometry, allowing nested configurations of parts. 

To solve the issue of efficient technology usage in energy consumption and cost 

estimation, this research bases the estimator on an automated build volume packing technique. 

This functionality is designed to arrange parts in the build volume such that the resulting build 

configuration is optimized. To allow a relatively simple implementation, a number of 

decisions were made in the design of the algorithm: 

 To achieve a dense packing result, the algorithm is based upon rough voxel 

representations of the analyzed parts (with a resolution of 5 mm). This effectively 

discretizes the problem of placing irregular and continuous geometries. Figure 1 

illustrates the conversion of continuous part geometry into a voxel approximation. To 

avoid problems of anisotropic material properties occurring in the DMLS process, part 

rotation is constrained to the vertical axis. Rotation is also limited to discrete 90° 

steps. 

 

 The parts are inserted into the build volume in a fixed sequence which is 

predetermined. Further, the algorithm is able to insert a variety of parts. It ensures that 

at least one instance of each assessed part type is included in the build volume. 
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 As an evaluation criterion, the algorithm uses a ‘barycentric’ packing heuristic. This 

means that the algorithm computes the combined center of mass of all parts contained 

in the build volume. When a further part is inserted, it is moved such that its center of 

mass is as close as possible to the existing combined center of mass. This produces a 

dense configuration of parts and also allows for nesting of components. 

 

 In the DMLS process, all parts must be connected to a removable build plate, forming 

the build volume floor. This is done to prevent part deformation due the heat 

introduced during the process and to allow heat dissipation into the machine frame. 

Thus, the algorithm only considers arrangements in which all parts are placed on the 

substrate, effectively limiting part movement to the X/Y plane. 

 

 

 
 

Figure 1: Conversion of a test part into a voxel approximation 

 

 

After implementing the required build volume packing functionality, the next step in 

the construction of the combined estimator is to decide on a basket of test parts. The 

composition of this basket is chosen to be representative of the products commercially 

manufactured using DMLS and to reflect variation in product size, geometry, and application. 

The used basket of parts is shown in Figure 2. 

 

 

Figure 2: A basket of representative parts 
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In an attempt to emulate a realistic application of DMLS, the workspace is populated 

with parts drawn from this basket for a full build experiment. Two further build experiments 

were performed to validate the model, each holding a single part from the basket. Build 

progress and process energy consumption were monitored throughout the build experiments 

with a Yokogawa CW240 digital power meter configured to a time resolution of 1s. Thermal 

management considerations did not flow into the build configurations. 

To generate the build time and energy consumption data required for the combined 

estimator, a further build experiment was performed and monitored with a higher time 

resolution (100 ms). In this experiment, a single specifically designed test part was built 

directly on the build platform. As shown in Figure 3, this test part features a layered design to 

give an insight into the EOSINT M270’s material deposition process. 

 

 

Figure 3: Design of the power monitoring test part 
 

Next to actual process energy consumption, additional energy is consumed for the 

separation of the parts from the removable build plate. This is done in an ancillary wire 

erosion process using an Agie Charmilles CUT20 wire eroder. This setup was also power 

monitored. 

Once the build configuration is determined through an execution of the build volume 

packing algorithm and the data on build speed, energy consumption and production cost have 

been collected, the combined model can be constructed. In order to do this, the first step is to 

estimate build time, TBuild, which is obtained by combining data from a hierarchy of elements 

of time consumption: 

• fixed time consumption per build operation, TJob, including, for example, machine 

atmosphere generation and machine warm-up, 

• total layer dependent time consumption, obtained by multiplying the fixed time 

consumption per layer, TLayer, by the total number of build layers l, 

• the total build time needed for the deposition of part geometry approximated by the 

voxels. The triple Σ operator in equation (2) expresses the summation of the time 

needed to process each voxel, TVoxel xyz, in a three-dimensional array representing the 

discretized build configuration:  
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No allowance is made for build preparation and machine cleaning. It is felt that the 

time spent on these activities is difficult to measure and very much at the discretion of the 

machine operator. It could be argued that these activities take place during the non-

operational hours. 

Total energy investment, EBuild, can be modeled similarly to equation (2). However, a 

purely time-dependent element of power consumption must be expected in the continuous 

operation of the AM machine. This is denoted by the energy consumption rate ĖTime 

(measured in MJ/s), which is multiplied by TBuild to estimate total time-dependent energy 

consumption. Modelling ĖTime as a constant reflects the mean baseline level of energy 

consumption throughout the build, originating from continuously operating machine 

components such as cooling fans, pumps, and the control system. 

EJob contains all energy consumption attributable to the build job, including energy 

consumed by the wire erosion process to harvest the parts from the build plate. Analogous to 

build time estimation, ELayer denotes fixed elements of energy consumption per build and 

layer, for a total number of layers, l. Further, the geometry-dependent energy consumption is 

obtained by adding all energy consumption associated with actual material deposition,  

EVoxel xyz , throughout the discretized workspace. Please note that EVoxel xyz does not contain 

time-dependent power consumption. The empirical data on EVoxel xyz were obtained by 

monitoring machine energy consumption during the scanning process and then subtracting the 

energy associated with the energy consumption rate ĖTime, ensuring that this element of energy 

consumption is not counted twice. Thus, EBuild can be modeled as follows:  

 

            ( ̇           )  (        )  ∑∑∑          

 

   

 

   

 

   

  

 (3) 

 

This energy consumption model should not be interpreted as showing how total AM 

energy consumption can be attributed to individual subunits of the EOSINT M270 platform. 

The specification was chosen with the goal of implementing a voxel-based energy 

consumption estimator. Moreover, both the time and energy estimators possess additional 

information on the real Z-height of the parts contained in the build. This is done to avoid large 

estimation errors arising from the inclusion of empty layers. 

After developing the build time and energy consumption techniques, the next step 

towards the combined estimator is the construction of an activity-based cost (ABC) estimator 

of the type devised by Ruffo et al. (2006b). The cost estimate for the build, CBuild, is computed 

from data on the total indirect costs and direct costs incurred. All data used in the costing 

model are summarized in Table 1. The current research estimates the total indirect cost rate of 

operating the EOSINT M270 at £26.64 per hour. It is noteworthy that the system incorporates 

an N2 generator, hence no protective gas from external sources is needed. 
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Table 1: Cost model elements (adapted from Ruffo et al. 2006b) 

Production overhead    Utilization     

Rent, building area cost 4.53 £ / h Utilization rate 57.04 % 

  

  

Annual machine operating hours 5000.00 h 

Administration overhead 

   
  

Hardware purchase 1670.27 £ Equipment    

Software purchase 1670.27 £ AM equipment and wire eroder 8.00 years 

Hardware cost/year 334.05 £ Hardware and software 5.00 years 

Software cost/year 334.05 £ 

  
  

Consumables per year 1113.52 £ Machine costs 

 

  

Total administration overhead 0.31 £ / h Machine purchase 364406.80 £ 

  

  

Machine purchase cost per year 45550.85 £ 

Production labor  

 

Maintenance cost per year 22033.90 £ 

Technician annual salary 25165.45 £ Machine consumables per year 2542.37 £ 

Employer contributions 22.00 % Wire erosion machine purchase 55000.00 £ 

Total production labor 6.14 £ / h Total wire erosion costs per year 8165.00 £ 

  

  

Total machine costs per year 78292.12 £ 

Total indirect cost per machine hour 26.64 £ 

   Direct cost for 17-4 PH powder / kg 78.81 £ Total machine costs 15.66 £ / h 

Direct electricity cost / MJ 0.018 £       

- December 2010 mean $/£ exchange rate: 1.56 

In the proposed model, two direct costs enter the total cost estimate: raw material 

costs and energy costs. Total raw material costs are calculated by multiplying the total mass w 

of all parts included in the build (including support structures) with the price per kilogram of 

the stainless steel 17-4 PH powder, PriceRaw material (78.81 £/kg). Thus, any raw material losses 

are ignored. The expenditure for energy enters the model by multiplication of the energy 

consumption estimate, EBuild, with the mean price of electricity for the manufacturing sector in 

the UK, PriceEnergy, currently around 0.018 £/MJ (according to DECC, 2010). The total cost 

estimate for the build, CBuild, can be expressed as: 

 

       ( ̇               )  (                   )  (                  )  

 (4) 

 

 

Results and Discussion 

 

A full-capacity build experiment is configured by executing the build volume packing 

algorithm. The resulting full build configuration is shown in Figure 4. Of the available 2,025 

build volume floor voxels, 92.6% were occupied. A total of 85 parts were inserted, utilizing 

19.78% of the used build volume cuboid (225 mm x 225 mm x 52 mm). This value includes 

the auxiliary structures needed to anchor the overhanging part geometry on the substrate. 
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Figure 4: Full build configuration of basket parts 
 

The full build experiment (including the wire erosion process) consumed a total of 1059.56 

MJ of energy. Using the cost model specified in equation (4), CBuild is estimated at £3,218.87. 

Individual part cost and energy usage are identified through their share of total product mass 

(4.167 kg). A summary of the parts produced in the full build and estimates of energy usage 

and production cost are presented in Figure 5: 

 

 

 
 

Figure 5: Estimates of energy consumption and production cost per part 
 

 

The final specifications of the time and energy estimators, equations (2) and (3), are obtained 

from a least squares regression of the time and energy consumption data recorded during the 

experiment containing the layered power monitoring test part, as shown in Figure 3. 

The obtained parameters αTime (10.82 s) and αEnergy (0.008 MJ) are multiplied by the 

number of layers in the build l in order to obtain layer dependent time and energy 

consumption. The parameters expressing the time and energy attributable to the scanning of 1 
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mm² during the build, βTime (0.0125 s) and βEnergy (0.000013 MJ), are then used in conjunction 

with the layer thickness lt (0.02 mm) and a measure of occupancy of each voxel to calculate 

total time and energy consumption per voxel, TVoxel xyz and EVoxel xyz. The rate of occupancy ROi 

in each voxel is modeled as the ratio of the volume of part i occupying this voxel (VPi) and 

the volume of the voxel approximation for part i (VAi): 

    
   

   
 (5) 

Thus, for each (5 mm)³ voxel in the position xyz holding 250 (= 5 mm / lt) layers and 

containing part i, the build time and energy consumption can be approximated: 

                    
 

  
     (6) 

                      
 

  
     (7) 

This is combined with an estimated fixed time and energy consumption for machine 

start-up TJob (63 s) and EJob (142.58 MJ, including wire erosion). The start up process is very 

rapid on this system as no warm up is required and the build chamber is continuously flooded 

with N2 during build activity. Time dependent power consumption is obtained by multiplying 

the base line energy consumption rate ĖTime (0.0015 MJ per s) with TBuild. Thus, the estimates 

of TBuild and EBuild are obtained as follows: 
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 (9) 

 

The time and energy consumption model specified in equations (8) and (9) is 

experimentally validated. This is done by comparing the calculated estimates to the measured 

time and energy consumption during the three build experiments containing parts from the 

representative basket (Figure 2). Validation is performed for the full build at maximum 

machine capacity (shown in Figure 4) and two single part builds, the bearing block and the 

turbine wheel. 

The results of the validation experiments and the corresponding estimates of TBuild 

and EBuild are presented in Table 2. Note that the validation does not include the energy 

consumed by the ancillary wire erosion process. It should also be mentioned that some of the 

venturi parts had an incorrect orientation during the build, which led to build failure for the 

affected parts in the final stages of the full build. However, this was deemed to have had a 

negligible effect on the presented results. 
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Table 2: Confronting the estimates with experimental results 

Experiment 
Time 

consumed 

Model 

estimate TBuild 
Error 

Energy 

usage 

Model 

estimate EBuild 
Error 

Full Build 

experiment 
388031 s 354806 s -8.56 % 917.10 MJ 879.93 MJ -4.05 % 

Single 

Bearing block 
93302 s 92338 s -1.03 % 215.48 MJ 223.13 MJ 3.55 % 

Single 

Turbine wheel 
31224 s 28504 s -8.71 % 72.73 MJ 66.80 MJ -8.15 % 

 

The observed errors are likely to originate from the use of an idealized test part 

(Figure 3) in the experiment that provided the data. Compared to other build time estimators 

(Campbell et al. 2008; Munguia 2009; Ruffo et al. 2006a; Wilson 2006) the errors reported in 

Table 2 indicate that the developed time estimation functionality performs robustly. 

This research thus demonstrates that the impacts of the fixed process elements in the 

DMLS process, which may be job dependent (such as machine start-up) or layer dependent 

(such as powder re-coating), are amortized over the number of parts contained in the build. 

This has been previously suggested by Baumers et al (2011) for energy consumption. 

The presented technique appears appropriate for additive processes as it can be used 

to estimate specific energy consumption and production cost for various build configurations 

with multiple types of parts. To test the effect of various build compositions, eight different 

configurations with varying degrees of capacity utilization were estimated. The results for 

process energy consumption range from 1.96 MJ/cm³ to 3.61 MJ/cm³. Assuming a material 

density of 7.80 g/cm³, this corresponds to specific energy consumption ranging from 251.28 

MJ/kg to 462.82 MJ/kg. This is slightly higher than reported in previous research, ranging 

from 241 MJ/kg to 339 MJ/kg (Baumers et al., 2011). This difference is likely to originate 

from the inclusion of the energy consumed by the wire erosion process. In terms of 

production cost, the eight build configurations led to results ranging from 5.71 £/cm³ to 7.44 

£/cm³. 

The full build configuration shown in Figure 4 resulted in the lowest estimated 

energy consumption and production cost on the EOSINT M270 (1.96 MJ/cm³ and 5.71 

£/cm³). This underlines the statement made in the introduction that for cost and energy 

consumption metrics to reflect efficient machine operation it is important to consider full 

capacity utilization. The results thus show that the configuration with the highest packing 

density is likely to lead to the most efficient build. This points to the conclusion that the user’s 

ability to fully utilize the available build space is an important determinant of DMLS cost and 

energy consumption. 
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Conclusions 

This research demonstrates the construction of a combined estimator of build-time, 

energy consumption and cost for parallel additive techniques such as DMLS which reflects 

technically efficient machine operation. The application of this methodology shows that the 

cost and energy consumption of the DMLS process are determined by the user’s ability to fill 

the available build space. Further, the proposed method can be used to estimate the production 

of own designs in build volumes that are populated (where necessary) with parts drawn from a 

representative basket. 

The developed methodology has been applied to DMLS, which is a laser-based 

additive platform employing a powder bed. While the results are likely to be extensible to 

later generations of DMLS systems (such as the EOSINT M280), it is unclear whether they 

are applicable to other additive processes. These could be platforms operating with a powder 

bed (for example, Electron Beam Melting) or those with an entirely different operating 

principle (for example, Fused Deposition Modelling). Further research is needed in this area. 

Moreover, the model described in this paper is limited to so called ‘well structured’ costs of 

manufacturing (Son, 1991). Ill structured costs arising from factors such as build failure, 

machine idleness and inventory expenses are ignored. 
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