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To integrate material information into CAD systems, geometric features of material 

microstructure must be recognized and represented, which is the focus of this paper. Linear 

microstructure features, such as fibers or grain boundaries, can be found computationally from 

microstructure images using surfacelet based methods, which include the Radon or Radon-like 

transform followed by a wavelet transform. By finding peaks in the transform results, linear 

features can be recognized and characterized by length, orientation, and position. The challenge 

is that often a feature will be imprecisely represented in the transformed parameter space. In this 

paper, we demonstrate surfacelet-based methods to recognize microstructure features in parts 

fabricated by additive manufacturing. We will provide an explicit mathematical method to 

recognize and to quantify linear geometric features from an image.  

 

1 INTRODUCTION 

For many years, practitioners in the additive manufacturing (AM) industry have cited the 

lack of suitable engineering materials as a major challenge. Others note the large variability and 

unpredictability of mechanical properties in AM processed materials.  Both sets of users would 

benefit from computer-aided design (CAD) tools that integrate material information with 

geometry.  Furthermore, the capability of deriving mechanical properties from the material and 

geometry information would greatly aid part design and engineering [1]. Models of material 

composition and geometry are integrated in what is called heterogeneous CAD modeling. 

Integration of material composition, microstructure, and mechanical properties with geometry 

information enables many product development activities, including design, analysis, and 

manufacturing. However, typical approaches utilize continuous distributions of material 

compositions modeled parametrically using volume fraction methods. This approach is only 

focused on macro-scale part models, while microstructure of the models is not considered. 

Furthermore, such material composition models only represent the designer's desire or 

specification, but the physical behavior of the actual materials is not recognized. Also, the actual 

material composition may deviate from the specification due to the specifics of manufacturing 

processes, heat treatments, or other material limitations. In this paper, we investigate the 

application of image processing methods for constructing models of material microstructure. 

With these microstructure models, heterogeneous CAD systems will be enabled. 

In order to support the CAD system mentioned above, geometric features of material 

microstructure have to be recognized and represented, which is the focus of this paper. In 

recognition of the need of microscopic materials modeling for heterogeneous CAD systems, we 
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present a new method for reverse engineering of composite materials such that models of 

material microstructure can be constructed and used as CAD representations to support 

heterogeneous part modeling. Such material models capture microscopic features and enable 

integration with structure-property relationships.   

In recognition of the need of microscopic materials modeling for heterogeneous CAD 

systems, we present a new method for reverse engineering of materials such that microstructure 

models can be constructed and used as CAD representations to support heterogeneous part 

modeling. A new method for reverse engineering of materials is shown schematically in Figure 

1 .   

A material sample is sliced and imaged at appropriate resolutions to capture the geometric 

features of its microstructure. This is defined as the structure, represented by lines, angles, curves, 

and shapes, which are related to each other, of the prepared surface of a material sample at the 

microscopic level. Capturing these geometric features from a microstructure image enables 

structure-property relationships to be constructed at the desired level of scale. Before image 

analysis, the user specifies material compositions (i.e., which colors or shades correspond to 

which materials). Image analysis is performed to extract the geometry of material's 

microstructure (e.g., grain or particle size, shape, orientation) and to correlate it with material 

compositions. In order to obtain structure-property relationships, the extracted geometry features 

are integrated into CAD systems. By constructing a microstructure model, the effective 

mechanical properties (e.g., Poisson's ratio, elastic modulus etc.) can be calculated. Therefore, 

structure-property relationships are established. As a result, we will have the ability to construct 

heterogeneous models of materials that can be integrated into CAD system and used for 

mechanical part design. 

In this paper, we will focus on the recognition of linear features of the microstructure of 

material using proposed method. Linear microstructure features, such as fibers or grain 

boundaries, can be found computationally using surfacelet methods, which includes the Radon or 

Radon-like transform followed by wavelets transform. By analyzing the results, linear features 

can be recognized and characterized by length, orientation, and position. In the remainder of the 

paper, in section 2, background of heterogeneous modeling and feature extraction on 

microstructure are introduced. In Section 3, we introduce a new method for recognizing 

geometric features. Furthermore, the result of feature extraction and its discussion will be 

followed in section 4. Lastly, conclusion will be given in section 5.   

 
Figure 1 Proposed reverse engineering of material process 
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2 BACKGROUND 

2.1 Heterogeneous Modeling 

Heterogeneous materials are composed of different constituent materials. It displays 

continuously changing composition and/or microstructure. These materials have increasingly 

been used in engineering applications [2]. Current CAD systems have limited ability to model 

heterogeneous materials. Recently, several studies of heterogeneous material modeling systems 

have been explored. Kumar and Dutta [3] presented a set-based approach for spatial 

discretization of the solid interior by including variations in composition along with the 

geometry. Their implementation was restricted to polynomial functions. Kumar and Wood [4] 

proposed a finite element based method for modeling and optimizing material density 

distributions using particular design objectives and constraints. They proposed a method that 

used a four-node mesh and its associated interpolation functions. The method needed to be 

improved for describing arbitrary heterogeneous solids.  In order to achieve heterogeneous 

modeling, some researchers used a mesh-free method, which does not rely on any form of spatial 

decomposition of the geometry. Wahlborg and Ganter [5] implemented an implicit approach to 

heterogeneous solid modeling (H-ISM). Their work used Boolean operators to construct 

heterogeneous models with both solid and material spaces. Pratap and Crawford [6] presented 

work that used existing research based on implicit procedural methods. They extended that work 

in order to build a tool to design volumetric material information. However, because these 

methods were focused on macro-structure, modeling and representing the microstructure of 

heterogeneous objects is beyond these studies. 

2.2 Feature Extraction on Microstructure 

Several researches have been proposed method of extracting geometry in the desired image. 

Leavers and Boyce [7] showed that a two-dimensional transform space could be used to encode 

the data associated with analytically defined shape primitives in the image space. They proposed 

that the form of the distributions in transform space associated with the shape primitives in 

image space may be deduced and used to derive convolution filters with which to locate those 

distributions.  Leavers [8] used the Radon transform to decompose a binary edge image into its 

constituent shape primitives where those shape primitives are straight lines and arcs of conic 

sections. She proposed a technique that makes explicit certain geometric properties and spatial 

relations between the shape primitives which are then used to code for representation of shape. 

Recently, Niezgoda and Kalidindi developed a size invariant Hough framework to detect 

arbitrary shapes [9]. They generalize the concept of a Hough filter by implementing other 

parameters of interest in the complex phase. The research focused on exploring the application of 

a phase-coded generalized Hough transform. 

3 METHOD 

3.1 Surfacelet Models 

This chapter presents a brief overview of relevant method. A surfacelet model can be 

generated by a combination of Radon-like surfacelet and wavelet transforms as introduced in 

[10]. In this research, we consider a Radon, Radon-like transforms in the analysis. The Radon, 

Radon-like and wavelet transform will be summarized here.  
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3.1.1 Radon Transform 
Generally, the Radon transform is based on a function of integrals over straight lines. It is 

also an integral transform whose inverse is used to reconstruct an image from medical CT scans 

[11]. The inverse Radon transform is used to reconstruct the original image from the sensor data 

obtained during the imaging step. Since the Radon transform is based on integrals over straight 

lines, if geometric features with linear geometry exist in the object to be imaged, those linear 

features can be recognized readily.  This capability has been used in many applications in image 

compression [12], image reconstruction [13], and feature recognition [14].  

The Radon transform is defined as the line integral along each line, L, in the XY plane: 

   ( )  ∫  ( )|  | 
       (1) 

or 

  (𝛼, 𝑏)  ∫  ((𝑢𝑠𝑖𝑛𝛼 + 𝑏𝑐𝑜𝑠𝛼), (−𝑢𝑐𝑜𝑠𝛼 + 𝑏𝑠𝑖𝑛𝛼)) 𝑢
∞

−∞
 (2) 

If a parametric model of a line is used:  

p(u) = ((u sinα + b cosα), (-u cosα + b sinα))   (3) 

where u is the parameter along the line,  is the angle of the line, and b is its distance from the 

origin. 

The Radon transform can be extended to three or higher dimensions.  In three-dimensional cases, 

the linear geometry is a plane [13]. 

3.1.2 Wavelet Transform 
In the domain of 2D shape representations, wavelets are among the most popular multi-

resolution representations. Similar to Fourier analysis, wavelet analysis represents and 

approximates signals (or functions). However, instead of sinusoidal functions in Fourier analysis, 

the functional space for wavelet analysis is decomposed based on a scaling function j(t) and a 

wavelet function y(t) with the one-dimensional variable t for multi-resolution analysis. Wavelets 

are self-similar and can be scaled up and down. More specifically, the wavelet function  
   , ( )  𝛼

−    (𝛼− ( − 𝑏))     (4)    

is scaled by a scaling (dilation) factor a and translated by a translation factor b. Although certain 

forms (e.g. Haar, Daubechies, Morlet, etc.) have been used extensively, y(t) is actually general 

and can be customized for specific problems. The most important feature of wavelets is that they 

are localized in both real (time) and reciprocal (frequency) spaces due to the property of 

regularity and vanishing moments.  In the geometric modeling domain, the wavelet transforms 

were used to describe planar curves with multiple resolutions [15]. 

3.1.3 Surfacelet Transform 
The simplest surfacelet is the ridgelet transform, which is the 1D wavelet transform of the 

surface integral resulting from the Radon transform (Equation 2) as in Equation 5 [10]: 

        ,  〈  (𝛼, 𝑏),  (𝛼, 𝑏))〉     (5a) 

        , ,  〈  (𝛼, 𝑏, 𝑏),  (𝛼, 𝑏, 𝑏))〉             (5b) 

Equation 5 can be generalized for other types of surfacelets. The surfacelet transform can be 

rewritten as a general surfacelet basis function by modifying Equation 4 as 

  , , ( )  𝛼
−  ⁄  (𝛼−   , ( ))     (6) 
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where r = (x,y,z) is the location in the domain  in the Euclidean space, y:RR is a wavelet 

function, rb,p: R3R is a surface function so that ρb,p=(x,y,z)=0 implicitly defines a surface, 

with the translation factor b and the shape parameter vector pRm determining the location and 

shape of surface singularities, respectively.  For example, the 2D ridgelet is formed by 

introducing angular element into the wavelet function as 

  , , ( )    , ( 𝑐𝑜𝑠𝛼 +  𝑠𝑖𝑛𝛼)    
−    ( − ( 𝑐𝑜𝑠𝛼 +  𝑠𝑖𝑛𝛼 − 𝑏))  (7) 

The 2D ridgelet is shown schematically in Figure 2a. 

The 3D ridgelet represents plane singularities and is defined as 

  , , , ( )   
−    ( − (

  
𝑐𝑜𝑠 𝑐𝑜𝑠𝛼   + 𝑐𝑜𝑠 𝑠𝑖𝑛𝛼   + 𝑠𝑖𝑛    − 𝑏))   (8) 

where  is rotation about the Z axis, is a new angular parameter about the local X axis, 

and b is a translation along the local Y-axis, as shown in Figure 2b. Here the shape parameter 

vector is p = (). Similarly, a surfacelet that represents cylindrical singularities can be defined 

as 

  , , , , ,  ,  ( )    
−    ( − [

  (𝑐𝑜𝑠 𝑐𝑜𝑠𝛼   + 𝑐𝑜𝑠 𝑠𝑖𝑛𝛼   + 𝑠𝑖𝑛   − 𝑏)
 +

  (−𝑠𝑖𝑛𝛼   + 𝑐𝑜𝑠𝛼   )
 ]) 

            (9) 

where parameters r1 and r2 describe the major and minor radii of the cylindrical shape. 

The parameters of surfacelets can be geometrically interpreted as follows. For 3D ridgelets as in 

Figure 2b, any point on a plane 𝑐𝑜𝑠 𝑏    𝛼   + 𝑐𝑜𝑠𝑏𝑠𝑖𝑛𝛼   +    𝑏     has the same 

evaluation of the wavelet function  (𝛼− ( −  )). Therefore, the isosurfaces of Equation 8 are 

planes.  The cylindrical surfacelet is shown in Figure 2c, where the isosurfaces of Equation 9 are 

seen as cylinders.  The 2D version of cylinderlets is shown in Figure 2d. 

 
Figure 2. Geometric interpretation of Surfacelet 
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3.2 Feature Recognition Method for Microstructure Features 

Materials with well-defined microstructure features, such as fibers or particles, can be 

recognized using surfacelet transforms. In order to represent a recognized feature, parameters are 

used. For example, linear feature like fibers can be characterized using their position, orientation, 

and sizes. In a 2D image, fibers can be recognized using 2D ridgelets, since the fibers are linear 

lines. 2D ridgelets provide orientation and location information directly. By analyzing results of 

the surfacelet transform, length of fiber can be obtained. Similarly, grain boundaries often have 

linear shapes and so can be recognized by 2D ridgelets in 2D images, and by 3D ridgelets if 3D 

voxel datasets are analyzed. 

Microstructure features can be extracted using surfacelet representations, which are 

computed by first applying the Radon transform or a Radon-like transform to the image, to 

convert line or edge singularities to point singularities. Then, by applying a wavelet transform to 

the results of the Radon transform or a Radon-like transform, a representation of the image can 

be produced that is potentially sparse. The feature recognition method is presented in Figure 3, 

which is step A in Figure 1. Microstructure features can be found computationally from 

surfacelet representations. It is important to recognize that the results of applying the Radon, 

Radon-like, wavelet, or surfacelet transforms are coefficient sets.  As a result, microstructure 

features can be recognized by finding peaks (observed as bright spots in renderings of these 

coefficient sets) in the Radon or Radon-like or wavelet transforms.  Recognized microstructure 

features are used to construct a microstructure model. This model enables us to calculate the 

effective mechanical properties of microstructure. Finally, by doing that, we are able to achieve 

structure-property relationships of microstructure. These relationships can be integrated into 

current CAD system so that heterogeneous CAD system can be obtained.  

 

 
Figure 3. Microstructure feature recognition method 
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3.3 Feature extraction using a surfacelet method 

2D linear feature extraction can be obtained computationally using the 2D Radon 

transform. The 2D Radon transform generates 2D coefficient sets. A single linear line can be 

represented as a couple of sinusoidal waves, shown in Figure 4. Those sinusoidal waves overlap 

at one point and the result resembles butterfly wings. Butterfly wings connect at the overlap 

point, which is the brightest point in the set of curves. The brightest point represents the 

maximum value in transform space, called a peak. Butterfly wing shape in the 2D coefficient set 

of the Radon transform is extended in the (α) direction as shown in Figure 4b. Depending on the 

image 2D coefficient sets can be complicated, which generate many peaks, as will be shown 

Section 4. By finding peaks in the Radon transform coefficient set, geometric feature information 

can be extracted. The challenge is that often a feature, such as a fibers or grain boundary, will be 

represented by several of these bright points close to one another in the Radon transformed 

parameter space. This type of representation will be called over-representing features. This is 

often observed with long fibers or grain boundaries; two or three neighboring angles (α, β) will 

have large transform values.  Conversely, a single peak in the Radon transform may correspond 

to more than one microstructure feature; for example, if two fibers were collinear and were 

represented by a single peak, this feature would be called under-represented features. A simple 

2D example of an over and under-represented feature is shown in Figure 5. In order to solve 

these issues, this work will apply three techniques to the Radon transform. 

 

 
(a)  Single linear feature (b) Shape of butterfly wing of linear feature 

Figure 4. Single linear feature and its shape of butterfly wings 

 

 
Figure 5. Simple example of an over and under-represented feature 
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The first technique is masking. Masking allows us to identify peaks, which correspond to 

linear features in the image. Equation (10) is a 3 x 3 convolution mask of the form. 

(
 −  
   
 −  

)    (10) 

Equation (10) emphasizes the peak by multiplying 2 to the peak value. On the other hand, the 

pixels above and below the peak point will be de-emphasized by multiplying by -2.  The matrix 

dimension can be expanded depending on the size of the transform coefficient matrix, or it can 

be rotated depending on the shape of the butterfly wing. By using this mask, peaks in transform 

space can be found and over-representation can be avoided. 

The second technique is to analyze the high frequency component of the wavelet 

transform to find microstructure features. In surfacelet transforms, a Radon transform and a 

wavelet transform are applied to the microstructure image. The wavelet transform contains both 

low and high frequency coefficients, which represent respectively low and high resolution 

information about the image. The high resolution component contains abundant information to 

extract linear features, and it emphasizes large gradients in the image. These emphasized 

gradients help to extract information to represent linear geometry. Two factors, point 

singularities and large gradient, hold promise for recognizing peaks. 

Once we apply either masking or high frequency component of the wavelet transform, we 

use a clustering technique to select peak values among complicated results. If the image contains 

complicated geometric features, the result of the Radon or wavelet transform can become very 

complicated, with numerous butterfly wings rotated and overlapped. It is difficult to find linear 

features by detecting all peak values. Over-represented and under-represented features are 

common occurrences in this case. Peak values close to one another in the Radon transform will 

be clustered together using a k-means clustering method based on pair-wise distances between 

peaks.  Among the peak values in the cluster, we take the largest value in the clustering area. By 

using clustering for the complicated result, the peaks of the linear features can be chosen.  

3.4 Linear feature angles 

Determining the angle of the linear geometric feature is illustrated with a simple example 

of a fiber–reinforced composite material. Figure 6a shows the sample microstructure, with 

vertical and horizontal fibers spaced 100 μm apart. The surfacelet transform is applied to the 

sample’s image. The Radon transform of the microstructure results in four sets of non-zero 

coefficients, as four bright spots shown in Figure 6b, which illustrates the efficiency of surfacelet 

representation for microstructures with linear elements. Angles of the four fibers from Figure 6a 

are identified by coefficients of (α, b) = (0,50), (0,150), (90,50), and (90,150). The α values 

correspond to the angles of 0 and 90 degrees, while the b values correspond to the positions of 

the fibers. Using the Radon transform, it is possible to recognize angle of the fibers in the image.  
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a.  Fiber-reinforced composite 

microstructure  

b.  Radon transform 

Figure 6. Simple synthetic fiber-reinforced microstructure and surfacelet representations 

3.5 Linear feature length and position 

Consider the linear microstructure feature shown in Figure 7. By analyzing the butterfly 

wing geometry around a peak, the length and position of a linear feature can be computed.  The 

Radon transform of the linear feature can be illustrated using Figure 7, where θ is the angle of the 

linear feature (which is  + 90 degrees), and the linear feature is represented by the 

perpendicular line to the linear feature at a distance, b, from the origin and its angle, α. P0 

represents the foot of the perpendicular from the origin to the linear geometric feature. If we take 

the maximum ∆α value, the Radon transform would give two displacement values, bu1and bu2, 

which are the foot of the perpendicular from the origin to the lines 1 and 2 that pass through the 

linear feature end points, Q and R. As shown in Figure 7, the cross points of the line 1, 2 and the 

linear feature make a right triangle (∆QRS). Two displacement values, bu1and bu2, are represented 

in the Radon transform coefficient set, as shown in Figure 8a. The height of the triangle can be 

expressed as equation (11). 

  ̅̅̅̅     -           (11) 

By using ∆ α and height of a right triangle, length of the linear segment can be calculated. 

  𝑛        ̅̅ ̅̅̅    ̅̅̅̅     ( α)     (12) 

 
Figure 7. Schematic of linear feature of characterization 

 

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

  (degrees)



0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

θ

∆α b

x

y

bu2

bu1

∆α

Q

R

S

P0

α

2

1

568



 

 

 

Solid Freeform Fabrication Symposium, Austin, TX, Aug. 12-14, 2013. 

Based on the research conducted by Leaver and Boyce [7] the position of line segment along its 

angle θ, can be determined. The length of the contributing point from the foot of the 

perpendicular, p0, is as follows:  

      𝑛 ( )       (13) 

where tan(ψ) is the slope of a bounding curve of the butterfly wing as shown in Figure 8b. 

Therefore, we obtain the lengths of the linear lines    ̅̅ ̅̅ ̅ and     ̅̅ ̅̅ ̅ 

         ̅̅ ̅̅ ̅    𝑛(  ) ,        ̅̅ ̅̅ ̅    𝑛 (  )  (14) 

Having found p1 and p2, the linear feature length can be computed as the sum of these quantities: 

  Length = p1 + p2      (15) 

 
 

(a) Cross points of butterfly wings (b) slope of butterfly wings 

Figure 8. The Radon transforms butterfly wings 

4 EXAMPLES 

4.1 Calcium-Phosphate fiber 

In order to demonstrate our proposed method, we use a synthetic nanocomposite with 5 

weight-percent fibers. The nanocomposite is based on a nanofiber-filled biodegradable polymer, 

polyhydroxybutyrate (PHB), with calcium-phosphate (CaP) nanofibers [16].  We use a synthetic 

microstructure, since we can directly control fiber length, position, and orientation in order to 

compare with the feature recognition results. Assuming that fibers are randomly distributed, a 

sample microstructure that consists of nine fibers is shown in Figure 9.  

 
Figure 9. Calcium-Phosphate Fibers 
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The surfacelet methods with masking, high frequency component on wavelet and clustering were 

investigated to recognize microstructure of Figure 9. These methods enable users to select peaks 

corresponding to fibers. All fibers were recognized at the red circle in Figure 10a using the 

regular surfacelet based method, at the bright convergence spot in Figure 10b using masking, and 

at the white circle in Figure 10c using the high frequency component on the wavelet. Each 

indicated spot corresponds to the fiber angle and location. In order to choose the correct peak 

point, we used clustering. 

Table 1 shows the results from each method that finds peak in the Radon transform 

coefficient matrix. Result from combination with the Radon transform and masking, combination 

with the Radon transform and high frequency component in wavelets are shown. The results give 

almost same result as is obtained by using regular Radon transform.  

We are able to calculate the length and position of the fibers using these angles shown in 

Table 1. Since we have peak values, we can find each of the butterfly wings, we call cross point 

of butterfly wing. Cross points of butterfly wings are taken at angles ∆α on each side of the peak 

value. Cross points of the butterfly wings can be found as shown in Figure 11. For example, each 

of the 4 white spots corresponds to U, W, Q, and R in Figure 8b.   

By using the cross point of the butterfly wing, we obtain the length of the fibers and their 

positions. Figure 12 shows an image of the reconstructed fibers. Even though line 7 is located 

lower than its actual location, the fibers are located at actual fiber location.  All fiber lengths and 

angles are almost the same as actual fibers. Table 2 shows the error between the actual and the 

reconstructed fibers. Table 2 shows the error between the actual and the reconstructed fibers. 

Note that length 1 is obtained by using the first length calculation method, given in Equation 12, 

while length 2 is obtained by the method given in Equation 16. These two means calculated the 

length give almost same result. Since masking and the high frequency component of the wavelets 

produce similar peak values, their reconstructed images are the same. 

Table 1. Peak values from different feature recognition 

methods 

Table 2 Error between actual fiber and 

reconstructed fiber 

fiber 

Regular 

radon 

transform 

with 

clustering 

Radon + 

masking 

with 

clustering 

Radon + 

high 

frequency 

comp with 

clustering 

1 7 7 8 

2 21 21 21 

3 59 59 60 

4 108 107 107 

5 81 80 80 

6 98 98 98 

7 7 9 6 

8 142 142 142 

9 174 174 174 
 

Fiber 

length 1 length 2 

angle % 
Height * 

sin(∆φ) 
P1 + P2 

Length error 

(%) 

Length error 


 %) 

1 15.53 15.
 4 0.69 

2 9.54 9.65 0.80 

3 3.39 3.26 0.81 

4 22.22 22.31 0.50 

5 2.51 2.38 0.27 

6 1.68 1.80 0.55 

7 8.70 8.82 1.10 

8 9.81 9.93 0.65 

9 6.65 6.77 0.63 
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(a) Regular Radon transform (b) Radon transform + Masking (c) Radon transform + High 

frequency component in wavelets 

Figure 10. Result of the Radon transform with different feature recognition methods 

 
Figure 11. Result of the Radon transform with cross points of the butterfly wings for 9-fiber example 

 
Figure 12. Reconstructed image of 9-fiber example 

4.2 Metal alloy 

As a second example, 2D ridgelet transformations will be applied to a dataset obtained 

from a 10x10x10 µm IN100 nickel-base super-alloy sample [17], shown in Figure 13. Grain 

boundaries will be recognized in part of the smoothed 2D image. 

Part of one cross section through the dataset was smoothed manually, since the original 

dataset was too coarse (only 41x41 pixels) and was used for this example. Figure 14 shows part 

of the smoothed cross-section. By using the proposed method, angles of linear feature were 

recognized. Three different variations of surfacelet based methods were performed which are 

regular Radon transform with clustering, the Radon transform with masking and clustering, and 

the Radon transform with high frequency component of wavelet and clustering. Among three 
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variations, high frequency component of wavelet produces the most promising result. As shown 

in Table 3, most of linear features were detected by the high frequency component of wavelet. 

By using detected angles, the cross points of the butterfly wings in the 2D coefficient set were 

found, as shown in Figure 15. By using these cross points, we obtain the position, length, and 

angle of the grain boundary segments shown in Figure 14. The reconstructed line segments from 

this cross section are shown in Figure 16. However, in order to construct grain boundaries, line 

segments need to be connected. If the end points of the line segments were close to one another, 

they were assumed to represent shared vertices and were connected, with the positions of the 

shared vertices computed by averaging all shared cross point positions. The reconstructed grain 

boundary image is shown in Figure 17.  

 

 

Figure 13. IN100 voxel dataset Figure 14. Cross section of part of IN100 

example 

Table 3. Peak values from different feature recognition methods for alloy example 

line  

segment 

Regular radon Radon  

+ masking 

Radon 

+ high freq. comp. 

disp. angle disp. angle disp. angle 

1 95 1 94 2 98 1 

2 258 19 258 19 260 19 

3 170 63 171 62 172 63 

4 159 91 159 91 162 89 

5 180 149 180 150 182 150 

6 269 181 269 180 270 180 

7 153 56 None 152 55 

8 170 107 None 174 108 

9 None 120 131 122 131 

10 None None 216 143 

11 None None 130 172 

12 None None 234 91 

13 159 84 None None 

14 None 140 91 None 
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Figure 15. Result of the Radon transform with cross points of the butterfly wings for IN 100 example 

  
Figure 16. Reconstructed image of line segment 

for cross section of IN 100 example 

Figure 17. Reconstructed grain boundaries of IN 

100 example 

 

4.3 Copper specimen fabricated by EBM 

In order to apply our method to real grain boundaries produced by an AM process, we used 

a copper microstructure image. Figure 18 shows a surface of EBM fabricated Cu specimen 

containing Cu2O precipitates [18].  Since the image includes noise, the 2D coefficient set of the 

Radon transform is complicated. From the coefficient set, we select peak values, which represent 

the angle of linear features. Then, the cross points of the peak values are found with appropriate 

threshold, shown in Figure 19. A reconstruction image of linear features is shown in Figure 20. 

By using the reconstructed linear features, we construct grains, shown in Figure 21.  A 

reasonably good match was achieved by recognizing grain boundaries and reconstructing grains, 

as can be seen in Figure 21b. 

α

b
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Figure 18. Copper specimen fabricated by BEM 

  
Figure 19. Result of the Radon transform with cross points of 

the butterfly wings for Copper example 

Figure 20. Reconstructed linear feature of 

Copper example 

  
(a) Reconstructed grain boundaries (b) Reconstructed grain boundaries overlapped 

with input image 

Figure 21. Reconstructed image of Copper example 

 

5 CONCLUSION 

A new approach for reverse engineering of materials was presented that seeks to construct 

material microstructure models. The approach recognizes microstructure features from 2D 

images of material cross-sections. Linear features, such as fibers and grain boundaries, can be 

recognized by applying Radon and surfacelet transforms. From this study, it can be concluded 

that linear features can be recognized readily.  Fibers in 2D images can be recognized as lines 
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using the 2D ridgelet transform. Grain boundaries in metal alloys are also recognized as lines. In 

addition, a real image including noise also can be recognized as lines using the proposed method. 

Linear features are recognized by three different methods, 1) Radon transform, 2) Radon 

transform with masking, 3) Radon transform with high frequency component of the wavelet 

transform. In order to choose peak value from each method, we cluster peaks, and select the 

highest peak in each cluster. Therefore, selected peaks provide angles of linear features and sets 

of 2D coefficients of the Radon transform enable to obtain estimated length and position of the 

linear feature. Three examples, PHB fiber, metal alloy, and copper, are used to demonstrate this. 

Among the three methods, high frequency component of wavelet produces the most promising 

result. In addition, the calculated lengths and positions of linear features were reasonably close to 

those from the original image.  

The feature recognition method using Radon and surfacelet transform works well with linear 

features. Angles of the linear features are recognized accurately, while length and position are 

extracted with small errors. This is because the length and position calculation of linear features 

highly depends on accurately identifying the cross points of the butterfly wings in the Radon 

transform. In addition, the limited resolution of Radon transforms causes the points U, W, Q, and 

R to be identified with significant error in some cases.  

Further work will investigate additional types of surfacelet transforms for recognizing various 

other microstructural features, including ellipsoidal shapes and more complex grain boundaries.  

Additionally, integration of microstructure models with CAD systems will be demonstrated, 

enabling heterogeneous modeling of CAD models. In addition to geometry, material information, 

including compositions, microstructures, and properties, is needed.  With this information, 

structure-property relationships can be modeled such that effective mechanical properties at 

larger size scales can be computed from material property information at small scales.   
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