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Abstract

A predictive model, based on a Cellular Automaton (CA) - Finite Element (FE) method,
has been developed to simulate microstructure evolution during metal solidification for a laser
based additive manufacturing process. The macroscopic FE calculation was designed to update
the temperature field and simulate a high cooling rate. In the microscopic CA model, hetero-
geneous nucleation sites, preferential growth orientation and dendritic grain growth kinetics
were simulated. The CA model was able to show the entrapment of neighboring cells and the
relationship between undercooling and the grain growth rate. The model predicted the den-
dritic grain size, structure, and morphological evolution during the solidification phase of the
deposition process. Model parameters for the simulations were based on stainless steel 316 (SS
316).

1. Introduction

As shown in Figure 1, laser deposition systems use a focused laser heat source to generate
a molten pool on a substrate and melt injected powder thus creating a fully dense deposited bead.
Solidification thermodynamics affect microstructure evolution, which directly affects materials me-
chanical properties. Several approaches have been taken to model microstructure evolution. A
Monte Carlo stochastic method was shown by Anderson et al. [1], but this method does not explic-
itly consider the relationship between the growth rate of dendrite tips and undercooling. A phase
field method was used by Choudhury et al. [2], but this method carried a high computational cost
because of a requirement for a very fine computational grid. Another method employs a Cellular
Automaton (CA) method proposed by Rappaz and Gandin [3]. The CA algorithm characterizes
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Figure 1: Schematic of LAMP laser deposition process

the discrete temporal and spacial microstructural evolution by utilizing a network of regular cells
[4]. The advantages of the CA model are that it is based on a strict physical mechanism and has a
low computation cost. The CA model can be coupled with a macroscopic thermal model to con-
sider heat and mass transfer in complex geometries. The Cellular Automaton (CA) method for
prediction of microstructure development was used to simulate the microstructure. In this model,
CA was applied for predicting the dendritic grain size, shape and orientation evolution during the
solidification phase of the deposition process.

2. Mathematical Model

The mathematical approach taken in this study involves two models. Nucleation and grain
growth are implemented at a microscopic level with a CA method. Since nucleation and grain
growth are driven by temperature, a macroscopic thermal model, based on a Finite Element (FE)
method, is used. Macroscopic and microscopic are used to highlight that these models run at two
different scales in time and space. The CA and FE models, and how they are coupled, are described
in the following sections.
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2.1 Microscopic CA Model

2.1.1 Nucleation

Heterogeneous nucleation occurs nearly instantaneously at a characteristic undercooling. The
locations and crystallographic orientation of the new nuclei are randomly chosen at the surface
or in the liquid. As explained by Oldfield [5], the continuous nucleation distribution, dn/d∆T

′
,

which characterizes the relationship between undercooling and the grain density, is described by
a Gaussian distribution both at the mould wall and in the bulk liquid (Eq.(1)). The parameters of
these two distributions, including maximum nucleation density nmax, the mean undercooling ∆TN ,
and the standard deviation of the grain density distribution ∆Tσ , can be obtained from experiments
and grain size measurements. The grain density, n(∆T ), is given by (Eq.(1)):

n(∆T ) =
∫

∆T

0

dn
d∆T ′

d∆T
′
=
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∆T

0
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√
2π

exp

[
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(
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′−∆TN

∆Tσ

)]
d∆T

′
(1)

where nmax is the maximum nucleation density of nucleation grains, which is obtained by the inte-
gral of the nucleation distribution (from zero undercooling to infinite undercooling). ∆TN and ∆Tσ

are the mean undercooling and standard deviation of the grain density distribution, respectively.
Here, all temperatures are in Kelvin.

According to the cellular automaton algorithm used by M.Rappaz et al. [3](Eq.(2)), if the
nucleation probability pv = δnvVCA equals or exceeds a random number r (0 6 r 6 1) during the
time step δ t, the cell will nucleate instantaneously.

pv > r (2)

Here, δnv is the grain density increase, and VCA is one CA cell volume.

2.1.2 Grain Growth

In the case of alloy dendritic growth from the undercooled melt, the coupled transport (solute
and heat) problem must be solved. The model considers the marginal stability and capillarity effect.
The total undercooling of the dendritic tip consists of three parts, solute undercooling, thermal
undercooling and curvature undercooling. For most metallic alloys, the kinetic undercooling for
atom attachment is small so it is neglected [6]. The total undercooling can be calculated by (Eq.(3)).

∆T = mC0[1−A(Pc)]+θtI(Pt)+
2Γ

R
(3)

741



where m is the liquidus slope; Γ is the Gibbs-Thomson coefficient; C0 is the solute concentration
in the liquid far from the solid-liquid interface; Pt and Pc are the thermal and solutal Péclet num-
bers, respectively; k is the solute partition coefficient at the solid-liquid interface; A(Pc) equals
[1− (1− k)I(Pc)]

−1; θt is the unit thermal undercooling (= ∆h f /c); and R is the radius of the
dendritic tip.

In equation (3), k , D and Γ depend on the temperature. Here, the following model built by
Aziz et al. [7] was used:

k =
k0 +(a0V/Di)

1+(a0V/Di)
(4)

where k0 is the equilibrium partition ration, Di is the interface diffusion coefficient in the liquid,
and a0 is a length scale associated with the interatomic distance and is estimated to be between 0.5
and 5 nm.

A dendritic tip with a parabolic shape was applied in this model, expressed in its simple form
as:

Ω = I(P) (5)

where Ω represents supersaturation, and the Ivantsov function(the function of Peclet number P) for
a needle crystal associated with the parabolic dendritic tip is provided by:

I(P) = Pexp(P)E1(P) (6)

where E1(P) corresponds to the exponential integral function.

E1(P) =
∫ +∞

P

exp(−z)
z

dz (7)

Langer and Müller-Krumbhaar [8] proved that dendrite tips grow in marginally stable state. There-
fore, we can write the approximate equation:

R = λi (8)

where λi is the critical wavelength of the solid-liquid interface at the limit of stability. For the
laser deposition process, the rapid solidification condition corresponds to a high Peclet number, at
which, the dendritic tip radius is given by (Eq.(9)):

R =

[
Γ

σ∗(mG∗c−G∗)

]1/2

(9)

where σ∗, the marginal stability constant, approximately equals 1/(4π2)[9]. G∗ and G∗c are the
effective temperature gradient and concentration gradient, respectively. By substituting G∗c and G∗,
the dendritic tip radius, R, is calculated by

R =
Γ/σ∗

θtPtξt +2θcPcξc
(10)
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where θc = ∆T0kA(Pc), and ξt and ξc are defined as in [6]. The growth velocity and the dendrite tip
radius were calculated using an iterative method [10].

For columnar dendrite growth, the effect of latent heat release can be neglected, so the imposed
temperature field will not produce thermal undercooling. The full transport equation reduces to:

∆T = ∆Tc +∆Tr (11)

By substituting ∆Tc and ∆Tr in (Eq.(3)) and (Eq.(9)) into (Eq.(11)), one obtains the result:

π2ΓV 2

P2
c D2 +

θcξcV
D

+G = 0 (12)

Equations (10) and (12) yield the relationship between R and V.

2.1.3 Cellular automaton simulation procedure

A time and space discreted cellular automaton (CA) method was used to develop the grain
formation, as detailed in [3] and [11]. A network of equal size square cells was designed into the
model. Each cell has different variables (temperature, crystallographic orientation and phase state).
Each phase state index was given certain value. A state index of zero represented liquid, and a
positive integer state index(from 1 to 48) represented solid and crystallographic orientations in 2D
model.

During the grain growth, the 2D ”decentred square” growth algorithm [12] was used to avoid
overgrowth of the square envelope and maintain the original crystallographic orientation. The vir-
tual growth center does not correspond to the cell center in the CA network. After a few time-steps
of growth, the square envelope was truncated to an appropriate size, which will guarantee that the
grain will not grow forever. This maintains the original orientation and guarantees the develop-
ment of solidification microstructure under a non-uniform temperature field. The growth rate of
the dendritic tips along four diagonal directions were independent because of the non-uniform tem-
perature, resulting in final envelopes that were not strictly square. The capillarity effect, marginal
stability, local undercooling and solute concentration are considered in the grain growth kinetics
model.

The macroscopic model can provide temperature field information at each node. Here linear
interpolation was used to obtain the finer temperature nodes because the finite element mesh for
heat flow calculation was coarser than in the CA grids.
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2.2 Macroscopic FE Thermal Model

In order to obtain the microstructure information during the solidification process, the tem-
perature field must be known at each time step. The Finite Element Method (FEM) [13], which
is appropriate for complex shapes with limited nodes, was selected here. A linearized implicit FE
enthalpy formulation of the heat flow equation can be given by[

1
∆t
· [M]+ [K]t ·

[
∂T
∂H

]t]
· {δH}=−{K}t · {T}t +{b}t (13)

where {M} is the mass matrix; {K} is the conductivity matrix; {b} is the boundary condition
vector; and {T} and {H} are the temperature and enthalpy vectors at each node of the FE mesh,
respectively. The assumption here is that the conductivity matrix and boundary condition term
do not vary much with time. The Newton Method and Euler implicit iteration are included in
equation(13). This set of equations can be solved using the Gauss elimination method for {δH}.

δH = ρ · cp · [T t+δ t−T t ]−∆H f ·δ fs (14)

Thus, the next time-step enthalpy can be obtained by the relationship Ht+1
i = Ht

i + δH. The new
temperature field can be obtained from the coupling model using equation(14). δ fs can be calcu-
lated as in [14].

2.3 Coupling Macroscopic with Microscopic Model

In the FE macroscopic model, the temperature field was calculated on a relatively coarse mesh,
but the solidification microstructure had to be developed on a finer regular CA mesh with a cell size
of the order of the secondary spacing. The known temperature T t

n and the volumetric enthalpy
variation δHn were interpolated into the CA network by the linear interpolation in Eqs (15). φvn is
the interpolation coefficient.

T t
v = ∑

n
φvn ·T t

n , Ht
v = ∑

n
φvn ·Ht

n (15)

The finer temperature, T t
v , and enthalpy variations δHt

v in regular CA cells were used in equa-
tion (14) to yield the temperature in the next micro time step. After a few micro time steps, the
temperature field in the CA network could be substituted into the coarser nodes of the macroscopic
model. In this case, the laser deposition process is considered a rapid solidification process, so
the cooling rates were as high as 103 ∼ 104K/s [15]. The macro time step for the FE model was
of the order of 10−4s. An adaptive micro time step was 2× 10−5s so that in each time step, the
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temperature decrease is less than 0.2K. Thus the temperature and enthalpy fields were interpolated
into the microstructure model in both space and time. The latent heat release in the microscopic
model was interpolated back into the macroscopic model.

3. Results and Discussion

This section includes a discussion of the preliminary results of the macroscopic model (FEM)
for the temperature. The solidification microstructure evolution of the coupling CA model under
laser deposition of SS 316 is also discussed.

Figure 2 shows the temperature field evolution in the macroscopic model from the starting
time, t=100ms, to the finishing time, t=150ms. It can be seen that the heat source moved towards
right during this period. In Figure 2, the black rectangle represents the microscopic domain, which
is the area portrayed in Figure 3 from the microscopic CA model.

Figure 2: Macroscopic FE simulated temperature field for laser deposition of SS 316. Temperatures
are in K and shown at a) t=105ms, b) t=120ms, c) t=135ms, and d) t=150ms. The black rectangle
indicates section of thermal results used for the CA microscopic model. The rectangle is 200 µm
wide and 70 µm high.

As Figure 2 illustrates, at the starting time, the hottest area was almost within the microscopic
domain (i.e. the bold black rectangle in Figure 2(a)), and the temperature of most of the micro-
scopic domain exceeded the liquidus temperature. Therefore; the majority of the melt pool had
not solidified. After a 50ms evolution, the hottest area almost fell outside of the microscopic do-
main, and some parts of that domain had solidified because the temperature was below the liquidus
temperature and hit the critical undercooling value.
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Figure 3 shows the evolution of the solidification microstructure during the laser deposition
process of SS 316. The grid size for the macroscopic model was 10µm, and the macro time step was
10−4s. The grid size for the microscopic model was 2µm, and the micro time step was 2×10−5s.

Figure 3: Microscopic CA simulation evolution of SS 316 microstructure during solidification.
Microstructure evolution is shown at a) t=105ms, b) t=120ms, c) t=135ms, and d) t=150ms. ‘I’ and
‘J’ axes are in µm, depicting the grains length in two dimension. Color indicates individual grains.

As the Figure 3 illustrates, the grains initially nucleated at the interface between the solid and
liquid because the heat transfer at the interface occured much faster than in the liquid. The different
colors represent different crystallographic orientations of grains. Also, during grain growth, the
grains always maintained their original orientations, which agreed with the physical mechanism.

These simulation results have not been compared with the results of laser deposition experi-
ments. The grain size and shape need to be measured in such experiments in order to improve the
simulation results. Additional DTA [16] experiments also must be conducted to find the critical pa-
rameters for describing the Gaussian distribution in detail. In the future, the current ”2D decentred
square algorithm” will be replaced by ”3D decentred octahedron algorithm” [17] without affecting
the cell grid superimposing to a coarser finite element mesh.
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4. Conclusion

From the simulation results, the coupled model described in this paper can approximate the
temperature field of the substrate, the melt pool, solidification, and the microstructure evolution of
SS 316 during the laser deposition process. The FE model provides the temperature at a relatively
coarse scale and interpolation is used to scale the temperature field to match that of the CA model.
The CA model predicts microstructure evolution as the substrate cools. Hence, the instantaneous
nucleation law, dendritic grain growth, and crystallographic orientation were modeled in this study.
Future work will be directed into the development of a 3D FE and CA model.
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