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Abstract 
 

To generate parallel contour path for direct production of complicated cavity 
component, a novel path planning based on Voronoi-based distance map is presented 
in this paper. Firstly, the grid representation of polygonal slice is produced by 
hierarchical rasterization using graphics hardware acceleration and divided into 
Voronoi cells of contour by an exact EDT (Euclidean distance transformation). Then, 
each VCI (Voronoi cell of inner contour) is further subdivided into CLRI (closed loop 
region of inner contour) and OLRI (open loop region of inner contour). Closed paths 
for each CLRI and the block merging VCO (Voronoi cell of outer contour) and all 
OLRIs are generated by local and global isoline extraction, respectively. The final 
path ordered in circumferential and radial directions is obtained by sorting and 
connecting all individual paths. In comparison with conventional methods such as 
pair-wise intersection and Voronoi diagram, the proposed algorithm is numerically 
robust, can avoid null path and self-intersection because of the application of distance 
map and discrete Voronoi diagram. It is especially used for FGM (Functionally 
Graded Material) design and fabrication.  
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Introduction 
 

AM (Additive Manufacturing) is a short process fabrication technology 
integrating material designing, preparing and shaping. Different than conventional 
processes such as casting, forging, cutting and milling, part with complicated 
geometry and function can be fabricated easily and rapidly. It is reported that AM is 
the catalyst for the Third Industrial Revolution [1]. In past two decades, direct 
production of metal parts has been attracting attentions of many organizations and 
scholars, various types of processes have been brought. According to forms of energy 
source and raw material, the processes can be fall into three categories: 
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(1) Laser + Powder. LENS (Laser Engineered Net Shaping) [2], DMLS (Direct Metal 
Laser Sintering) [3], SLM (Selective Laser Melting) [4], DLF (Direct Light 
Fabrication) [5] and DMD (Direct Metal Deposition) [6] are in this category. 

(2) Electron Beam + Powder. Typical process is EBM (Electron Beam Melting)[7] 
developed by Arcam Inc. It mainly serves for aerospace and medical implants 
because of high fabricating cost. 

(3) Arc + Wire (Powder). Electric arcs include MIG (Metal Inert Gas Welding), TIG 
(Tungsten Inert Gas Welding) and PTA (Plasma Transferred Arc). SDM (Shape 
Deposition Manufacturing) [8], SMD (Shaped Metal Deposition) [9] and PDM 
(Plasma Deposition Manufacturing) [10] are in this category. 
PDM is a cost-efficient AM process for direct production of metal component. 

Energy source is PTA and raw material is metal powder in early stage but metal wire 
now. It has wide deposition width, high efficiency and low material waste and cost. 
On the basis of PDM, HPDM (Hybrid Plasma Deposition and Milling) [11, 12] has 
been developed for precision fabrication. Deposition stair-stepping error and 
fabrication tolerance can be eliminated by milling. Recently PDM integrating with 
rolling is developing. It can flatten the weld bead, reduce height error, improve 
dimensional accuracy as well as refine grain, microstructure and mechanical 
properties. 

It is hard to eliminate residual stress because of severe temperature change in 
metal deposition. Deformation and crack induced by residual stress will reduce shape 
and dimensional accuracy and increase part-reject rate. Using proper filling path can 
balance the distribution of thermal stress, reduce temperature gradient and 
deformation and improve manufacturing accuracy. Based on finite element numerical 
analysis, Dai [13] and Tian [14] contrasted outputs of thermal stress and deformation 
in different types of scanning patterns. Their results showed that the output is less in 
the case of parallel contour path. Yu and Lin [15] conducted an experiment to study 
the shaping accuracy and mechanical properties in various types of filling patterns. 
The patterns include raster, fractal, offset from the outside to the inside and offset 
from the inside to the outside. The result showed that the part fabricated by using 
offset from the inside to outside has superior accuracy and mechanical properties. 
Moreover, parallel contour path is capable to reduce the length and number of idle 
path and without need of switching energy source and adjusting feed rate frequently. 
The final part has good surface quality and mechanical properties. Therefore, it is a 
more desired scanning pattern for metal part fabrication. 

Part is fabricated by raw material deposition layer upon layer using slices 
generated by slicing from 3D model data in AM process. STL (STereoLithography) 
representing 3D CAD model as a collection of unordered triangular planar facets has 
become the de facto data exchange standard for AM process [16]. The intersection 
between a given plane and a STL model consisting of a series of segments is called 
polygonal slice. Block is usually taken as a basic fabricating cell in deposition. There 
are one or more blocks in a slice. Each block has one or more polygonal contours 
described by ordered vertex list. Each contour includes properties: ID, outer/inner, 
parent ID and additional information. Outer/inner property is decided by the depth of 
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contour. The contour whose depth is odd is inner contour, otherwise it is outer contour. 
Outer contour must be parent contour and inner must be child contour. Each parent 
contour and its child contours form a block. If the number of child contours is not 
equal to 0, the block is multiply-connected; otherwise, it is simply-connected. 
Additional information comprises AABB (Axis-Aligned Bounding Box) and smallest 
enclosing circle. Fig.1 demonstrates a polygonal slice with four blocks: two 
simply-connected blocks and two multiply-connected blocks. Contour ܽ and its child 
contours: ܾ and ܿ make up a multiply-connected block with two holes. Contour ݂ 
has no child contour, so it forms a block by itself. 

   
Fig.1 Polygonal slice 

There are usually two approaches to generating parallel contour path for 
polygonal slice. One is pair-wise intersection and the other is Voronoi diagram. The 
former as described by Hansen [17] consists of three stages: (1) offset each segment 
to get offset element; (2) close gaps between offset elements by arcs to generate 
closed loop; (3) distinguish and eliminate invalid self-intersection loop. The third 
stage is very critical and attracts attentions of many scholars. Invalid self-intersection 
loop is discriminated by the direction of loop. When the direction of loop (CW) is 
opposite to the direction of contour (CCW), the loop is an invalid self-intersection 
loop. According to the number of self-intersection points, invalid self-intersection 
loop is divided into two categories: global with one point and local with two points. 
The method is intuitive and simple. However, there is numerical error in 
self-intersection point computation, such as near-circle singularity [18]. It results in 
that invalid loop is mistaken as a valid loop. Additionally, self-intersection point 
computation involving lots of intersection between offset line segments is a 
time-consuming procedure whose time complexity is ܱሺ݊ଶሻ where ݊ denotes the 
number of offset line segments. The latter approach is based upon Voronoi diagram of 
polygon. For a set of points, the efficient algorithms are divide-and-conquer algorithm 
[19] and Fortune’s sweep line algorithm [20]. In view of topology consistency, 
numerically robust incremental algorithm has been proposed by Sugih [22]. Inaga [21] 
extended the algorithm to line segments, chains and polygons. Although topology 
consistency is prior to numerical computation, there are still numerical errors. For 
convex polygons, Aggarwal [23] pointed out that Voronoi diagram can be gained in 
linear time. For simple polygons with concave, Lee [24] and Held [25] computed 
Voronoi diagram by using divide-and-conquer algorithm in ܱሺ݈݊݊݃݋ሻ  time. 
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However, the computation involves representing and manipulating high-degree 
algebraic curves (parabola) and their intersections on the one hand and degenerate 
cases (such as four point-sites on the common circle) need special process which is 
usually numerical instability on the other hand. As a result, there is no efficient and 
numerically robust algorithm to compute Voronoi diagram of simple polygon. 

In the past years, simply-connected slice has being a focus and 
multiply-connected slice was seldom studied. Path link is also an important issue. It is 
difficult to generate radial ordered path for multiply-connected slice because of more 
than one boundaries constraint. For part with complicated cavity, there must be 
multiply-connected slice. To directly fabricate this kind of part with less machining, a 
novel path planning for multiply-connected slice using distance map and discrete 
Voronoi diagram is proposed in this paper to avoid complex self-intersection and 
numerical instability. 
 

Algorithm Overview 
 

 As shown in Fig.2, the input is polygonal slice and the output is corresponding 
parallel contour path. Polygonal slice deriving from slicing is simply-connected or 
multiply-connected. 1) grid representation of slice is produced by hierarchical 
rasterization using graphics hardware acceleration; 2) distance map and Voronoi 
diagram of contour are computed by exact EDT; 3) each VCI is divided into CLRI 
and OLRI according to mini-COD (critical offset distance). Equidistant offset paths 
for each CLRI and the block merging VCO and all OLRIs are generated by local and 
global isoline extraction, respectively; 4) the final path closed and ordered in 
circumferential and radial directions is obtained by sorting and connecting of 
individual paths. 

 

Fig.2 Pipeline of the proposed algorithm 
 

Hierarchical Rasterization 

 

 Rasterization is the process converting a polygonal slice into a grid. Basic 
element of 2D grid is usually called pixel. To improve efficiency, graphics hardware 
acceleration is employed. Firstly, normalize a slice into a unit box by translation and 
rotation transformation. Without loss of generality, two diagonal vertices of the unit 
box are ሺ0,0ሻ and ሺ1,1ሻ, respectively. Then, project normalized slice into a specific 
size window. The size of window is specified by user expected resolution. Finally, 
read pixels from frame buffer and distinguish them. When the pixel is opaque, it is an 
inner pixel; otherwise it is an outer pixel. Hierarchical rasterization consists of two 
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sequential stages: contour rasterization and interior rasterization. The former handles 
the slice contour by contour and the latter handles slices layer by layer. Taking 
boundary pixel as a special kind of inner pixel, the latter will not change the output of 
the former. Without extra post-process to distinguish boundary pixels, hierarchical 
rasterization directly generates three categories of pixels: inner, outer and boundary. 
Boundary pixel can also inherit extra information from polygonal contour such as ID 
and material. Therefore, hierarchical rasterization can serve for some specific 
applications such as FGM design. 
 However, when polygonal contour overlaps edge of the unit box, portion of 
boundary pixels will miss. As shown in Fig.3(a), pixels of outer contour is 
disconnected. The phenomenon is called boundary effect and has unfavorable 
influence on the accuracy of grid representation. To avoid boundary-effect, the 
normalized slice must be strictly in unit box. An inflation prior to normalization is 
performed.  

    

Fig.3 Boundary effect and inflation 
 Projection is very important in rasterization. Different than contour rasterization, 
interior rasterization require filling the interior to guarantee the inner pixel is opaque. 
OpenGL as excellent graphics hardware programmable interface is adopted in our 
implementation. It can assure satisfactory precision as our experience. Unfortunately, 
OpenGL only supports convex polygon rendering. Thus, a pre-process for concave 
polygon rendering is necessary. A naive and simple solution is sweep lines. It usually 
appears in CPU rasterization algorithm. One of its disadvantages is that the distance 
between two adjacent sweep lines is closely related to the resolution of rasterization. 
The other is that the computation of sweep lines involves lots of intersection. An 
alternative approach is polygon triangulation. Mark [26] described an algorithm to 
triangulate a simple polygon in great detail. The polygonal slice is first partitioned 
into strict Y-monotone sub-polygons in ܱሺ݈݊݊݃݋ሻ  time where ݊  denotes the 
number of vertices of slice. Then, each sub-polygon is triangulated in linear time. 
Fig.4 illustrates the results of sweep lines and triangulation. Test polygonal slice is 
Hubei administrative division map from National Fundamental Geographic 
Information System of China (http://nfgis.nsdi.gov.cn). Outer contour is its provincial 
boundary with 866 vertices. Three inner contours from right to left are municipal 
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boundaries of Wuhan with 451 vertices, Shiyan with 174 vertices and Yichang with 
640 vertices, respectively. The computer is using ATI Radeon HD 4350 GPU and 
Intel® Core™2 Quad Q9500 2.83GHz CPU. Their efficiency comparison is shown in 
Fig.5. The computation time of sweep lines linearly increases with the increase of the 
resolution. Polygon triangulation is irrelevant to the resolution and finishes in const 
time. So polygon triangulation is superior to sweep lines. 

 

(a) Sweep lines with resolution 256          (b) Triangulation with 2135 faces 

Fig.4 Sweep lines filling and triangulation 

       

  Fig.5 Efficiency comparison  Fig.6 Influence of resolution on DTVR 

As shown in Fig.7, time of rasterization consists of normalization of contours, 
slice triangulation, DTRV (Data Transfer from RAM to VM (video memory)) for 
contour and interior and reverse DTVR (data transfer from VM to RAM). The 
previous three components are unrelated to the resolution and are const for a given 
polygonal slice. DTVR is the major factor affecting efficiency. Since test object has 
four contours and one contour is rasterized at a time, DTVRC is larger than DTVRI 
that handles one block at a time. Influence of the resolution on the efficiency of 
DTVR is investigated (see Fig.6). It takes 56.90, 1.04 and 76.54ms to get different 
resolution grids with 416, 418 and 480, respectively. It is clear that rasterization is 
significantly faster when the resolution is divisible by 64. Data type for data transfer 
is also studied. When the resolution is 512, transfer time of float (1.33ms) is far less 
than those of short and char (5.57ms). It may be depend on structure and design of 
VM and its access mechanism. 
 Let ሺ∆ݔ,  ,be translation vector and scale factor of normalization ݎ and ݏ ,ሻ்ݕ∆
and the resolution of rasterization, respectively. Pixel is represented by its center. 
Transformation from pixel coordinate to object coordinate is formulated by: 
 ܲ ൌ ଴ܶ

ିଵ ڄ ܵ଴
ିଵ · ଵܵ · ଵܶ · ܲ′ (1) 
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where ଵܶ, ଵܵ , ܵ଴
ିଵ and ଴ܶ

ିଵ are homogeneous transformation matrices:  

ଵܶ ൌ ൥
1 0 0.5
0 1 0.5
0 0 1

൩， ଵܵ ൌ ൥
ଵିݎ 0 0

0 ଵିݎ 0
0 0 1

൩，ܵ଴
ିଵ ൌ ൥

ଵିݏ 0 0
0 ଵିݏ 0
0 0 1

൩， ଴ܶ
ିଵ ൌ ൥

1 0 െ∆ݔ
0 1 െ∆ݕ
0 0 1

൩ 

Let ݀ be the length in object coordinate system, the corresponding length in pixel 
coordinate system is expressed by: 
ܦ  ൌ  (2) ݏݎ݀
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CN: contour normalization

DTRVC: data transfer from 
RAM to VM for contour

PT: polygon triangulation

DTVRC: data transfer from 
VM to RAM for contour

DTVRI: data transfer from 
VM to RAM for interior

DTRVI: data transfer from 
RAM to VM for interior

TOT: total

 

Fig.7 Time of rasterization 

 
Discrete Voronoi Diagram of Contour 

 
 As mentioned above, a slice maybe consists of more than one blocks and block is 
the basic fabrication cell. Let ܥ ൌ׷ ሼܥଵ, ଶܥ ڮ ,  ௡ሽ be a set of ݊ distinct contours of aܥ
block ܤ. Voronoi diagram of ܥ is the subdivision of ܤ into ݊ regions. Each region 
is called Voronoi cell. Let ௜ࣰ denote Voronoi cell corresponding to a site ܥ௜. For 
݆ ് ݅, a point ܲ lies in ௜ࣰ with the property: 

,ሺܲݐݏ݅݀  ௜ሻܥ ൏ ,൫ܲݐݏ݅݀  ௝൯ (3)ܥ

As shown in Fig.8, the block is subdivided into three Voronoi cells corresponding 
to its three contours, respectively. Voronoi cell of the inner contour is written as VCI 
for short. Voronoi cell of the outer contour is accordingly written as VCO. It is clear 
that each Voronoi cell is bounded and closed. One of its closed boundaries must be the 
corresponding contour site. The others are the loci of points equidistant from two 
contour sites. If ܲ א ௜ࣰ, we define its contour property ࣝሺܲሻ as ID of the site ܥ௜. 
Let ܩ ൌ׷ ሼܩଵ, ଶܩ ڮ ,  a set of pixels with ,ܤ ௠ሽ be grid representation of the blockܩ
the same contour property ܥ௜  forms the discrete Voronoi cell ࣞ ௜ࣰ . It can be 
expressed as:  
 ࣞ ௜ࣰ ൌ ሼܩଵ, ଶܩ ڮ , ,ݏ׊|௞ܩ ,ݐ ࣝሺܩ௦ሻ ൌ ࣝሺܩ௧ሻ ൌ  ௜ሻሽ (4)ܥሺܦܫ

It is important to decide the contour property of each pixel for computing discrete 
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Voronoi diagram of contour. Boundary pixels derived from the same contour have 
been assigned the same contour property in rasterization process. For an inner pixel, 
its contour property is determinated by its nearest boundary pixel. Taking boundary 
pixels as feature pixels, the nearest feature pixel of an inner pixel can be found by an 
EDT. A naïve and intuitive EDT algorithm is BF (brute-force) performing nested 
loops. Although it is exact, it needs ܱሺ݊ଶሻ operations. In fact, feature pixels are just 
a small proportion of the total pixels. BF can be improved by means of reducing the 
search region of feature pixels. But it requests additional memory blocks for feature 
pixels storage. Fortunately, there are some exact EDT linear algorithms such as 
Saito’s [27], Meijster’s [28] and Wang’s [29]. Fig.9 illustrates their comparison in the 
aspect of efficiency. The test object with resolution 256 is shown in Fig.10(a). It is 
clear that Wang’s algorithm is faster than others. Therefore, it is adopted.  

i
P V

     
Fig.8 Voronoi diagram of contour       Fig.9 Efficiency comparison of exact EDT algorithms 

Wang’s algorithm is an independent scanning algorithm. In our application, it 
includes four stages: 1) pixels initializing. Boundary pixel is set to 1 and inner pixel is 
0; 2) column scanning. The square distance between a pixel and its nearest pixel in the 
same column is computed; 3) row scanning. The square distance between a pixel and 
its nearest pixel in the whole grid is computed by using the results of column scanning 
and nearest feature pixel of each pixel is determinated; 4) distance normalizing. The 
distance is mapped into the interval ሾ0,1ሿ where 1 represents the global maximum 
distance and 0 represents the contour. For an inner pixel ݑ, Let ݒ be its nearest 
feature pixel in the whole grid. ݒ௫ has been given in the third stage (see details in ref. 
  :௬ is computed by the following formulasݒ .([29]

௬ݒ  ൌ ௬ݑ േ ඥ݀ݒ െ ௫ݒ
ଶ (5) 

௬ݑ  െ ݀ܿ ൑ ௬ݒ ൑ ௬ݑ ൅ ݀ܿ (6) 
where ݀ݒ-the relative square distance is given by the third stage, ݀ܿ-the square 
distance in the same column is computed by the second stage. 

From the observation of equation(5), there may be two feature pixels of an inner 
pixel. If two feature pixels have the same contour property, the inner pixel must be in 
the Voronoi cell. If their properties are different, the inner pixel must be on the 
Voronoi edge and is called skeleton pixel. Skeleton pixel is equidistant away from two 
contours and must be different from one of its edge-neighbours in the aspect of 
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contour property. Fig.10 illustrates the results of discrete Voronoi diagram generation 
and the intermediate processes. The previous three figures is in high resolution 256 
and the last figure is in low resolution 128. The block is divided into four Voronoi cell 
corresponding to its four contours. Pixels of each Voronoi cell are divided into three 
categories: contour, skeleton and inner.  

  

(a) Grid         (b) Distance map 

  

(c) Discrete Voronoi diagram in high resolution (d) Discrete Voronoi diagram in low resolution 

Fig.10 Discrete Voronoi diagram generation procedures 

 
Closed Loop Region and Open Loop Region 

 
According to the attribute of the offset path (see Fig.11), each Voronoi cell can be 

further divided into CLRs (Closed Loop Regions) where all offset paths are closed 
and OLRs (Open Loop Regions) where all offset paths are open. The interface 
between two adjacent CLR and OLR is defined as the critical closed offset contour 
written as COC. Its distance away from the original contour is called COD (critical 
offset distance). The CLR of the inner contour is written as CLRI for short. CLRO, 
OLRI and OLRO respectively represent the CLR of the outer contour, the OLR of the 
inner contour and the OLR of the outer contour. 

When the contour and its Voronoi cell are convex, there is only one COC or no. 
In consideration of the concavity, there may be more than one COCs. Among them, 
the COC corresponding to minimum COD is called mini-COC. Taking mini-COD as 
the interface, Voronoi cell is divided into two pieces. One is the set of pixels less or 
equal than mini-COD still called CLR; the other is the set of pixels greater than 
mini-COD still called OLR. Different than the above description, there is at least one 
open offset contour in OLR. It is obvious that each contour pixel must be the CLR 
pixel. Mini-COD can be computed by bisection method: 1) determine the suspected 
interval by detecting the first open offset contour in an increasing order; 2) narrow the 
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interval by bisection to approximate the true value in a given precision. Fig.12 
illustrates the results of VCI subdivision in different precisions, the corresponding 
mini-CODs are shown in Table 1. Pixels of each Voronoi cell are further subdivided 
into OLR pixels and CLR pixels. 

 
Fig.11 CLR and OLR 

Table 1 Mini-CODs in different precisions 

   
Bisection precision 

1.0e-2 1.0e-4 1.0e-6 

VCI

No. 

1 
0.304161 0.302461 0.302460

No. 

2 
0.195764 0.200863 0.221663

No. 

3 
0.074250 0.075302 0.075354

 

 

(a) Precision 1.0e-4       (b) Precision 1.0e-6 

Fig.12 CLR and OLR segmentation of Vornoi cell of the inner contour 

 
Path planning 

 
There are two kinds of closed offset paths in a multiply-connected slice. One path 

is on which all points are from the same contour. The other path connecting open 
offset contours derives from different contour. Path in the CLR clearly belongs to the 
first form and can be easily computed by a local isoline extraction. The local 
extraction is applied to distance field of the CLR and traverse upward from 0 to the 
local maximum distance. When the extraction traverses upward, the radial direction 
(from inner to outer) of the CLRI is opposite to that (from outer to inner) of the 
CLRO. It results in a dual side constraint. To avoid the problem, the local extraction is 
performed if and only if the CLR is CLRI. Therefore, it is no longer necessary to 
subdivide the VCO into the CLRO and the OLRO. Apart from all CLRIs, the other 
pixels form a block consisting of all OLRIs and the VCO. Although two types of path 
synchronously appear in the merged block, they can be uniformly generated by a 
global isoline extraction. To assure that the final paths are ordered in the radial 
direction, the traverse direction of the global extraction must be opposite to that of the 
local extraction and is downward from 1 to 0.  

In a word, our path planning algorithm includes four stages: 1) divide each VCI 
into CLRO and CLRI; 2) perform local extraction for one CLRI at a time; 3) merge 
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all CLROs and VCO into a block; 4) perform global extraction for the merged block. 
In fact, the first and the second stages can be simultaneously performed. It is no need 
to exactly compute the mini-COD since equidistant offset is a discrete sampling 
process whose interval is the path space ݀߂. The mini-COD is determined by the first 
open sampling path detection. Let ݄௢ be the detected distance, the mini-COD can be 
expressed as:  
 ݄௖௢ௗ ൌ ݄௢ െ  (7) ݀߂

Since the traverse direction of the CLRI is opposite to that of the merged block, 
there is still a dual side constraint. To overcome the problem, both the CLRI and the 
block must be relative to the same reference datum. Fig.14 (a) demonstrates the 
results of non-uniform datum application. The expected path space is 5mm, but the 
transition space between two kinds of paths is distinctly more than 5mm. In a 
normalized distance field, there are two alternative reference datums: 0 representing 
boundary constraint and 1 representing center constraint.  

As shown in Fig.13(a), no closed path appears in the OLRI. Let ߝ and ߜ denote 
the distance between the skeleton and the maximum path in the CLRI and the merged 
block, respectively. The transition space can be written as ߝ ൅  ߝ Although both .ߜ
and ߜ are related to ݀߂, it is difficult to adapt the transition space to the path space. 
In this case, boundary constraint will result in a non-uniform transition as well. 
However, when closed path appears in the OLRI (Fig.13(b)), the transition space must 
be ݀߂ and non-uniform transition will disappear. Whether or not path appears in the 
OLRI can be determinated by the inequality: 
 ݄௦௞௟ െ ݄௖௢ௗ ൒  (8) ݀߂
where ݄௦௞௟ denotes the skeleton distance. There are three alternative distances in the 
skeleton pixels: maximum, minimum and mean. With statistical consideration, the 
mean distance is chosen: 

 ݄௦௞௟ ൌ ଵ

௡
∑ ݀௜

௡
௜  (9) 

If inequality (8) is true, closed path will appear in the OLRI; otherwise, there will be 
no path. In comparison with center constraint, the gap between the original contour 
and offset contour can be effectively managed by using boundary constraint. 
Therefore, the reference datum is determined by: 1) if inequality (8) is true, boundary 
constraint is adopted; 2) if inequality(8) is false, center constraint is adopted. For 
boundary constraint, the local extraction starts from 2/݀߂ and increases by ݀߂, the 
global extraction starts from ݀௕ and decreases by ݀߂. For center constraint, the 
global extraction starts from 1 െ  the local extraction ;݀߂ and decreases by 2/݀߂
starts from ݀௖ and increases by ݀߂. ݀௕ and ݀௖ are initialize by: 

 ݀௕  ൌ ௱ௗ

ଶ
൅ ቂ ଵ

௱ௗ
െ ଵ

ଶ
ቃ  (10) ݀߂

 ݀௖  ൌ 1 െ ቀ௱ௗ

ଶ
൅ ቂ ଵ

௱ௗ
െ ଵ

ଶ
ቃ  ቁ (11)݀߂

where ሾڄሿ denotes rounding off operation. 
 Fig.14 illustrates the results of different reference datums. It is obvious that 
boundary constraint is better than center constraint in the gap management. The 
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former gap is 2/݀߂ and the latter gap is greater than 2/݀߂. In this case, the slice 
will be fabricated with a negative tolerance. Taking the original contour as the path, 
the negative tolerance can be turn into a positive tolerance. Fabrication tolerance 
component is removed by milling after deposition. 

δ
ε

     
Fig.13 Boundary constraint 

       

(a) Non-uniform datum   (b) Uuniform boundary constraint   (c) Uniform center constraint 

Fig.14 Different reference datums 

 Dividing each pixel into four triangles and taking distance value as the height 
coordinate, isoline extraction is translated into mesh slicing. It consists of the 
following stages: 1) the slicing plane cuts the mesh and generates a set of unordered 
segments; 2) remove repeated segments; 3) open or closed loops are produced by 
topology construction; 4) remove open loops; 5) update closed loop properties 
including AABB, smallest enclosing disc, length; 6) closed loops are normalized in 
accordance with user specified circumferential direction. It is worth noting that the 
path should be unmapped from pixel coordinate system to object coordinate system 
by using equation(1).  
 

Accuracy and Efficiency 
 

 It is known that mini-COC subdivides VCI pixels into CLRI pixels and OLRI 
pixels. For a multiply-connected slice, suppose that multi-paths appear in a CLRI 
pixel (see Fig.15). Since the CLRI pixel has been kicked out of the merged block after 
CLRI/OLRI subdivision, closed path through the pixel will be unconnected and 
rejected. It results in null path and non-uniform transition. Therefore, the number of 
paths in the pixel must be 0 or 1 and the path space must be greater than √2 pixel 
unit. In object coordinate system, the minimum allowable path space computed by 
equation(2) is expressed as: 
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 Δd୫୧୬ ൐ √2/rs (12) 

  
Fig.15 Multi-paths through the CLRI pixel 

As shown in Fig.16, the time is absolute in the first figure and is relative in the 
latter three figures. The relative time is the difference between absolute time in the 
actual case and in the case of no hole. Test hardware environment is: Intel® Core™2 
Quad Q9500 2.83GHz CPU and 3.00 GB RAM. The computation time is in direct 
proportion to the resolution and the reciprocal of the path space. The influence of the 
number of the inner contours (holes) on the efficiency is also studied. Although the 
number of total pixels decreases with the increase of holes, the efficiency may reduce 
since it takes more time to perform VCI and CLRI/OLRI subdivision.  
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Fig.16 Efficiency analysis for path planning 

 

Examples 
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 As shown in Fig.17, the grid is divided into three VCIs corresponding to their 
three inner contours in the above figure. The differences between min-COD and mean 
skeleton values: ݄௦௞௟ െ ݄௖௢ௗ are 0.205073, 0.33460 and 0.232557 for three VCIs, 
respectively. The actual path space ݀߂ is 0.041527 and less than the previous three 
differences. So the inequality (8) is true and boundary constraint is applied. Each VCI 
is subdivided into CLRI and OLRI. The number of paths in the CLRI is determinated 
by ݄௖௢ௗ ⁄݀߂ െ 0.5, so there are 7, 5 and 2 paths in the three CLRIs, respectively. 
There is the same analysis in the below figure. Two paths show that boundary 
constraint is capable to manage the gap and lead to fabricating in positive tolerance.  

Fig.18 illustrates another important application of the proposed algorithm. It is 
used for FGM design and fabrication. The different colors represent the different 
volume percentages of two constituent materials. There is just one VCI corresponding 
to the inner contour. The difference ݄௦௞௟ െ ݄௖௢ௗ is 0.020087 and less than the path 
space 0.086353, so the inequality (8) is false and center constraint is applied. The gap 
distinctly is greater than path space, so the original contour should be taken as the 
path for positive tolerance fabrication. 

  

    
Fig.17 Parallel contour path for multiply-connected slice 

 

Conclusion 
 

An algorithm based on discrete Voronoi diagram and distance map for parallel 
contour path planning is introduced in this article. Its computation time is in direct 
proportion to the resolution and the reciprocal of the path space. The number of inner 
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contours has influence on the efficiency as well. Compared with pair-wise intersection 
and Voronoi diagram, it is numerically robust, avoids null path and self-intersection 
because of the application of distance map and discrete Voronoi diagram. 

Without post-processes, hierarchical rasterization directly generate three types of 
pixel: inner, outer and boundary. The boundary pixel inherits boundary properties 
including ID and material from the original slice. It is especially used for 
multiply-connected and FGM slice. Rasterization using graphics hardware 
acceleration has high efficiency. Triangulation is the better strategy for interior 
rasterization of concave slice than sweep line. When the resolution is divisible by 64 
and float data type is adopted, rasterization will be faster. 

Contour property of the inner pixel is determined by that of the nearest boundary 
pixel. According to the contour property, a grid is easily divided into VCIs. Each VCI 
is subdivided into CLRI and OLRI in response to the actual path space. To eliminate 
non-uniform transition from paths in the CLRI to the merged block, uniform reference 
datum has been built. If no path appears in the OLRI, center constraint is applied; 
otherwise boundary constraint is adopted. Boundary constraint has better gap 
management than center constraint. To avoid null path in the transition area, the path 
space must be greater and equal than √2 pixel unit. 

   

     

Fig.18 Parallel contour path for FGM slice 
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