

Parallel Contour Path Planning for Complicated Cavity Part Fabrication using
Voronoi-based Distance Map

 Wang Xiangping*, Zhang Haiou*, Wang Guilan†
* School of Mechanical Science and Engineering, Huazhong University of Science & Technology,

Wuhan 430074, P. R. China

† School of Materials Science and Engineering, Huazhong University of Science & Technology,

Wuhan 430074, P. R. China

† wgllab@mail.hust.edu.cn

Abstract

To generate parallel contour path for direct production of complicated cavity
component, a novel path planning based on Voronoi-based distance map is presented
in this paper. Firstly, the grid representation of polygonal slice is produced by
hierarchical rasterization using graphics hardware acceleration and divided into
Voronoi cells of contour by an exact EDT (Euclidean distance transformation). Then,
each VCI (Voronoi cell of inner contour) is further subdivided into CLRI (closed loop
region of inner contour) and OLRI (open loop region of inner contour). Closed paths
for each CLRI and the block merging VCO (Voronoi cell of outer contour) and all
OLRIs are generated by local and global isoline extraction, respectively. The final
path ordered in circumferential and radial directions is obtained by sorting and
connecting all individual paths. In comparison with conventional methods such as
pair-wise intersection and Voronoi diagram, the proposed algorithm is numerically
robust, can avoid null path and self-intersection because of the application of distance
map and discrete Voronoi diagram. It is especially used for FGM (Functionally
Graded Material) design and fabrication.

Keywords

Complicated Cavity Part; Discrete Voronoi diagram; Distance map; Path planning;
Additive manufacturing;

Introduction

AM (Additive Manufacturing) is a short process fabrication technology
integrating material designing, preparing and shaping. Different than conventional
processes such as casting, forging, cutting and milling, part with complicated
geometry and function can be fabricated easily and rapidly. It is reported that AM is
the catalyst for the Third Industrial Revolution [1]. In past two decades, direct
production of metal parts has been attracting attentions of many organizations and
scholars, various types of processes have been brought. According to forms of energy
source and raw material, the processes can be fall into three categories:

749

Lars
Typewritten Text
 Accepted August 16th 2013

(1) Laser + Powder. LENS (Laser Engineered Net Shaping) [2], DMLS (Direct Metal
Laser Sintering) [3], SLM (Selective Laser Melting) [4], DLF (Direct Light
Fabrication) [5] and DMD (Direct Metal Deposition) [6] are in this category.

(2) Electron Beam + Powder. Typical process is EBM (Electron Beam Melting)[7]
developed by Arcam Inc. It mainly serves for aerospace and medical implants
because of high fabricating cost.

(3) Arc + Wire (Powder). Electric arcs include MIG (Metal Inert Gas Welding), TIG
(Tungsten Inert Gas Welding) and PTA (Plasma Transferred Arc). SDM (Shape
Deposition Manufacturing) [8], SMD (Shaped Metal Deposition) [9] and PDM
(Plasma Deposition Manufacturing) [10] are in this category.
PDM is a cost-efficient AM process for direct production of metal component.

Energy source is PTA and raw material is metal powder in early stage but metal wire
now. It has wide deposition width, high efficiency and low material waste and cost.
On the basis of PDM, HPDM (Hybrid Plasma Deposition and Milling) [11, 12] has
been developed for precision fabrication. Deposition stair-stepping error and
fabrication tolerance can be eliminated by milling. Recently PDM integrating with
rolling is developing. It can flatten the weld bead, reduce height error, improve
dimensional accuracy as well as refine grain, microstructure and mechanical
properties.

It is hard to eliminate residual stress because of severe temperature change in
metal deposition. Deformation and crack induced by residual stress will reduce shape
and dimensional accuracy and increase part-reject rate. Using proper filling path can
balance the distribution of thermal stress, reduce temperature gradient and
deformation and improve manufacturing accuracy. Based on finite element numerical
analysis, Dai [13] and Tian [14] contrasted outputs of thermal stress and deformation
in different types of scanning patterns. Their results showed that the output is less in
the case of parallel contour path. Yu and Lin [15] conducted an experiment to study
the shaping accuracy and mechanical properties in various types of filling patterns.
The patterns include raster, fractal, offset from the outside to the inside and offset
from the inside to the outside. The result showed that the part fabricated by using
offset from the inside to outside has superior accuracy and mechanical properties.
Moreover, parallel contour path is capable to reduce the length and number of idle
path and without need of switching energy source and adjusting feed rate frequently.
The final part has good surface quality and mechanical properties. Therefore, it is a
more desired scanning pattern for metal part fabrication.

Part is fabricated by raw material deposition layer upon layer using slices
generated by slicing from 3D model data in AM process. STL (STereoLithography)
representing 3D CAD model as a collection of unordered triangular planar facets has
become the de facto data exchange standard for AM process [16]. The intersection
between a given plane and a STL model consisting of a series of segments is called
polygonal slice. Block is usually taken as a basic fabricating cell in deposition. There
are one or more blocks in a slice. Each block has one or more polygonal contours
described by ordered vertex list. Each contour includes properties: ID, outer/inner,
parent ID and additional information. Outer/inner property is decided by the depth of

750

contour. The contour whose depth is odd is inner contour, otherwise it is outer contour.
Outer contour must be parent contour and inner must be child contour. Each parent
contour and its child contours form a block. If the number of child contours is not
equal to 0, the block is multiply-connected; otherwise, it is simply-connected.
Additional information comprises AABB (Axis-Aligned Bounding Box) and smallest
enclosing circle. Fig.1 demonstrates a polygonal slice with four blocks: two
simply-connected blocks and two multiply-connected blocks. Contour ܽ and its child
contours: ܾ and ܿ make up a multiply-connected block with two holes. Contour ݂
has no child contour, so it forms a block by itself.

Fig.1 Polygonal slice

There are usually two approaches to generating parallel contour path for
polygonal slice. One is pair-wise intersection and the other is Voronoi diagram. The
former as described by Hansen [17] consists of three stages: (1) offset each segment
to get offset element; (2) close gaps between offset elements by arcs to generate
closed loop; (3) distinguish and eliminate invalid self-intersection loop. The third
stage is very critical and attracts attentions of many scholars. Invalid self-intersection
loop is discriminated by the direction of loop. When the direction of loop (CW) is
opposite to the direction of contour (CCW), the loop is an invalid self-intersection
loop. According to the number of self-intersection points, invalid self-intersection
loop is divided into two categories: global with one point and local with two points.
The method is intuitive and simple. However, there is numerical error in
self-intersection point computation, such as near-circle singularity [18]. It results in
that invalid loop is mistaken as a valid loop. Additionally, self-intersection point
computation involving lots of intersection between offset line segments is a
time-consuming procedure whose time complexity is ܱሺ݊ଶሻ where ݊ denotes the
number of offset line segments. The latter approach is based upon Voronoi diagram of
polygon. For a set of points, the efficient algorithms are divide-and-conquer algorithm
[19] and Fortune’s sweep line algorithm [20]. In view of topology consistency,
numerically robust incremental algorithm has been proposed by Sugih [22]. Inaga [21]
extended the algorithm to line segments, chains and polygons. Although topology
consistency is prior to numerical computation, there are still numerical errors. For
convex polygons, Aggarwal [23] pointed out that Voronoi diagram can be gained in
linear time. For simple polygons with concave, Lee [24] and Held [25] computed
Voronoi diagram by using divide-and-conquer algorithm in ܱሺ݈݊݊݃݋ሻ time.

751

However, the computation involves representing and manipulating high-degree
algebraic curves (parabola) and their intersections on the one hand and degenerate
cases (such as four point-sites on the common circle) need special process which is
usually numerical instability on the other hand. As a result, there is no efficient and
numerically robust algorithm to compute Voronoi diagram of simple polygon.

In the past years, simply-connected slice has being a focus and
multiply-connected slice was seldom studied. Path link is also an important issue. It is
difficult to generate radial ordered path for multiply-connected slice because of more
than one boundaries constraint. For part with complicated cavity, there must be
multiply-connected slice. To directly fabricate this kind of part with less machining, a
novel path planning for multiply-connected slice using distance map and discrete
Voronoi diagram is proposed in this paper to avoid complex self-intersection and
numerical instability.

Algorithm Overview

 As shown in Fig.2, the input is polygonal slice and the output is corresponding
parallel contour path. Polygonal slice deriving from slicing is simply-connected or
multiply-connected. 1) grid representation of slice is produced by hierarchical
rasterization using graphics hardware acceleration; 2) distance map and Voronoi
diagram of contour are computed by exact EDT; 3) each VCI is divided into CLRI
and OLRI according to mini-COD (critical offset distance). Equidistant offset paths
for each CLRI and the block merging VCO and all OLRIs are generated by local and
global isoline extraction, respectively; 4) the final path closed and ordered in
circumferential and radial directions is obtained by sorting and connecting of
individual paths.

Fig.2 Pipeline of the proposed algorithm

Hierarchical Rasterization

 Rasterization is the process converting a polygonal slice into a grid. Basic
element of 2D grid is usually called pixel. To improve efficiency, graphics hardware
acceleration is employed. Firstly, normalize a slice into a unit box by translation and
rotation transformation. Without loss of generality, two diagonal vertices of the unit
box are ሺ0,0ሻ and ሺ1,1ሻ, respectively. Then, project normalized slice into a specific
size window. The size of window is specified by user expected resolution. Finally,
read pixels from frame buffer and distinguish them. When the pixel is opaque, it is an
inner pixel; otherwise it is an outer pixel. Hierarchical rasterization consists of two

752

sequential stages: contour rasterization and interior rasterization. The former handles
the slice contour by contour and the latter handles slices layer by layer. Taking
boundary pixel as a special kind of inner pixel, the latter will not change the output of
the former. Without extra post-process to distinguish boundary pixels, hierarchical
rasterization directly generates three categories of pixels: inner, outer and boundary.
Boundary pixel can also inherit extra information from polygonal contour such as ID
and material. Therefore, hierarchical rasterization can serve for some specific
applications such as FGM design.
 However, when polygonal contour overlaps edge of the unit box, portion of
boundary pixels will miss. As shown in Fig.3(a), pixels of outer contour is
disconnected. The phenomenon is called boundary effect and has unfavorable
influence on the accuracy of grid representation. To avoid boundary-effect, the
normalized slice must be strictly in unit box. An inflation prior to normalization is
performed.

Fig.3 Boundary effect and inflation
 Projection is very important in rasterization. Different than contour rasterization,
interior rasterization require filling the interior to guarantee the inner pixel is opaque.
OpenGL as excellent graphics hardware programmable interface is adopted in our
implementation. It can assure satisfactory precision as our experience. Unfortunately,
OpenGL only supports convex polygon rendering. Thus, a pre-process for concave
polygon rendering is necessary. A naive and simple solution is sweep lines. It usually
appears in CPU rasterization algorithm. One of its disadvantages is that the distance
between two adjacent sweep lines is closely related to the resolution of rasterization.
The other is that the computation of sweep lines involves lots of intersection. An
alternative approach is polygon triangulation. Mark [26] described an algorithm to
triangulate a simple polygon in great detail. The polygonal slice is first partitioned
into strict Y-monotone sub-polygons in ܱሺ݈݊݊݃݋ሻ time where ݊ denotes the
number of vertices of slice. Then, each sub-polygon is triangulated in linear time.
Fig.4 illustrates the results of sweep lines and triangulation. Test polygonal slice is
Hubei administrative division map from National Fundamental Geographic
Information System of China (http://nfgis.nsdi.gov.cn). Outer contour is its provincial
boundary with 866 vertices. Three inner contours from right to left are municipal

753

boundaries of Wuhan with 451 vertices, Shiyan with 174 vertices and Yichang with
640 vertices, respectively. The computer is using ATI Radeon HD 4350 GPU and
Intel® Core™2 Quad Q9500 2.83GHz CPU. Their efficiency comparison is shown in
Fig.5. The computation time of sweep lines linearly increases with the increase of the
resolution. Polygon triangulation is irrelevant to the resolution and finishes in const
time. So polygon triangulation is superior to sweep lines.

(a) Sweep lines with resolution 256 (b) Triangulation with 2135 faces

Fig.4 Sweep lines filling and triangulation

 Fig.5 Efficiency comparison Fig.6 Influence of resolution on DTVR

As shown in Fig.7, time of rasterization consists of normalization of contours,
slice triangulation, DTRV (Data Transfer from RAM to VM (video memory)) for
contour and interior and reverse DTVR (data transfer from VM to RAM). The
previous three components are unrelated to the resolution and are const for a given
polygonal slice. DTVR is the major factor affecting efficiency. Since test object has
four contours and one contour is rasterized at a time, DTVRC is larger than DTVRI
that handles one block at a time. Influence of the resolution on the efficiency of
DTVR is investigated (see Fig.6). It takes 56.90, 1.04 and 76.54ms to get different
resolution grids with 416, 418 and 480, respectively. It is clear that rasterization is
significantly faster when the resolution is divisible by 64. Data type for data transfer
is also studied. When the resolution is 512, transfer time of float (1.33ms) is far less
than those of short and char (5.57ms). It may be depend on structure and design of
VM and its access mechanism.
 Let ሺ∆ݔ, ,be translation vector and scale factor of normalization ݎ and ݏ ,ሻ்ݕ∆
and the resolution of rasterization, respectively. Pixel is represented by its center.
Transformation from pixel coordinate to object coordinate is formulated by:
 ܲ ൌ ଴ܶ

ିଵ ڄ ܵ଴
ିଵ · ଵܵ · ଵܶ · ܲ′ (1)

754

where ଵܶ, ଵܵ , ܵ଴
ିଵ and ଴ܶ

ିଵ are homogeneous transformation matrices:

ଵܶ ൌ ൥
1 0 0.5
0 1 0.5
0 0 1

൩， ଵܵ ൌ ൥
ଵିݎ 0 0

0 ଵିݎ 0
0 0 1

൩，ܵ଴
ିଵ ൌ ൥

ଵିݏ 0 0
0 ଵିݏ 0
0 0 1

൩， ଴ܶ
ିଵ ൌ ൥

1 0 െ∆ݔ
0 1 െ∆ݕ
0 0 1

൩

Let ݀ be the length in object coordinate system, the corresponding length in pixel
coordinate system is expressed by:
ܦ ൌ (2) ݏݎ݀

0 128 256 384 512 640 768 896

0

4

8

12

16

20

24

28

32

36

40

Resolution

CN

DTRVC

DTVRC

PT

DTRVI

DTVRI

TOT

CN: contour normalization

DTRVC: data transfer from
RAM to VM for contour

PT: polygon triangulation

DTVRC: data transfer from
VM to RAM for contour

DTVRI: data transfer from
VM to RAM for interior

DTRVI: data transfer from
RAM to VM for interior

TOT: total

Fig.7 Time of rasterization

Discrete Voronoi Diagram of Contour

 As mentioned above, a slice maybe consists of more than one blocks and block is
the basic fabrication cell. Let ܥ ൌ׷ ሼܥଵ, ଶܥ ڮ , ௡ሽ be a set of ݊ distinct contours of aܥ
block ܤ. Voronoi diagram of ܥ is the subdivision of ܤ into ݊ regions. Each region
is called Voronoi cell. Let ௜ࣰ denote Voronoi cell corresponding to a site ܥ௜. For
݆ ് ݅, a point ܲ lies in ௜ࣰ with the property:

,ሺܲݐݏ݅݀ ௜ሻܥ ൏ ,൫ܲݐݏ݅݀ ௝൯ (3)ܥ

As shown in Fig.8, the block is subdivided into three Voronoi cells corresponding
to its three contours, respectively. Voronoi cell of the inner contour is written as VCI
for short. Voronoi cell of the outer contour is accordingly written as VCO. It is clear
that each Voronoi cell is bounded and closed. One of its closed boundaries must be the
corresponding contour site. The others are the loci of points equidistant from two
contour sites. If ܲ א ௜ࣰ, we define its contour property ࣝሺܲሻ as ID of the site ܥ௜.
Let ܩ ൌ׷ ሼܩଵ, ଶܩ ڮ , a set of pixels with ,ܤ ௠ሽ be grid representation of the blockܩ
the same contour property ܥ௜ forms the discrete Voronoi cell ࣞ ௜ࣰ . It can be
expressed as:
 ࣞ ௜ࣰ ൌ ሼܩଵ, ଶܩ ڮ , ,ݏ׊|௞ܩ ,ݐ ࣝሺܩ௦ሻ ൌ ࣝሺܩ௧ሻ ൌ ௜ሻሽ (4)ܥሺܦܫ

It is important to decide the contour property of each pixel for computing discrete

755

Voronoi diagram of contour. Boundary pixels derived from the same contour have
been assigned the same contour property in rasterization process. For an inner pixel,
its contour property is determinated by its nearest boundary pixel. Taking boundary
pixels as feature pixels, the nearest feature pixel of an inner pixel can be found by an
EDT. A naïve and intuitive EDT algorithm is BF (brute-force) performing nested
loops. Although it is exact, it needs ܱሺ݊ଶሻ operations. In fact, feature pixels are just
a small proportion of the total pixels. BF can be improved by means of reducing the
search region of feature pixels. But it requests additional memory blocks for feature
pixels storage. Fortunately, there are some exact EDT linear algorithms such as
Saito’s [27], Meijster’s [28] and Wang’s [29]. Fig.9 illustrates their comparison in the
aspect of efficiency. The test object with resolution 256 is shown in Fig.10(a). It is
clear that Wang’s algorithm is faster than others. Therefore, it is adopted.

i
P V

Fig.8 Voronoi diagram of contour Fig.9 Efficiency comparison of exact EDT algorithms

Wang’s algorithm is an independent scanning algorithm. In our application, it
includes four stages: 1) pixels initializing. Boundary pixel is set to 1 and inner pixel is
0; 2) column scanning. The square distance between a pixel and its nearest pixel in the
same column is computed; 3) row scanning. The square distance between a pixel and
its nearest pixel in the whole grid is computed by using the results of column scanning
and nearest feature pixel of each pixel is determinated; 4) distance normalizing. The
distance is mapped into the interval ሾ0,1ሿ where 1 represents the global maximum
distance and 0 represents the contour. For an inner pixel ݑ, Let ݒ be its nearest
feature pixel in the whole grid. ݒ௫ has been given in the third stage (see details in ref.
 :௬ is computed by the following formulasݒ .([29]

௬ݒ ൌ ௬ݑ േ ඥ݀ݒ െ ௫ݒ
ଶ (5)

௬ݑ െ ݀ܿ ൑ ௬ݒ ൑ ௬ݑ ൅ ݀ܿ (6)
where ݀ݒ-the relative square distance is given by the third stage, ݀ܿ-the square
distance in the same column is computed by the second stage.

From the observation of equation(5), there may be two feature pixels of an inner
pixel. If two feature pixels have the same contour property, the inner pixel must be in
the Voronoi cell. If their properties are different, the inner pixel must be on the
Voronoi edge and is called skeleton pixel. Skeleton pixel is equidistant away from two
contours and must be different from one of its edge-neighbours in the aspect of

756

contour property. Fig.10 illustrates the results of discrete Voronoi diagram generation
and the intermediate processes. The previous three figures is in high resolution 256
and the last figure is in low resolution 128. The block is divided into four Voronoi cell
corresponding to its four contours. Pixels of each Voronoi cell are divided into three
categories: contour, skeleton and inner.

(a) Grid (b) Distance map

(c) Discrete Voronoi diagram in high resolution (d) Discrete Voronoi diagram in low resolution

Fig.10 Discrete Voronoi diagram generation procedures

Closed Loop Region and Open Loop Region

According to the attribute of the offset path (see Fig.11), each Voronoi cell can be

further divided into CLRs (Closed Loop Regions) where all offset paths are closed
and OLRs (Open Loop Regions) where all offset paths are open. The interface
between two adjacent CLR and OLR is defined as the critical closed offset contour
written as COC. Its distance away from the original contour is called COD (critical
offset distance). The CLR of the inner contour is written as CLRI for short. CLRO,
OLRI and OLRO respectively represent the CLR of the outer contour, the OLR of the
inner contour and the OLR of the outer contour.

When the contour and its Voronoi cell are convex, there is only one COC or no.
In consideration of the concavity, there may be more than one COCs. Among them,
the COC corresponding to minimum COD is called mini-COC. Taking mini-COD as
the interface, Voronoi cell is divided into two pieces. One is the set of pixels less or
equal than mini-COD still called CLR; the other is the set of pixels greater than
mini-COD still called OLR. Different than the above description, there is at least one
open offset contour in OLR. It is obvious that each contour pixel must be the CLR
pixel. Mini-COD can be computed by bisection method: 1) determine the suspected
interval by detecting the first open offset contour in an increasing order; 2) narrow the

757

interval by bisection to approximate the true value in a given precision. Fig.12
illustrates the results of VCI subdivision in different precisions, the corresponding
mini-CODs are shown in Table 1. Pixels of each Voronoi cell are further subdivided
into OLR pixels and CLR pixels.

Fig.11 CLR and OLR

Table 1 Mini-CODs in different precisions

Bisection precision

1.0e-2 1.0e-4 1.0e-6

VCI

No.

1
0.304161 0.302461 0.302460

No.

2
0.195764 0.200863 0.221663

No.

3
0.074250 0.075302 0.075354

(a) Precision 1.0e-4 (b) Precision 1.0e-6

Fig.12 CLR and OLR segmentation of Vornoi cell of the inner contour

Path planning

There are two kinds of closed offset paths in a multiply-connected slice. One path

is on which all points are from the same contour. The other path connecting open
offset contours derives from different contour. Path in the CLR clearly belongs to the
first form and can be easily computed by a local isoline extraction. The local
extraction is applied to distance field of the CLR and traverse upward from 0 to the
local maximum distance. When the extraction traverses upward, the radial direction
(from inner to outer) of the CLRI is opposite to that (from outer to inner) of the
CLRO. It results in a dual side constraint. To avoid the problem, the local extraction is
performed if and only if the CLR is CLRI. Therefore, it is no longer necessary to
subdivide the VCO into the CLRO and the OLRO. Apart from all CLRIs, the other
pixels form a block consisting of all OLRIs and the VCO. Although two types of path
synchronously appear in the merged block, they can be uniformly generated by a
global isoline extraction. To assure that the final paths are ordered in the radial
direction, the traverse direction of the global extraction must be opposite to that of the
local extraction and is downward from 1 to 0.

In a word, our path planning algorithm includes four stages: 1) divide each VCI
into CLRO and CLRI; 2) perform local extraction for one CLRI at a time; 3) merge

758

all CLROs and VCO into a block; 4) perform global extraction for the merged block.
In fact, the first and the second stages can be simultaneously performed. It is no need
to exactly compute the mini-COD since equidistant offset is a discrete sampling
process whose interval is the path space ݀߂. The mini-COD is determined by the first
open sampling path detection. Let ݄௢ be the detected distance, the mini-COD can be
expressed as:
 ݄௖௢ௗ ൌ ݄௢ െ (7) ݀߂

Since the traverse direction of the CLRI is opposite to that of the merged block,
there is still a dual side constraint. To overcome the problem, both the CLRI and the
block must be relative to the same reference datum. Fig.14 (a) demonstrates the
results of non-uniform datum application. The expected path space is 5mm, but the
transition space between two kinds of paths is distinctly more than 5mm. In a
normalized distance field, there are two alternative reference datums: 0 representing
boundary constraint and 1 representing center constraint.

As shown in Fig.13(a), no closed path appears in the OLRI. Let ߝ and ߜ denote
the distance between the skeleton and the maximum path in the CLRI and the merged
block, respectively. The transition space can be written as ߝ ൅ ߝ Although both .ߜ
and ߜ are related to ݀߂, it is difficult to adapt the transition space to the path space.
In this case, boundary constraint will result in a non-uniform transition as well.
However, when closed path appears in the OLRI (Fig.13(b)), the transition space must
be ݀߂ and non-uniform transition will disappear. Whether or not path appears in the
OLRI can be determinated by the inequality:
 ݄௦௞௟ െ ݄௖௢ௗ ൒ (8) ݀߂
where ݄௦௞௟ denotes the skeleton distance. There are three alternative distances in the
skeleton pixels: maximum, minimum and mean. With statistical consideration, the
mean distance is chosen:

 ݄௦௞௟ ൌ ଵ

௡
∑ ݀௜

௡
௜ (9)

If inequality (8) is true, closed path will appear in the OLRI; otherwise, there will be
no path. In comparison with center constraint, the gap between the original contour
and offset contour can be effectively managed by using boundary constraint.
Therefore, the reference datum is determined by: 1) if inequality (8) is true, boundary
constraint is adopted; 2) if inequality(8) is false, center constraint is adopted. For
boundary constraint, the local extraction starts from 2/݀߂ and increases by ݀߂, the
global extraction starts from ݀௕ and decreases by ݀߂. For center constraint, the
global extraction starts from 1 െ the local extraction ;݀߂ and decreases by 2/݀߂
starts from ݀௖ and increases by ݀߂. ݀௕ and ݀௖ are initialize by:

 ݀௕ ൌ ௱ௗ

ଶ
൅ ቂ ଵ

௱ௗ
െ ଵ

ଶ
ቃ (10) ݀߂

 ݀௖ ൌ 1 െ ቀ௱ௗ

ଶ
൅ ቂ ଵ

௱ௗ
െ ଵ

ଶ
ቃ ቁ (11)݀߂

where ሾڄሿ denotes rounding off operation.
 Fig.14 illustrates the results of different reference datums. It is obvious that
boundary constraint is better than center constraint in the gap management. The

759

former gap is 2/݀߂ and the latter gap is greater than 2/݀߂. In this case, the slice
will be fabricated with a negative tolerance. Taking the original contour as the path,
the negative tolerance can be turn into a positive tolerance. Fabrication tolerance
component is removed by milling after deposition.

δ
ε

Fig.13 Boundary constraint

(a) Non-uniform datum (b) Uuniform boundary constraint (c) Uniform center constraint

Fig.14 Different reference datums

 Dividing each pixel into four triangles and taking distance value as the height
coordinate, isoline extraction is translated into mesh slicing. It consists of the
following stages: 1) the slicing plane cuts the mesh and generates a set of unordered
segments; 2) remove repeated segments; 3) open or closed loops are produced by
topology construction; 4) remove open loops; 5) update closed loop properties
including AABB, smallest enclosing disc, length; 6) closed loops are normalized in
accordance with user specified circumferential direction. It is worth noting that the
path should be unmapped from pixel coordinate system to object coordinate system
by using equation(1).

Accuracy and Efficiency

 It is known that mini-COC subdivides VCI pixels into CLRI pixels and OLRI
pixels. For a multiply-connected slice, suppose that multi-paths appear in a CLRI
pixel (see Fig.15). Since the CLRI pixel has been kicked out of the merged block after
CLRI/OLRI subdivision, closed path through the pixel will be unconnected and
rejected. It results in null path and non-uniform transition. Therefore, the number of
paths in the pixel must be 0 or 1 and the path space must be greater than √2 pixel
unit. In object coordinate system, the minimum allowable path space computed by
equation(2) is expressed as:

760

 Δd୫୧୬ ൐ √2/rs (12)

Fig.15 Multi-paths through the CLRI pixel

As shown in Fig.16, the time is absolute in the first figure and is relative in the
latter three figures. The relative time is the difference between absolute time in the
actual case and in the case of no hole. Test hardware environment is: Intel® Core™2
Quad Q9500 2.83GHz CPU and 3.00 GB RAM. The computation time is in direct
proportion to the resolution and the reciprocal of the path space. The influence of the
number of the inner contours (holes) on the efficiency is also studied. Although the
number of total pixels decreases with the increase of holes, the efficiency may reduce
since it takes more time to perform VCI and CLRI/OLRI subdivision.

T
im

e
(m

s)

128 256 384 512 640 768 896

0

100

200

300

400

500

600

700

800

Path space 0.10

Resolution

 one hole
 two holes
 three holes

128 256 384 512 640 768 896

0

100

200

300

400

500

600

700

800

Path space 0.05

Resolution

 one hole
 two holes
 three holes

Fig.16 Efficiency analysis for path planning

Examples

761

 As shown in Fig.17, the grid is divided into three VCIs corresponding to their
three inner contours in the above figure. The differences between min-COD and mean
skeleton values: ݄௦௞௟ െ ݄௖௢ௗ are 0.205073, 0.33460 and 0.232557 for three VCIs,
respectively. The actual path space ݀߂ is 0.041527 and less than the previous three
differences. So the inequality (8) is true and boundary constraint is applied. Each VCI
is subdivided into CLRI and OLRI. The number of paths in the CLRI is determinated
by ݄௖௢ௗ ⁄݀߂ െ 0.5, so there are 7, 5 and 2 paths in the three CLRIs, respectively.
There is the same analysis in the below figure. Two paths show that boundary
constraint is capable to manage the gap and lead to fabricating in positive tolerance.

Fig.18 illustrates another important application of the proposed algorithm. It is
used for FGM design and fabrication. The different colors represent the different
volume percentages of two constituent materials. There is just one VCI corresponding
to the inner contour. The difference ݄௦௞௟ െ ݄௖௢ௗ is 0.020087 and less than the path
space 0.086353, so the inequality (8) is false and center constraint is applied. The gap
distinctly is greater than path space, so the original contour should be taken as the
path for positive tolerance fabrication.

Fig.17 Parallel contour path for multiply-connected slice

Conclusion

An algorithm based on discrete Voronoi diagram and distance map for parallel
contour path planning is introduced in this article. Its computation time is in direct
proportion to the resolution and the reciprocal of the path space. The number of inner

762

contours has influence on the efficiency as well. Compared with pair-wise intersection
and Voronoi diagram, it is numerically robust, avoids null path and self-intersection
because of the application of distance map and discrete Voronoi diagram.

Without post-processes, hierarchical rasterization directly generate three types of
pixel: inner, outer and boundary. The boundary pixel inherits boundary properties
including ID and material from the original slice. It is especially used for
multiply-connected and FGM slice. Rasterization using graphics hardware
acceleration has high efficiency. Triangulation is the better strategy for interior
rasterization of concave slice than sweep line. When the resolution is divisible by 64
and float data type is adopted, rasterization will be faster.

Contour property of the inner pixel is determined by that of the nearest boundary
pixel. According to the contour property, a grid is easily divided into VCIs. Each VCI
is subdivided into CLRI and OLRI in response to the actual path space. To eliminate
non-uniform transition from paths in the CLRI to the merged block, uniform reference
datum has been built. If no path appears in the OLRI, center constraint is applied;
otherwise boundary constraint is adopted. Boundary constraint has better gap
management than center constraint. To avoid null path in the transition area, the path
space must be greater and equal than √2 pixel unit.

Fig.18 Parallel contour path for FGM slice

763

Acknowledgement

We gratefully acknowledgement the support of the National Natural Science Foua

tion of China (51175203) and National Aerospace Science Foundation of China (2011
ZE79002).

References

1. Print Me a Stradivarius, The Economist, Feb. 10, 2011.
2. Atwood, C., Ensz, M., Greene, D., Griffith, M., et al. (1998). Laser engineered

net shaping (LENS (TM)): A tool for direct fabrication of metal parts (No.
SAND98-2473C). Sandia National Laboratories, Albuquerque, NM, and
Livermore, CA.

3. Simchi A, Petzoldt F, Pohl H. (2003). On the development of direct metal laser
sintering for rapid tooling. Journal of Materials Processing Technology, 141(3),
pp. 319-328.

4. Kruth J P, Froyen L, Van Vaerenbergh J, et al. (2004). Selective laser melting of
iron-based powder. Journal of Materials Processing Technology, 149(1), pp.
616-622.

5. Lewis G K, Schlienger E. (2000). Practical considerations and capabilities for
laser assisted direct metal deposition. Materials & Design, 2000, 21(4), pp.
417-423.

6. Mazumder J, Dutta D, Kikuchi N, et al. (2000). Closed loop direct metal
deposition: art to part[J]. Optics and Lasers in Engineering, 34(4), pp. 397-414.

7. Parthasarathy J, Starly B, Raman S, et al. (2010). Mechanical evaluation of
porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal
of the mechanical behavior of biomedical materials, 3(3), pp. 249-259.

8. Dollar A M, Howe R D. (2010). The highly adaptive SDM hand: Design and
performance evaluation. The international journal of robotics research, 29(5), pp.
585-597.

9. Baufeld B, Biest O V, Gault R. (2010). Additive manufacturing of Ti–6Al–4V
components by shaped metal deposition: Microstructure and mechanical
properties. Materials & Design, 31, pp. S106-S111.

10. Zhang H, Xu J, Wang G. Fundamental study on plasma deposition manufacturing.
(2002). Surface and Coatings Technology, 171(1), pp. 112-118.

11. Xinhong X, Haiou Z, Guilan W, et al. Hybrid plasma deposition and milling for
an aeroengine double helix integral impeller made of superalloy. (2010). Robotics
and Computer-Integrated Manufacturing, 26(4), pp. 291-295.

12. Xiong X, Zhang H, Wang G. Metal direct prototyping by using hybrid plasma
deposition and milling. (2009). Journal of Materials Processing Technology,
209(1), pp.124-130.

13. K. Dai, L. Shaw. Distortion minimization of laser-processed components through
control of laser scanning patterns. Rapid Prototyping Journal, 2002, 8(5),

764

pp.270-276.
14. X.Y. Tian, Bo Sun, J.G. Heinrich, et al. (2013). Scan pattern, stress and mechnical

strength of laser directly sintered ceramics. The International Journal of
Advanced Manufacturing Technology,, 64(1-4), pp. 239-246

15. Jun Yu, Xin Lin, Liang Ma, et al. (2011). Influence of laser deposition patterns on
part distortion, interior quality and mechanical properties by laser solid forming
(LSF). Materials Science and Engineering A, 528(3), pp.1094-1104.

16. Munguía J, de Ciurana J, Riba C. (2008). Pursuing successful rapid
manufacturing: a users' best-practices approach. Rapid Prototyping Journal, 14(3),
pp. 173-179.

17. Hansen A, Arbab F. (1992). An algorithm for generating NC tool paths for
arbitrarily shaped pockets with islands. ACM Transactions on Graphics (TOG),
11(2), pp.152-182.

18. Choi B K, Park S C. (1999). A pair-wise offset algorithm for 2D point-sequence
curve. Computer-Aided Design, 31(12), pp. 735-745.

19. Sugihara, K. (1992). Voronoi diagrams in a river. International Journal of
Computational Geometry & Applications, 2(01), pp.29-48.

20. Fortune S. A sweepline algorithm for Voronoi diagrams. (1987). Algorithmica,
2(1-4), pp.153-174.

21. Okabe A, Boots B, Sugihara K, et al. (2009). Spatial tessellations: concepts and
applications of Voronoi diagrams. Wiley. com

22. Sugihara K, Iri M. (1992). Construction of the Voronoi diagram forone
million'generators in single-precision arithmetic. Proceedings of the IEEE, 80(9),
pp. 1471-1484.

23. Aggarwal A, Guibas L J, Saxe J, et al (1989). A linear-time algorithm for
computing the Voronoi diagram of a convex polygon. Discrete & Computational
Geometry, 4(1), pp. 591-604.

24. Srinivasan V, Nackman L R. (1987). Voronoi diagram for multiply-connected
polygonal domains I: Algorithm. IBM Journal of Research and Development,
31(3), pp. 361-372.

25. Held M. (1998). Voronoi diagrams and offset curves of curvilinear polygons.
Computer-Aided Design, 30(4), pp. 287-300.

26. De Berg M, Cheong O, Van Kreveld M. (2008). Computational geometry:
algorithms and applications. Springer.

27. Saito T, Toriwaki J I. (1994). New algorithms for euclidean distance
transformation of an n-dimensional digitized picture with applications. Pattern
recognition, 27(11), pp.1551-1565.

28. Meijster A, Roerdink J B T M, Hesselink W H. (2002). A general algorithm for
computing distance transforms in linear time. Mathematical Morphology and its
applications to image and signal processing. Springer US, pp.331-340.

29. Wang, J., & Tan, Y. (2011, June). Efficient Euclidean distance transform using
perpendicular bisector segmentation. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on (pp. 1625-1632). IEEE.

765

