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ABSTRACT 

Honeycomb materials are well known for providing lightweight stiffness, strength, and 
energy absorption capabilities.  For most honeycomb materials, energy absorption occurs when 
individual cells collapse progressively.  Although it is possible for honeycombs with very low 
relative density to collapse via elastic buckling, honeycombs with typical relative densities 
collapse due to plastic yielding and buckling of the cell walls, such that the energy absorption is 
nonrecoverable.  In this paper, mono-stable negative stiffness unit cells are investigated for 
constructing honeycomb mesostructures with high levels of recoverable energy absorption.  
Negative stiffness is achieved by incorporating curved beams into each unit cell.  When subject 
to transverse loading, the curved beams exhibit negative stiffness behavior as they transition 
from one curved geometry to another in a snap-through type of motion that absorbs energy 
elastically at a relatively constant plateau stress.  The plateau stress at which this energy 
absorption occurs can be tailored via the geometry of the unit cell.  Preliminary experiments 
indicate that the structures can absorb significant amounts of energy by requiring nearly-
constant-force to increase deformation as the structure transitions between snap-through 
configurations.  Unlike traditional honeycombs, the negative stiffness mesostructures are self-
resettable and therefore reusable.  Using SLS as a means of fabrication, they can also be 
customized for specific shock events and even functionally graded to offer shock isolation for 
transient loads of various amplitudes.   
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1. INTRODUCTION TO POSITIVE AND NEGATIVE STIFFNESS HONEYCOMB MESOSTRUCTURES 

Honeycomb materials are well-known for lightweight stiffness, strength, and mechanical 
energy absorption [1].  When subjected to in-plane compression, honeycomb structures typically 
undergo an initial region of elastic deformation, in which the cell walls bend, compress, and/or 
extend elastically.  The stiffness depends on the cell structure, with the in-plane effective elastic 
stiffnesses of several standard cell structures illustrated in Figure 1.  As shown in Figure 2, the 
region of elastic deformation typically ends when the mesostructure reaches a plateau stress, at 
which point the individual cell walls begin to collapse by buckling.  At extremely low relative 
densities, elastic buckling can occur, but for most practical relative densities, collapse is 
associated with plastic buckling and yielding.  The mesostructure continues to absorb energy as 
cell walls progressively collapse, defining the plateau region in Figure 2.  Eventually, when cell 
wall collapse is complete, the mesostructure densifies, and stiffness rapidly approaches that of 
the constituent material in the cell walls.   This stress-strain behavior has been documented for 
several cell structures (cf. [1,2]). 
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One interesting aspect of the stress-strain curve in Figure 2 is that it corresponds very closely 
to that of an ideal shock isolator from structural dynamics.  An ideal shock isolator provides a 
constant force response to an applied shock loading and thereby absorbs a maximum amount of 
input energy for a given displacement and allowable force transmitted to the isolated mass [3-5].  
To achieve this effect, it typically exhibits linear stiffness in response to an applied force, until 
the force reaches a predesigned force threshold, at which point the ideal shock isolator absorbs 
energy at a constant force level, also known as a quasi-zero stiffness regime.  One of the 
advantages of this type of isolator is that it acts as a force switch—absorbing significant amounts 
of energy at a particular force threshold and protecting the isolated structure from forces or 
accelerations beyond that threshold.  An ideal system would then return to equilibrium when the 
applied load is released in preparation for the next shock.   

 

 
Figure 1. Effective elastic properties of standard periodic cellular topologies 

(courtesy of [6]). 

 

 
Figure 2. Stress-strain curve for a typical honeycomb structure under in-plane 

compression, illustrating a characteristic plateau region of mechanical 
energy absorption (courtesy of [2]). 

 
One way to achieve nearly ideal shock isolation in practice is to use negative stiffness 

structures.  Bistable structures, such as an axially compressed, buckled beam, are examples of 
negative stiffness elements because they exhibit negative stiffness behavior as they transition 
between two stable states. An illustration of a buckled beam is shown in Figure 3.  States (1) and 
(3) in Figure 3 represent the bistable states of the beam. A representative constitutive curve for a 
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buckled beam is shown in Figure 4. States (1), (2), and (3) in Figure 4 correspond to those in 
Figure 3. State (2) represents an unstable equilibrium, also called a meta-stable state. In the meta-
stable state, no external force is required to hold the beam in the configuration, but the second 
derivative of the beam's strain energy with respect to displacement is negative.  As a result, the 
beam is unstable and any minor perturbation causes the beam to seek one of the two stable states, 
(1) or (3), unless an additional constraint is applied. As shown in Figure 4, a region of negative 
slope, or negative stiffness, exists between the two bistable states. The region of negative 
stiffness is centered about the meta-stable state of the beam.  When an axially compressed beam 
transits from one stable state to another, its negative stiffness can be tuned to balance the positive 
stiffness of a spring in parallel with it, resulting in a region of constant force response, also 
known as a quasi-zero stiffness regime [7].  
 

 
Figure 3. First-mode buckled beam transitioning from one stable state to 

another under transverse loading, Ft. 
 

 
Figure 4. Transverse constitutive relationship of an axially compressed, 

buckled beam, relative to that of an unbuckled beam. 
 

Transverse Displacement, uy

Transverse Displacement, uy
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While axially compressed beams work well as negative stiffness mechanisms in stand-alone 
structures, it could be difficult to reliably incorporate them into periodically repeating unit cells, 
as a basis for an energy-absorbing mesostructure.  A more promising approach is that of Qiu et 
al. [8], who showed that quazi-zero and negative stiffness can be obtained by fabricating a beam 
with a curved shape and then loading it transversely.  No pre-compression or parallel, positive 
springs are required.  The analytical model of the curved beam is described in Section 2.  Section 
3 describes additively manufacturing and testing prototype negative stiffness unit cells.  In 
Section 4, the curved beams are used as the unit cell basis for a periodically repeating 
honeycomb mesostructure, and the performance of the mesostructure is simulated and described.   
 
2. CURVED BEAMS AS NEGATIVE STIFFNESS ELEMENTS 

In work related to micro-electromechanical systems (MEMS) switches, Qiu et al. [8] show 
that negative stiffness behavior can be generated by fabricating a beam with a curved shape, as 
described by Eq.(1), 

 ( ) 1 cos 2
2

h xw x
l

π  = −     
.  (1) 

In Eq. (1), ( )w x  is the average distance of the beam from the straight line connecting its two 

endpoints, h  is the apex of the beam, x  is the lateral position along the straight line connecting 
the beam's endpoints, and l  is the beam span. Figure 5 depicts the geometric parameters of 
interest in the curved beam. The associated force-displacement relation of the curved beam 
shown in Figure 6 is given by  
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In Eq. (2), the normalized force, F , is given by the relation, ( )3 /F fl YIh= , where f  is the 

applied force, Y  is the Young's modulus of the beam material, and I  is the moment of inertia of 
the beam. The variable Q  is a geometry constant and is given by the relation, /Q h t= , where t  
is the beam thickness. Finally, ∆  is the normalized displacement and is given by the relation, 

/d h∆ = , where d  is the displacement in the transverse direction. 
 

Equation (2) can be used to 
design structures with desired force-
displacement behavior, and thus, 
desired stiffness. For example, Figure 
6 shows the force-displacement 
relations of beams with different Q  
values, given the properties contained 
in Table 1. Figure 6 shows both the 

normalized (panel (a)) and actual (panel (b)) force-displacement responses, and demonstrates the 
usefulness of Eq. (2) as a design tool for obtaining a specific response. For example, a beam with 

1Q =  yields a monotonically-increasing force-displacement curve (i.e., strictly positive 
stiffness); when 1.2Q ≈ , one observes an almost flat force-displacement curve (i.e., quasi-zero 
stiffness); and when 1.5Q = , a negative force-displacement slope (i.e., negative stiffness) is 

 
Figure 5. Geometry of a curved beam, adapted from Qui et al. 

[8] 
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observed. Note that while a beam with a 1.5Q =  exhibits negative stiffness, it is nevertheless 
mono-stable because any positive displacement results in a strictly positive force. For bistability 
to occur, the force must be less than zero for a particular range of positive displacements.  Qiu et 
al. [8] point out that a beam with second-mode buckling constrained (which could be achieved, 
for example, by coupling it with another curved beam) will be bistable for Q > 2.31.  Failure to 
limit the second-mode deformation prevents the beam from exhibiting sufficient NS to lead to 
bistability.  

 
Figure 6. Force-displacement relation for a range of Q values from 1 to 1.5 in increments of 0.1: (a) 

normalized and (b) actual force and displacement values.   
 

The stiffness of a curved beam can be calculated as the first partial derivative of the force 
function with respect to displacement. The stiffness is calculated for a range of Q  values and 
shown in Figure 7. The trends discussed in the preceding paragraph are clearly shown, as well as 
the observation that the nonlinear stiffness values asymptotically approach a certain stiffness 
value. There is a finite stiffness limit for a beam based on material properties and geometry 
related to the Q  value. 

 
3. DESIGN, FABRICATION, AND TESTING OF NEGATIVE STIFFNESS UNIT CELLS 

The experimental work presented here focuses on producing beams with low Q  values as a 
proof of concept for the generation of NS elements by design. Equation (2) was used to generate 
the parameters for beams with desired stiffness. These beams were then integrated with a T-

 

 

Figure 7. Stiffness vs. displacement for a range of Q 
values from 1 to 1.5 in increments of 0.1. 

Table 1. Beam design parameters for Figures 6 and 
7. 
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shaped interface and a supporting frame, as shown in Figure 8, with the design parameters listed 
in Table 2. 

FEA was performed on the single unit cell to validate the curved-beam approach for 
obtaining NS. The FEA results are compared with the analytical prediction in Figure 9. The 
results indicate strong agreement between the FEA and analytical predictions. Both the force- 
and stiffness-displacement responses are very similar between the analytical prediction and the 
FEA. The FEA considers a beam with elastic boundary conditions, whereas the analytical 
expression considers beams with fixed ends only. This difference is likely to be the primary 
source of discrepancy between the analytical and FEA model results. 
 

 

 
Figure 9. Comparison of analytical prediction (black solid line) and FEA (blue dotted line): (a) force-

displacement and (b) stiffness displacement for the unit cell in Figure 8.   
 

The unit cell was fabricated on an SLS HiQ Sinterstation Machine using Nylon 11 powder. 
The machine parameters are listed in Table 3. The resulting manufactured unit cell is shown in 
Figure 10. The force-displacement behavior of the unit cell was tested using an MTS Sintech 2/G 
test frame equipped with a 10,000 N load cell. As shown in Figure 10, a range of displacements 
was applied to the top of the T-shaped interface and the reaction force as a function of 
displacement was monitored by the load cell. This particular test stand is equipped with a 
bearing-mounted bottom platform which allows for self-righting of the platform. An aluminum 
block was fabricated to sit atop the T-shaped interface of the unit cell to ensure flatness with 
respect to the load cell. Finally, the NS element was mounted in a steel vise, which provided a 
zero-displacement boundary condition, when desired, at the edges of the NS element. 

 

Property Value 
Y (GPa) 1.27 

l (in) 1 
h (in) 0.1 
b (in) 1 

Q 2 

Figure 8. Solid model rendering of curved beam unit cell. Table 2. Beam design parameters for Figures 
8 through 12. 
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Figure 10 shows example deformations of the unit cell during testing with a constrained 
boundary condition applied to the edges. The large and nonlinear displacements of the beam 
element are evident as the displacement applied at the top of the element is increased. Force-
displacement plots for zero-displacement and free boundary conditions are shown in Figures 11a 
and 11b, respectively. The black data points and arrows indicate the loading path (displacement 
applied downwards), and the blue data points and arrows indicate the unloading path. Figure 11a 
shows that with a constrained boundary condition, the large element exhibits NS over a range of 
displacements of approximately 1.75 to 3.5 mm. Furthermore, Figure 11 shows that the force-
displacement relationship is highly repeatable (at least in the case of loading), even for different 
displacement amounts.  Figure 11a shows that the unit cell has a different force-displacement 
relationship depending on the direction of loading. When the unit cell is unloaded after having 
been compressed, the results do not follow the loading curve. Furthermore, Figure 11a shows 
that for different displacements, the force-displacement relation differs on the unloading path. 
This is most likely due to internal material losses, which have been investigated experimentally 
in previous work with Nylon 11 SLS components [9]. 
 

 
Figure 10. Example deformations during force-displacement testing. 

 

 
Figure 11. Experimental force-displacement curves for the curved beam unit cell with (a) 

zero-displacement and (b) free boundary condition. Black data points and arrows indicate 
results for the loading, and blue data points and arrows the unloading path. 

 
 

Figure 11b depicts the effect of easing the constraints on the edges of the unit cell. With the 
boundary constraint free, the unit cell no longer demonstrates negative stiffness. This is a result 
of the increased flexibility of the unit cell frame at its boundaries leading to the elimination of 
the negative stiffness effect. Similar to Figure 11a, Figure 11b also demonstrates repeatable test 
results as well as different paths for loading and unloading. 
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FEA and experimental force-displacement curves are compared in Figure 12.  Only the 
loading path is compared, because the FEA model did not incorporate material losses to model 
the full-cycle response. Although not an exact match, the FEA results reflect distinct similarities 
with the test data. Negative stiffness behavior is observed with zero-displacement boundary 
conditions for FEA and experimental conditions, and it occurs over a similar range of 
displacements at a similar force threshold.  Also, the loading path is similar for FEA and 
experimental conditions with free boundary conditions.  Discrepancies between experimental 
and FEA data are most likely caused by imprecision in the SLS manufacturing process.  A few 
spot-check measurements of the as-built dimensions of the prototype unit cells revealed 
differences from the as-designed dimensions. For example, whereas the curved beam was 
designed with a constant thickness, t , the as-built elements demonstrated a non-constant 
thickness, whose effects on force-displacement behavior are difficult to quantify.  
 

 
Figure 12. Comparison of experimental (loading path only) and FEA force-displacement curves for (a) 

zero-displacement and (b) free boundary conditions. FEA results are plotted with dashed black lines and 
experimental data with solid black lines.  

 
 
4. DESIGNING AND MODELING PERIODICALLY REPEATING, NEGATIVE STIFFNESS 

MESOSTRUCTURES  

The next step is to design negative stiffness mesostructures by periodically repeating an 
appropriate unit cell.  The basic concept is illustrated in Figure 13.  As shown in the figure, the 
shock absorbing mesostructure is composed of negative stiffness, curved beam structures (A) 
that undergo large displacements while transiting a region of negative stiffness upon application 
of a load (B) and then return to their initial state when the load is removed (C).  Figures 13 D, E, 
and F illustrate a magnified view of a single curved beam element as it is loaded and unloaded.  
The unit cell is Figure 13 was modified to alleviate stress concentrations in the joints; and the 
new unit cell is illustrated in Figure 14.  As shown in Figure 14a, the unit cell is composed of 
two curved beams, each of which yields negative stiffness behavior.   

The first step in investigating the performance of the mesostructure is to model the behavior 
of its unit cells.  Some of the basic dimensions for a unit cell are illustrated in Figure 15.  The 
force-displacement relationships for a partial unit cell and for two unit cells are illustrated in 
Figures 16 and 17, respectively.  These force-displacement relationships are derived from FEA 
models that apply symmetric boundary conditions to the left and right sides of each geometry 
and displacement-controlled loading to the top of the geometry.   As shown in Figure 16, the 
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curved beam geometry yields negative stiffness behavior, illustrated by the negative slope in 
Figure 16.  As shown in Figure 17, each additional row of curved beams in the mesostructure 
yields an additional region of negative stiffness, as the rows of curved beams progressively 
encounter regions of negative stiffness.  It is also important to note that the force threshold at 
which the negative stiffness behavior occurs can be tailored by adjusting the beam geometry and 
the number of columns of unit cells.  As shown in Figures 16 and 17, by adding a second row of 
unit cells, the force threshold doubled from approximately 40 N to approximately 80 N.  
Furthermore, the displacement of the mesostructure prior to densification is directly proportional 
to the number of rows of curved beams, with the total displacement doubling from Figure 16 to 
Figure 17 as the number of rows doubles.     

 

 
Figure 13. A negative stiffness mesostructure (a and d), capable of absorbing energy at a particular force 

threshold (b and e) and then recovering its original configuration (c and f) in preparation for the next loading 
event.   

 

 
Figure 14. A negative stiffness unit cell composed of two curved beams (a) and periodically repeated to form 

a negative stiffness mesostructure (b).   
 

Figure 18 compares the performance of the curved beam mesostructure to that of standard 
square and hexagonal cell mesostructures with equivalent relative densities.  From this plot, it is 
clear that the in-plane effective elastic stiffness of the curved beam mesostructure is nearly 
identical to that of the hexagonal mesostructure.  The force or stress threshold at which buckling 
occurs is very similar in the two designs, as well.  The primary difference is that the hexagonal 
mesostructure transitions from elastic deformation to plastic buckling, whereas the curved beam 
mesostructure transitions to the negative stiffness regime which subjects the cell walls to elastic 
buckling and extension/compression.  Therefore, the curved beam mesostructure absorbs energy 
in a recoverable way, such that it can reset to its original configuration when the load is removed, 
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in preparation for the next loading event.  The hexagonal mesostructure, in contrast, undergoes 
permanent cell buckling, collapse, and densification.   

 

Figure 15. Dimensions and material properties for FEA simulations of the 
negative stiffness mesostructure. 

 

 
Figure 16. Force-displacement relationship for a single curved beam with the 

dimensions documented in Figure 15.   
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Figure 17. Force-displacement relationship for a double unit cell.     

 

 
Figure 18. Comparison of the stress-strain behavior of the negative stiffness 

mesostructure to square and hexagonal honeycombs, all with equivalent 
relative density of 15%.     

 

5. CLOSURE  

The negative stiffness mesostructure presented in this paper is a new shock-isolating cellular 
structure for absorbing transient mechanical loads. Unlike traditional honeycombs, the proposed 
cellular structure would be self-settable, and therefore reusable, and be optimized for specific 
shock events.  Application-specific customization could be achieved by functionally tailoring the 
geometry of the unit cells and fabricating them using additive manufacturing techniques, such as 
selective laser sintering.  Although higher in initial manufacturing cost than traditional 
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honeycombs, the reusability aspect of the proposed design could lead to significant cost savings 
relative to one-time use honeycombs; and the customizable, nearly-ideal shock isolation aspect 
could lead to enhanced levels of isolation from specific shock events. Further, the recoverable 
deformations may enable energy absorbing behavior in the event that subsequent loading events 
follow the initial load. 

Further work is needed to fabricate these negative stiffness mesostructures and 
experimentally evaluate their force-displacement behavior.  Specifically, the negative stiffness 
behavior of the curved beam mesostructure tends to be sensitive to its boundary conditions—a 
phenomenon that needs to be experimentally investigated.  Also, robust negative stiffness 
behavior relies on a transition from first to third to first mode buckled shapes as the curved 
beams are loaded, whereas second mode buckling shapes may appear in these curved beams, 
especially if the additive manufacturing process induces some imperfections in the geometry or 
material properties.  Modifications may be required to the cell structure to impose a third mode 
buckling shape as the curved beam transitions from one first mode buckling shape to another.  
Finally, it is possible to tailor the mesostructure from row to row, such that each row of cells 
reacts to a different force threshold, resulting in a cascading series of shock isolating events.   
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