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Abstract 

The DMD based Exposure Controlled Projection Lithography (ECPL) process has 

promising applications in fabrication of microfluidics and micro optics components. Unlike 

a conventional layer-stacking projection stereolithography process, ECPL cures a 3D feature 

by projecting radiation through a stationary, transparent substrate by varying exposure 

patterns and durations implemented by a sequence of DMD bitmaps. Due to the 

unavailability of an in situ metrology for cured part dimensions, unmeasurable time-varying 

disturbances such as oxygen inhibition and light source fluctuations, and the complex 

chemical & physics interactions in photopolymerization, a common practice in 

stereolithography process planning is to use experimental characterization and statistics 

models in an open-loop mode, which yields poor accuracy. This paper reviewed existing 

process control methods for ECPL and defined a need for advanced control methods. As a 

first proposal for advanced control methods to mask projection stereolithography, the paper 

surveyed relevant processes and put forward a hierarchical framework of advanced control 

methods for ECPL, including evolutionary cycle-to-cycle (EC2C) and adaptive neural 

network (ANN) backstepping control methods. The goal is to identify some advanced 

control methods, which are capable of tracking the process dynamics by online updating the 

model parameters with real-time measurement feedback. Such closed-loop control methods 

are promising to be able to improve the process precision and robustness. 

1 Introduction and Motivation 

1.1 ECPL System Overview (need to correct the left margin on your headings) 

Various micro fabrication applications in microelectronics, micro-optics, micro-fluidics, 

MEMS and MEMOS demand smaller and smaller devices. Driven by the trend, micro 

stereolithography (µSL) is required to deliver photo-curable micro structures with 

decreasing feature sizes. Improved control of µSL is critical in realizing better 

manufacturing resolution and reproducibility. 

A prototypical µSL process consists of the following basic steps - substrate and chamber 

setup, photopolymerizable material preparation, photo exposure curing, post-developing and 

washing. µSL machines can be classified into two main categories: laser scan and mask 

projection. The Digital Micromirror Device (DMD) based Exposure Controlled Projection 

Lithography (ECPL) system falls into the category of non-stacking mask projection 

stereolithography apparatus. It has promising applications in fabrication of microfluidics 

and micro optics components for biomedical devices. Different from a conventional laser 

scan stereolithography process, ECPL cures a 3D feature by projecting radiation through a 
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stationary, transparent substrate and by varying exposure patterns and durations with a 

timed sequence of DMD bitmaps. As illustrated in Figure 1, in the ECPL process, when the 

resin is exposed to a patterned light beam from DMD for certain time, photopolymerization 

takes place and a layer of liquid resin is cured. Each layer has a target cured height, and the 

cumulative layers form the final cured part. 

 

Figure 1: Exposure Controlled Projection Lithography Process Overview [1] 

1.2 Motivation 

ECPL systems have been evolving since our first generation prototype in 2008, and the 

process has been continuously improved, resulting in a smaller and smaller fabrication error, 

from 25% [2] to 15% [1] to recently 10% [3]. However to become a more capable micro 

manufacturing method for wider applications, ECPL still has limited process accuracy, 

which sparks a new study area of interest - advanced process control methods as will be 

investigated in this paper. 

Another motivation is the development of an in-situ measurement system - , the 

interferometric curing monitoring (ICM) system, proposed by Jariwala et al. ([4], [5]) in an 

attempt to build a more precise ECPL system. The plateau of current open-loop process 

accuracy might be changed with a more mature ICM, which will be able to provide real-

time measurement output enabling a closed-loop control. It is reasonable to think that 

advanced control methods with real-time closed-loop feedback could improve significantly 

ECPL process accuracy. 

This paper initiates a preliminary investigation about advanced control methods, which are 

defined under this particular scenario as closed-loop real-time feedback control, and 

identifies some potential control methods applicable to ECPL. 

2 Existing ECPL Process Control 

Primarily due to the complicated nature of photopolymerization and stereolithogrphy 

process, so far no comprehensive control strategy exists yet except for some basic use of 

offline open-loop process control technology. This technique relies on characterization 

experiments, which are used to quantify the effects of exposure dose on the cured heights. 

Our group has worked extensively in an effort to realize an automated and precise ECPL 

system.  
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2.1 Process Control Method Developed by Zhao 

Zhao (2009) [2] built a process model (Equation 1) relating the exposure dose E to the 

final cured height Z by curve fitting of measurement data from many cured parts. 

Experiments were performed beforehand to determine the values of critical exposure Ec and 

penetration depths of liquid (DpL) and of solid resin (DpS). This model was an analytical 

solution of the ordinary differential equation of a transient layer curing model developed by 

Limaye and Rosen (2007) [6], which was based on Beer-Lambert’s Law (Ec-Dp,, i.e., 

threshold exposure model). Before solving, it was simplified by applying Taylor series 

expansion with higher order terms omitted. 
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Based on the process model above, an open-loop process control for ECPL was developed 

and the control scheme is summarized as shown in Figure 2. Given a 3D part profile, based 

on the inverse process model, a timed sequence of bitmaps was generated to minimize the 

mean squares of errors between all voxels’ actual exposure dose to their required dose in 

order to cure the desired part. 

The process control method was implemented on a few examples of lenses fabrication by 

Jariwala [1]. The desired diameter was 200µm and the sag height was 120µm. It was 

observed that the process control failed to adequately cure the heights and the overall 

diameter of the part. The height was under-cured by almost 20 µm and the diameter 

mismatch was up to 50µm, which corresponded to around 30%. 

This process control has a virtue in terms of process automation development, but could 

not achieve good accuracy due to an over-simplified process model and process inherent 

challenges. This is a common problem of open-loop control. 

 

Figure 2: ECPL Open-loop Process Control Scheme by Zhao [2] 
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2.2 Process Control Method Developed by Jariwala 

To come up with a more accurate process model, Jariwala (2013) [1] investigated the 

photopolymerization chemical reaction kinetics and conducted both 1D and 2D simulations 

in COMSOL Multiphysics® to generate a semi-empirical material model based on the well-

known Beer Lambert’s law of attenuation. This chemical kinetics based material model was 

validated to be able to estimate better the shape of a cured part than the experimental 

working curve above, because it added oxygen inhibition and diffusion effects. 

The semi-empirical model, still based on the basic threshold exposure model, was revised 

by incorporating the idea that both Ec and Dp, rather than remain constant, could actually 

change with the distance between substrate pixel and substrate center. In order to find out 

the functions of Ec and Dp with the substrate pixel’s distance away from the substrate center, 

a response surface named as material model was generated with COMSOL simulation data 

(note: not physical experiment, which was verified to agree with COMSOL simulation 

result with some acceptable errors).  

The final form of this process model is as shown in Equation (2), where R is the maximum 

radius (µm) of the part to be cured, r is the distance (µm) of the point of interest from the 

center, E(r) is the irradiance energy (mJ/cm
2
) incident at the point of interest and is obtained 

from the material parameter database and Z is the cured part height at the point of interest. 
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With the process model in the equation above, a process control scheme was formulated 

by interplaying the empirical response surface with COMSOL simulation of polymerization 

reaction kinetics to estimate the manufacturing process input required to cure a part with 

desired shape and dimensions.  

The process-planning problem, which was actually also an open-loop control, was split 

into two steps – estimating first bitmap and exposure time using material model database, 

and estimating subsequent bitmaps and exposure time based on simulated slicing techniques. 

Figure 3 shows the flow chart for estimating the subsequent bitmaps and exposure times. 
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Figure 3. ECPL Open-loop Process Control Scheme by Jariwala [1] 

 

In micro-lens curing experiments, Jariwala’s process control method yielded an error of 

about 15% between the cured part geometry and the desired part geometry, both in sag 

height and diameter. 

However, because the time-consuming COMSOL simulation could not provide in-situ 

feedback, the controller calculated the input offline which was later implemented in an 

open-loop mode. Consequently, such kind of controller is incapable of dealing with process 

variations and disturbances.  

2.3 Process Control Developed by Jones 

Jones [3] experimented with a real-time sensor, an interferometric curing monitoring 

(ICM) system, to fit a model relating time (t in seconds) and phase angle (Φ and Φc in 

degrees) with part height (Z in µm) so that a comparison between the direct control of time 

and the control with measured phase angle could be performed. The time to part height 

relationship, Equation. (3), was experimentally determined by curing a single square for a 

known amount of time, washing the sample, and then measuring its height. 

 ( )          ( )         ( 3 ) 

The relationship, as shown in Equation (4), between phase angle and part height was also 

found using the same dataset. 
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Corresponding to model in Equation (3), a simple controller, working like a stopwatch, 

was used to control the curing time so as to achieve a desired height. A second control 

method was proposed based on Equation (4) with the aid of ICM which could provide in-

situ measurement. Equation (4) maps the in-situ measurement of interferogram phase angle 

with the ICM to the off-line measurement of cured part height with microscopy. The 

objective was that after characterizing the in-situ ICM measurement, real-time inference of 

cured height would be available to advance the controls towards real-time closed loop 

feedback control, which was proposed in Figure 4. This controller aimed to achieve real-

time control by turning bitmaps on and off in response to ICM measurements of phase angle.  

 

Figure 4: Flow Diagram of the Control System Proposed by Jones [3] 

The stopwatch type of control is simple and straightforward, and its accuracy depends on 

the model accuracy in Equation (3). 

As to the proposed control scheme in Figure 4,  it is a quasi closed loop controller because 

it compares feedback with a set-point just to decide when to stop displaying the given 

bitmap, but can not adjust accordingly the exposure intensity or pattern. Another limitation 

is that it achieves control only in a conditioned scenario where the bitmap is known and all 

that needs control is just the bitmap’s display time. Simple examples of squares curing using 

only single or two bitmaps were conducted experimentally and the results demonstrated 

better accuracy than the use of open-loop, time-based control. However, more complete 

closed-loop feedback control across the entire build chamber for a 3D part is still needed. 

Furthermore, the controller performance depends heavily on the accuracy of the empirical 

model, and was constrained by a lack of well-developed analysis of real time measurement 

data. 
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3 Need for Advanced Control of ECPL Process 

3.1 Summary of existing ECPL controls 

The existing ECPL process control methods introduced above are summarized in Table 1. 

Table 1. Summary of Existing Process Controls 

 

 

Despite their effectiveness to some extent, the existent process controls suffer noticeable 

loss of accuracy because they cannot track the changes in process, material and equipment. 

The techniques have some common limitations of the inherent weakness of the offline 

process model and non-closed-loop control mode. 

1) Offline process model 

It is noted that all the existent process controls are based on offline process model, which 

couldn’t address the online process variations and disturbances. The process input has been 

preset by the process model, whose parameters are obtained offline and prone to become 

oversimplified or obsolete due to the varying material properties and equipment conditions 

along with some stochastic phenomena present in the photopolymerization. Thus, offline 

static process model would undermine a desired accurate process control. 

2) Open-loop control mode 

Zhao (2009) Jariwala (2013) Jones (2014)

Measurement Offline (Microscopy) Offline (Microscopy) Offline (Microscopy), Online (ICM)

Operation Offline Offline Offline

Methods Physical (Analytical Transient 

Layer Curing Model)

                        + 

DOE (to build Working Curve)

Physical (Revised Exposure Threshold 

Model) & Chemical Kinetics COMSOL 

Simulation 

                           + 

DOE (to build Material Database)

DOE (Purely Experiments Data Curve Fitting 

using Logarithmic Regression)

Process 

Knowledge
Preliminary Intermediate None

Parameters 1.Offline Preset.

2.Uniform all across time and 

space.

No variation or dynamics 

considered.

1. Offline Preset.

2. Changing radially.

Spatial variation but no dynamics 

considered

1. Offline Preset.

2. Constant Curve slope and interceptions 

(No physical meaning).

No variation or dynamics considered.

Variables Exposure dose E  (both bitmap 

and exposure time)

Exposure dose E  (both bitmap and 

exposure time)

Requiring Bitmap be given, 

Model #1: exposure time t;

Model #2: exposure time t (by comparing 

measured and desired Phase angel Φ)

Equations Model #1:

Model #2:

Algorithms 1. Offline 

2. Optimization & Clustering  to 

calculate process input from the 

model

1. Offline

2. Incremental Trial and error based on 

simulation feedback

Controller #1: Simple stopwatch type of time 

control using Model #1.

Controller #2: .Feedback time control using 

Model #2.

Implemention 

 Mode

implement the pre-calculated input 

in an open-loop mode

implement the pre-calculated input in an 

open-loop mode

Controller #1: Open-loop

Controller #2: Quasi Closed-loop

~ 25% ~ 15% ~ 10%

Controller

Control Methods

Process 

Model

1. "Offline" means the model parameters or controllers inputs are calculated ahead of the process. Oppositely, 

"Online" means the calculations are done during the process.

2. "DOE": Design of Experiments

3. Parameter “Dynamics” means its changes or evolution with time.

Notes

Fabrication Error
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Under the existing strategies it is common practice to operate the ECPL process in an 

open-loop mode. The fabrication process would go thru without adjusting the process input 

according to online process variations and disturbances. 

3.2 Issues of Controlling ECPL Process 

Like all other complex polymerization processes, ECPL also faces challenges on both 

issues of model formulation as well as control computation.  

Foremost, process knowledge, preferably in-depth, is very important in controller design. 

However, the nonlinear process involves multi-physics such as photonics, chemistry and 

mechanics, which interact in a complex and unknown way. Consequently, no process 

dynamics has been modeled yet, not to mention control it. 

Another factor detrimental to process control is unmeasured or unmeasurable process 

variations including exposure UV light source intensity fluctuation, batch-to-batch 

inconsistencies in photo material formulation, etc.Worse still, ECPL is vulnerable to 

external disturbances such as oxygen inhibitor distribution, and unquantified effects on 

cured thickness and shape caused by downstream operations such as post-curing developing 

and washing. 

Therefore, it is difficult to control the ECPL process because of the specific issues 

described above, which become motivations for new research. The study aims to find some 

controls of the corresponding unknown process with adequate design and appropriate 

measurements. 

3.3 Research Objective 

Many of the limitations of the existing ECPL controls mentioned stem from the fact that 

fundamental understanding of photopolymerizaton based stereolithography is still 

incomplete; therefore an open-loop control cannot effectively address all the process control 

problems of concern. An advanced method for controlling processes, which are only 

partially understood, is closed-loop control where input and output variables are linked 

through information feedback [7]. 

Specifically, to address the challenging issues in previous section, an advanced control 

method should be able to conduct online adaptive learning and dynamics control with real-

time measurement. 

In this study, we define advanced control methods as these with the characteristics in 

Table 2. To be clear, advanced control means online closed-loop control system with real 

time feedback and online parameter estimation. There are various embodiment designs 

based on different schemes and algorithms. The research aims to identify some applicable 

advanced control methods for the ECPL system. 
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Table 2. Research Gaps Identification for ECPL Control 

 

4 Literature Review on Controls of Manufacturing Processes Relevant to ECPL 

Very few literature reports application of advanced control methods to micro 

stereolithography (µSL) process, not to mention to the specific kind of non-stacking DMD-

based uSL process as is the ECPL case. Nevertheless, there is quite a lot of research effort 

on control technologies in other manufacturing processes which are similar to ECPL in one 

or another way. Perusing literature in these process control methods could shed some light 

onto the guidelines or approaches of developing an improved ECPL control system. Figure 

5 depicts the surveyed control strategies in a wide spectrum of processes linked to the ECPL 

process of our interest. The literature review started from the properties space of ECPL and 

reached out to similar processes in terms of a particular property. We wish to learn various 

controls and identify these suitable to ECPL. 

 

Figure 5. Literature Survey on Controls of Processes Relevant to ECPL 

 

Offline Online Offline
Online 

(Real-time)

Open-

loop

Closed-

loop

Zhao (2009) 
DOE & Simple 

Physical Model
 

Optimizataion & Clustering 1. Binary Bitmaps

2. Dispay time of Each Bitmap
PowerPoint

Jariwala 

(2013)


DOE & Chemical 

Kinetics with 

COMSOL 2D Finite 

Element Simulation

 

Incremental Trial and error 

based on simulation feedback 1. Binary Bitmaps

2. Dispay time of Each Bitmap
PowerPoint

Jones (2014) 
DOE & Logarithmic 

Curve Fitting




(Immature)



( Quasi )

Compare feedback with 

setpoint just to decide when to 

"stop", can NOT adjust 

accordingly the exposure 

intensity or pattern.

1. Only Dispay time of Bitmap (Binary Bitmap 

Given)
MATLAB

Advanced

(Proposed to 

Fill Gaps)

 

(Online 

Estimation 

& Update)

DOE, Advanced Multi-

Physics Models, 

System Identification

   

Advanced control algorithms 

with measurement  feedback

e.g. digital control, adaptive, 

neural network.

1. Greyscale Bitmaps

2. Display time of Each Bitmap

Not 

decided

Actuator
Algorithms

Manipulated Input 

(DMD Bitmaps)

Control 

Methods

Process Model Controller
Mode

Method
Operation Mode

Measurement
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4.1 Controls of Polymerization 

First of all, ECPL could be deemed as a miniature polymerization reactor, specifically, a 

free radical chain-growth photo-polymerization process, which is one of various 

polymerization kinds. A polymerization process usually undergoes disturbances, which 

move the process away from the desired trajectories. In order to obtain in-specification end-

use polymer properties such as final form and shape, for the intended application, process 

measurement and control systems must be designed and implemented. 

4.1.1 Challenges in polymerization modeling and optimization: A population balance 

perspective  

Kiparissides (2006) [8] surveyed a unified population balance approach to follow the time 

evolution of molecular and morphological polymer properties in batch and continuous 

polymerization reactors. The numerical methods as well as the computational issues related 

with the solution of the dynamic population balance equation were critically assessed. The 

orthogonal collocation on finite elements (OCFE) method and the fixed-pivot technique 

(FPT) are then applied to a free-radical batch polymerization reactor to calculate the 

dynamic evolution of the molecular weight distribution (MWD). Moreover, theoretical and 

experimental results were shown on the dynamic evolution of particle size distribution (PSD) 

in a suspension polymerization reactor. 

The numerical solution of the dynamic population balance equation (PBE) for a 

particulate system, especially for a reactive one, is a notably difficult problem due to both 

numerical complexities and model uncertainties regarding the particle nucleation, growth, 

aggregation and breakage mechanisms that are often poorly understood. Usually, the 

numerical solution of the PBE requires the discretization of the particle volume domain into 

a number of discrete elements that results in a system of stiff, nonlinear differential or 

algebraic/differential equations that is solved numerically. 

Recent advances in on-line monitoring of ‘‘polymer quality’’ were briefly discussed in the 

context of available hardware and software sensors. The problem of real-time optimization 

of polymerization processes under parametric uncertainty is also examined. Finally, new 

issues related with the modeling, numerical solution and control of multidimensional 

population balance equations were conferred. 

4.1.2 Measurement and control of polymerization reactors 

Richards and Congalidis (2006) [9] presented a hierarchical approach to the control 

system design and reviewed traditional regulatory techniques as well as advanced control 

strategies for batch, semi-batch, and continuous reactors. The paper focused on process 

control in a complex industrial environment of free radical copolymerization reactor with 

environmental conditions (Pressure, Temperature, Level, and Flow) regulation, and material 

property (viscosity, MWD and PSD) measurement. This process had been used as a 

benchmark to test various control and estimation schemes. It represents a wide class of free 

radical polymer reactors with no less challenge in general polymer industry than in ECPL. 

The logic is that if the control methods introduced in the literature could address the 

polymerization with more complex issues, they or their variations might also be applicable 

to ECPL, because the polymerization process is more aggressive than ECPL in terms of 

high nonlinearity, multiple inputs-outputs, multiple sensors and deadtime issues. 
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The industrial measurement techniques are not applicable to ECPL micro process, 

however, as rationalized above, the controls methods might be leveraged to ECPL. 

Richards [9] started reviewing controls with a comparison of generic control 

methodologies as below. 

1) PID feedback control 

Very widely used because it requires minimal process knowledge. In particular, it 

doesn't require a mathematical model of the process. If properly tuned, the PID 

controller can be quite robust in maintaining good steady state in the face of 

unmeasured disturbances. However, it has a serious limitation: the PID controller 

requires control variables to be measured online so that the control action can occur 

after detecting a deviation between the set point and the measured variable. Perfect 

control is not possible because PID feedback control is reactive and compromising. 

2) Feedforward control 

It relies on the fidelity and accuracy of the process model, based on which it 

compensates the measured disturbances. 

3) Feedforward - feedback control 

A combination of feedforward and feedback control utilizes the best of both 

approaches by being able to provide compensation for both measured and 

unmeasured disturbances as we as model inadequacy and measurement inaccuracies. 

As expected, the authors recommended feedforward-feedback control, which includes 

distinct control schemes based on different control algorithms. Academic researchers have 

established prominent nonlinear MPC (Model Predictive Control) technology for tough 

control problems in polymerization reactors. A nonlinear MPC control might be designed 

for ECPL, given real-time measurement and based on a reasonably accurate process model 

that can capture the interactions between input, output, and disturbance variables. The 

scheme of MPC is shown in the block diagram inFigure 6. If Jariwala’s [1] output prediction 

with COMSOL simulation could be fast enough to be in pace with real-time ICM 

measurement, a nonlinear MPC model might be interesting and applicable. 

 

Figure 6. MPC block diagram (Seborg, Edgar (2004) [10]) 
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4.2 Controls of Lithography 

Lithography such as photolithography, DUV lithography and electronic beam lithography 

in semiconductor manufacturing all have some commonality with micro stereolithography 

in that they involve photo induced chemical process and need exposure dose control.  

4.2.1 Model-based Adaptive Control of Photolithography [7] 

Adaptive control techniques, with their capability for providing satisfactory control even 

when the process changes with time, are promising candidates for dealing with common 

problems encountered in photolithography processing such as batch-to-batch variations in 

resist properties, inconsistencies in resist curing, etc. Crisalle, Soper (1991) [7] proposed 

and evaluated an adaptive control strategy for the photolithography process. The design 

utilizes a reduced-order lithography model, an on-line parameter estimator, and a nonlinear 

model-inversion controller (NMIC). 

A crucial output of photolithography - the width of the printed resist lines - was controlled 

by automatically adjusting the exposure energy. In the calculation of the appropriate 

exposure adjustment, the controller uses both measured critical dimensions as well as 

estimated values produced by the process model. The control system is capable of tracking 

changes in the photolithography process by automatic updating of key model parameters as 

the process evolves in time. Simulation studies of the closed-loop adaptive control strategy 

using the PROLITH simulation package to represent the lithography process demonstrate 

the feasibility of this approach. 

The lumped-parameter model (LPM) of Hershel and Mack defines an explicit relationship 

between the critical dimension (a controlled variable) of the line or space feature, and the 

exposure energy (a manipulated input variable) by means of the integral equations. 

 

where, CD = critical dimension (nm), E = exposure energy (mJ/cm
2
), E0 = effective 

photosensitivity (mJ/cm
2
), De = effective film thickness (nm), γe = effective resist contrast 

(dimensionless), I(ξ) = aerial intensity distribution (mW/cm
2
), and ξ = horizontal location on 

the mask (nm). 

The model-based adaptive control strategy proposed for photolithography consists of the 

concerted operation of the parameter estimation technique, the nonlinear controller, and the 

LPM equation. The relationship between these three elements is shown in the block diagram 

of Figure 7. At a given sampling instant the estimator first makes use of the measured input-

output data N-tuples to calculate updated values of three model parameters De, γe and E0 

which minimize the least-squares error. Next, the updated LPM parameters are used to 

calculate the estimated critical dimension CD (t). Finally, the nonlinear controller makes use 

of all available information— the updated LPM parameters, the estimated critical dimension, 

the desired set point, and the actual critical dimension measurement— to calculate the 

prescribed exposure energy according to inverse of LPM.  
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Figure 7. Adaptive control of photolithography using the nonlinear model [7] 

The performance of the overall adaptive control structure is enhanced by including the 

data filtering operations and by adopting the deadband policy. Since commercial projection 

step-and-repeat steppers have a bound on the fastest reproducible shutter speed (typically of 

the order of 3 msec), exposure adjustments less than this limit are therefore not possible. 

This limitation in the control action is expressed in terms of a deadband variable, Emm, the 

minimum allowable exposure energy change. No attempt is made to adjust the exposure 

dose when this threshold is violated. The control policy is then ruled by the logical condition 

as below. 

If | (  )   (    )|       , then  (  )   (    ). 

The control deadband ΔEmin may be arbitrarily set to values greater than the resolution of 

the optical shutter. Such a choice prevents the controller from making small exposure 

adjustments that would have only a minor effect on the critical dimensions. The 

performance of the control loop is thus markedly enhanced. 

Similarly in ECPL, the UV light shutter and DMD flip time also limit exposure adjustment. 

This limitation in the control action could be expressed in terms of a deadband variable, 

ΔEmin, the minimum allowable exposure energy change. 

Deadband consideration can be an improvement in our proposed control method of ECPL 

compared with Jariwala's method [1]. 

It is necessary to clarify that “adaptive” control in this paper [7] is actually a recursive 

least squares digital control. By the term “adaptive,” the paper meant online parameter 

estimation. There are different forms of adaptive control, which is generally a broad class. 

4.2.2 Run-to-run control of DUV lithography [11] 

To achieve enhanced predictive model as well as to facilitate control of deep ultra violet 

(DUV) lithography, Jakatdar (2000) [11] presented a framework that integrates the 

metrology of wafer level observables with a physical model. For simulation, he.proposed a 

dynamic physical model for volume shrinkage in chemically amplified photo resists. He 

also designed an in-line run-to-run control with sensors. A static model of the DUV (Deep 

Ultra Violet) lithography process was obtained using regression on a design of experiment 

to predict the output CD (critical dimensions) in terms of exposure dose and bake time. 

Based on the static model, a process drift model was developed to attribute CD variability to 

wafer reflectivity variation, batch to batch resist variation and exposure and thermal dose 

variation, as well as measurement noises.  
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In a scenario with one sensor, the in-line reflectometer measures the resist thickness 

before and after the exposure and baking steps, in order to calculate the deprotection 

induced thickness loss (DITL). This DITL value is used to estimate the post-develop CD 

which is then used in conjunction with a standard RtR control algorithm, to prescribe a 

recipe for the subsequent wafer. A schematic of the control architecture and notation is 

shown in Figure 8. 

 

Figure 8. Run to Run Control Architecture for DUV Lithography [11] 

 

The controller uses a Kalman Filter to provide estimates of the noise and uses process 

models based on a statistical design of experiments technique. Two scenarios were 

considered, differing in the type of metrology as well as the frequency of measurements 

available. The simulation results indicate the efficacy of using such a scheme for a real-

world lithography sequence. 

4.2.3 Run-to-run controls of Photolithography [12] 

Wu, Hung (2008) [12] described two run-to-run controllers, a nonlinear multiple 

exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning 

minimum-variance (DMTMV) controller, for critical dimensions (CD) control in 

photolithography processes. The experimental design and a multiple regression analysis 

were used to form relationships between the factors (exposure dose and focus) and the 

output quality property (critical dimension). Both controllers could easily update the 

dynamic model and obtain the optimal inputs for the next run. The simulation results 

demonstrated that the DMTMV controller was more powerful than the NEWMA controller 

for rejecting disturbances and increasing yields. Quantified improvements were obtained 

from simulations and real photolithography processes. 

4.3 Frequency Domain Control of Laser Metal Deposition [13] 

Also using laser to deposit material as ECPL does, the Laser Metal Deposition (LMD) 

process is an established additive manufacturing process which is comprised of melting 

powdered metal material with a laser to fabricate metal structures. While the process is 

usually modeled and controlled via pure temporal models and algorithms, the process is 

more aptly described as a repetitive process with two sets of dynamic processes: one that 

evolves in time and one that evolves in part layer. Therefore, it is advantageous to derive a 
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model of the LMD process that captures these two dominant phenomena. Although first 

principles models are capable of capturing both phenomena, simpler models can be derived 

and characterized using system identification methods. Therefore, a Hammerstein model 

describing the LMD process is derived in this paper which captures the two dominant 

aspects of the process and reproduces a common description of the melt pool shape. The 

model is then transformed into the frequency domain and the unknown dynamics are 

identified and validated using system identification techniques. The phase and magnitude 

properties of the model are also examined. 

4.4 Adaptive Neural Network Control of a Class of Unknown Nonlinear System [14] 

Kwan and Member (2000) [15] proposed a robust controller for backstepping control of a 

class of general nonlinear system using neural network (NN). All errors and weight are 

guaranteed to be bounded. The tracking error can be reduced to arbitrarily small values by 

choosing certain gains large enough. Several practical systems, including an induction 

motor and a RLFJ robot, were used to demonstrate the effectiveness of the proposed 

controller. The method does not require the system dynamics to be exactly known or require 

any off-line learning phase. 

A similar but more powerful control algorithm was presented by Yahui Li (2004) [14]. 

Two different backstepping neural network (NN) control approaches were presented for a 

class of affine nonlinear systems in the strict-feedback form with unknown nonlinearities. 

By a special design scheme, the controller singularity problem is avoided perfectly in both 

approaches. The closed loop signals are guaranteed to be semiglobally uniformly ultimately 

bounded and the outputs of the system are proved to converge to a small neighborhood of 

the desired trajectory. The control performances of the closed-loop systems can be shaped as 

desired by suitably choosing the design parameters. Simulation results obtained demonstrate 

the effectiveness of the approaches proposed. 

Although it still requires further research to check if ECPL could be really modeled into a 

backstepping system with a particular form of equations as described in literature [14] and 

[15], the salient feature of such model and robust adaptive neural network control algorithm 

for a class of general unknown nonlinear system is very interesting.  

4.5 Summary 

The literatures, as summarized in Table 3, have relevance to aspects of ECPL process 

control, but could not be applied directly due to the differences in material, equipment and 

approach. For example, the traditional lithography control design cannot be directly used for 

ECPL because the processes are fairly different in nature - the former is subtractive while 

the latter is additive. 

Actually, system control is challenging and requires careful development across several 

levels of detail. There is no panacea control method and each class of system might have its 

own unique characteristics that require a special algorithm for stability and robustness. 

Hence, there is still no handy solution to ECPL advanced process control, which demands 

further research work on both the real-time measurement and process modeling. Even so, 

the literature review has tremendous value in providing inspirational insights into feasibility 

of advanced control for ECPL. 
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Table 3. Summary of Literature Review on Controls of Processes Relevant to ECPL 

 

As we could see from the literature, Run-to-Run (R2R) control has been used extensively 

in lithography processes and actually other semiconductor processes as well. The R2R 

control literature is based on the processes where fundamental or first principles model are 

not available or are very difficult to obtain. In addition, large numbers of off-line 

experiments are required for the generation of linear or nonlinear empirical models from 

experiments. All the features enable R2R to be a good candidate for ECPL because 

currently we lack a first principles model for ECPL but already did lots of experiments and 

have empirical models. Obviously, considering the unique constraints of ECPL, we need a 

variation of R2R; one candidate variant has been developed, called evolutionary cycle-to-

cycle (EC2C) control, which will be introduced in the next section. 

Additionally, adaptive neural network (ANN) methods also appear to be promising, based 

on their successful application in other process governed by unknown nonlinear systems.  

Hence, it seems that applying advanced control technologies, such as EC2C and ANN, to 

ECPL is promising but requires further conclusive investigation and more specific detailed 

design of the control system. In the following section, we will explore more about the ECPL 

process control. 

5 Proposed Advanced Process Control Schemes 

The overall objective of an ECPL control system is to ensure that the final outputs of the 

process (i.e. the cured height and shape) conform to established specifications. Although all 

the final outputs are important, the cured height has been a most prominent concern because 

cured heights of discretized voxels define the shape. 
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Considering the process control issues above, we focus the search space of advanced 

control methods on these which could update online process dynamics modeling and thus 

track the process evolution with various disturbances more accurately. 

5.1.1 Evolutionary Cycle-to-Cycle Control 

We proposed a digital control method – evolutionary cycle to cycle (EC2C) control 

method- based on the R2R literature. The name, changed from “Run” to “Cycle”, clarifies 

that the proposed controller works per measurement cycle instead of per experiment run. 

There is an essential difference between our EC2C approach and traditional R2R approaches. 

In semiconductor processes, run-to-run usually means wafer-to-wafer, lot-to-lot or batch-to-

batch, which is more of a statistical process control, even though there are a broader 

classification of R2R including statistics, estimation and artificial intelligence [16]. In our 

proposed cycle-to-cycle control, we dive into a smaller scale and smaller time step, and 

focus on a single part fabrication process, that is, to control a single “Run” of process 

instead of “Run-to-Run” in a batch process. 

The EC2C control will inherit the advantages of present R2R control methodologies and 

adapt well to our ECPL process special issues. Furthermore, if physical (first principles) 

models can be developed, EC2C control might be extended by synthesizing both physical 

and empirical models for optimization to overcome the limitations and disadvantages of 

classical R2R. A recursive least squares (RLS) system identification and Kalman filters 

could be used in the EC2C for ECPL to enhance the controller performance. 

5.1.2 Hierarchical Framework of Control Methods for ECPL  

We already looked into a search space of ECPL-like process control methods. There is no 

panacea or all-purpose control method, but only myriad control methods dealing with 

various types of systems. Worse still, terminologies and definitions of various control 

methods seem to clutter in vast literature. It is confusing that there are a number of control 

methods which differ despite similar name or resemble despite different names. For 

example, in some paper adaptive control might mean a run-to-run control, which again 

could also be called as a cycle-to-cycle control or recursive least square digital control. 

Hence, we need clarify our candidate control methods. 

Furthermore, under the scenario of ECPL, which kind of control is suitable totally depends 

on the process model and measurement capability. It is always easier to start with a simple 

model and develop a baseline control. As our knowledge of the process develops along with 

improved in-situ measurement to provide real-time feedback, we might be able to progress 

towards a more and more complex process model based on which a more advance control 

algorithm will become enabled. Hence, it is better to summarize the candidate methods in a 

hierarchical manner. 

Inspired by literature, tailored for ECPL, a hierarchical framework of control methods is 

put forward for different stages. The development stage of control methods is defined in two 

status coordinates: degree of process knowledge and degree of measurement capability. The 

hierarchical framework of control methods, both existing and potential in our research scope, 

is presented in Figure 9. 
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Figure 9. Hierarchical Framework of Control Methods for ECPL 

As shown in the control methods hierarchy in Figure 9, only when the in-situ, real-time 

measurement capability is fast and reliable can we attempt, in increasing order of 

complexity, the implementation of more advanced control strategies, dynamics model based 

control algorithms, and on-line optimization strategies to compute input recipes for the 

ECPL. 

Considering current development of ECPL and ICM, we will investigate two most viable 

candidate controls, evolutionary cycle-to-cycle (EC2C) control and adaptive neural network 

(ANN) control, which are mostly likely to satisfy the search criteria - capability of adaptive 

learning and control of unknown or uncertain process. 

As shown in the hierarchical framework, the two proposed control methods adopt different 

theory and architecture, and can be applied under different development stages depending 

on the knowledge of the process dynamics. EC2C is basically a kind of digital control based 

on recursive least squares estimates. It can be used at the initial stage when we still have no 

good fundamental knowledge of the physical relationships among the ECPL 

photopolymerization variables. The EC2C digital control is envisioned as a baseline 

controller, which serves as both a guideline for controller tuning and a system identification 

tool for modeling the ECPL process dynamics in forms of sophisticated differential 

equations. As the research moves forward with better knowledge of the photopolymerization 

mechanism and ECPL process dynamics, a more advanced control strategy – adaptive 

neural network control- with developed process ordinary differential equations could be 

designed to manipulate the process input directly. 
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6 Conclusion 

Investigation of instrumentation and control methodologies, which will be needed to meet 

the evolving needs of photopolymerization based processes and other additive 

manufacturing processes, could be a challenging and vibrant area for academic researchers 

and industrial practitioners alike. 

The study reviewed existing control methods for ECPL and identified research gaps. 

Advanced control methods for the ECPL process were identified and a search space of 

relevant literature was surveyed to reveal promising techniques. Inspired by literature, 

tailored for ECPL, a hierarchical framework of control methods is proposed. Candidates 

include evolutionary cycle-to-cycle control, model predictive control, adaptive neural 

network control, and frequency domain techniques. 

Future work includes detailed design and physical implementation of advanced control 

systems onto the real ECPL system to further verify and explore their capability. 
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