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The existing framework describing the mechanical properties of lattices places strong

emphasis on one important property, the relative density of the repeating cells. In

this work, we explore the effects of cell size, attempting to construct more complete

models for the performance of lattices. This was achieved by examining the elastic

modulus and ultimate tensile strength of latticed parts with a range of unit cell sizes

and fixed density. The parts were produced by selective laser melting (SLM). The

examined cell type was body-centred-cubic (BCC), a cell of high relevance for SLM

because of its self-supporting structure. We obtained power law relationships for the

mechanical properties of our latticed specimens as a function of cell size, which are

similar in form to the existing laws for the density dependence. These can be used

to predict the properties of latticed column structures comprised of BCC cells, and

may be easily amended for other situations. In addition, we propose a novel way to

analyse the elastic modulus data, which may lead to more general models, applicable

to parts of varying size. Lastly, our general methodology may be of use in future

studies which explore the other parameters that determine lattice performance; the

choice of cell type, the global shape of the lattice structure and the type of stress.
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INTRODUCTION

One of the most promising capabilities of additive manufacturing (AM) is the
production of novel lightweight structures which, of course, are in high demand across
sectors such as automotive, medicine and aerospace. Many innovations in this field have
come from the use of topology optimisation as a design tool, which is typically used to
identify the material layout that maximises specific mechanical properties[1–3].

An alternate and complementary route to better parts, one that is enabled by
the manufacturing freedoms of AM, is the replacement of otherwise solid volumes
with lattice structures. Such designs have the potential to deliver large reductions
in part weight, while also offering high levels of energy absorption under static and
dynamic loading[4–8]. However, the choice of lattice unit cell design is large and the
mechanical properties of different cell types are far from fully understood. This is a ma-
jor obstacle in the development of design methods that utilise lattice structures effectively.

Beside the choice of cell type (body-centred-cubic (BCC), face-centred-cubic (FCC),
gyroidal, hexahedral, to provide a few examples), at least two other cell properties are
significant in determining its mechanical performance; its relative density (also known
as its volume fraction) and its size. The first of these factors has received some prior
attention, largely because of the similarity between lattice structures and the more well
established foams, while the second has received virtually none.
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FIG. 1: The BCC unit cell with a relative density, ρ∗, of 0.36.

This work examines the elastic modulus and ultimate tensile strength of latticed parts
with BCC unit cells of varying size and fixed density. The parts were produced in Ti-6Al-
4V alloy using selective laser melting (SLM) and the cell type was chosen because it is
known to be self-supporting (it includes no horizontal members) and has been examined
experimentally and theoretically elsewhere[5, 6, 9, 10]. The main aim of the investigation
is to uncover how the mechanical properties of lattice structures vary according to size
of the chosen unit cell. We will attempt to explain the origins of these relationships and
add our findings to the semi-empirical models that currently exist.

The Gibson-Ashby model

Gibson and Ashby analysed the mechanical properties of metal and polymer foams
by considering them as systems of open or closed regular cells, expanding upon other
work on honeycomb structures[11, 12]. They used analytical methods based on the
beam theory of Timoshenko and Goodier[13], and Roark and Young[14] to relate several
properties (the elastic modulus and plastic yield strength, amongst others) of a foam
under compression or tension to its relative density, ρ∗. The relationships put forward
by Gibson and Ashby were seen to describe the mechanical bahaviour of several foams
adequately[11, 15, 16]. The equations have since been applied to latticed structures
comprising repeating regular unit cells, an application they were essentially devised
for[4, 17, 18].

Before presenting Ashby and Gibson’s relationships, some properties of a lattice struc-
ture must be defined. We have that,

ρ∗ = ρlatt./ρsol., (1)

where ρlatt. and ρsol. are the densities of a lattice structure and a fully-dense solid, respec-
tively (both composed of the same material). In this way, ρ∗, can be seen simply as the
fraction of a particular volume taken up by the solid material of the lattice. Similarly, we
can define,

E∗ = Elatt./Esol., (2a)

σ∗
U = σU latt./σU sol., (2b)

so that E∗ and σ∗
U are the elastic modulus and ultimate tensile strength of a lattice

represented as fractions of those of a fully-dense solid of the same material. These will
henceforth be referred to as the relative elastic modulus and relative ultimate tensile
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strength.

Gibson and Ashby laid down the straightforward scaling relationship for E∗ as a func-
tion of the relative density[11, 12, 19];

E∗ = C1ρ
∗m, (3)

where the exponent m varies depending on the relative contributions of stretching and
bending in the cellular deformation process; it is given as m = 2 for open, bending-
dominated, cell types, with additional terms being added to equation 3 to account for
membrane stresses and gas pressure effects in closed cells. The prefactor C1,“includes
all of the geometric constants of proportionality[11],” and therefore varies significantly
according to the specimens being examined.

The issue of ultimate tensile strength is a little more involved, with a simple relationship
of the form of equation 3 not forthcoming. Instead, for an open-celled lattice under
compression, Gibson and Ashby provided,

σ∗
cr ∝ l

(− 3
mw

)
c ρ∗(

3
2
− 1

mw
), (4)

for the crushing strength, σ∗
cr, as a function of cell width, lc, and relative density. mw

is the Weibull modulus, a parameter used to quantify the variance in strength amongst
samples of brittle parts. It is related to the distribution of flaws in the material and,
in this case, it principally dictates the size dependence of the part strength; the larger
the Weibull modulus, the smaller the reduction in strength due to increasing part size.
Physically, this is due to the fact that larger parts are more likely to contain larger
pre-existing cracks or pores.

For an open-celled lattice under tension, Gibson and Ashby similarly provided,

K∗
IC ∝ l

( 1
2
− 3

mw
)

c ρ∗(
3
2
− 1

mw
), (5)

to describe the fracture toughness, K∗
IC , again, as a function of cell width and relative

density. In this case, mw = 6 is a limit; the fracture toughness increases with cell size if
mw > 6 and decreases with cell size if mw < 6.

The cell size dependence for the mechanical properties

Part of the motivation for this work stems from the recognition that Gibson and
Ashby’s parameter C1, introduced in equation 3, must subsume virtually all of the
geometrical information about the lattice except for its relative density. The factors
which are thought to determine this parameter are; (i) the choice of unit cell type, of
which there are a great many with different potential applications and varying suitability
for SLM (and AM in general), (ii) the global shape of the lattice structure, (iii) the type
of stress, and (iv) the size of the repeating unit cell. This work focuses on the last of
these properties, posing the question: with fixed relative density, how does the unit cell
size affect the elastic modulus of a lattice? Information in response to this question could
be used to develop more effective methods for predicting the moduli of latticed parts,
and would therefore be highly valuable as a design tool.
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Gauge width
(mm)

5.00 7.00

Unit cell
width
(mm)

1.00 1.00

1.6̇6 -

2.50 3.50

5.00 7.00

TABLE I: The range of unit cell widths for the two types of test specimen.

With respect to the relative ultimate tensile strength of the lattices, a cell size depen-
dence is essentially predicted, though the form it takes has not been explicitly laid out.
We will attempt to identify this dependence and relate it to the existing theory for the
closely related properties from equations 4 and 5. Once again, any knowledge gleaned
regarding the performance of lattices with different sized cells, and equivalent density,
could be useful in the development of methods to design lattices to meet specific load
conditions.

EXPERIMENTAL DETAILS

Specimen production

Tensile test specimens with square cross-section were designed according to the ISO
standard 6892-1:2009. Specimens with two gauge widths, 5 and 7 mm, were examined.
The gauge volumes comprised a repeating BCC unit cell of varying size contained within
a ‘net skin’ (determined after production to have thickness 0.243 ± 0.007 mm). The net
skin was employed so that an extensometer could be fitted to the exterior of the gauge
surfaces, allowing accurate strain measurements. The BCC unit cell, which in our work
had a relative density of 0.36, is illustrated in figure 1.

The specimen details, that is, the range of unit cell sizes for each tensile bar, are
provided in table I. Figures 2 and 3 are CAD representations of the tensile specimens;
the former shows both the 5 and 7 mm gauge versions of the part, including dimensions,
while the latter provides a comparison of a latticed gauge region with and without the net
skin, revealing the BCC cells beneath. Several parts with solid gauge volumes were also
examined, so that the relative mechanical performance of the latticed specimens could be
determined.

The specimens were provided by Renishaw Plc. They were manufactured from Ti-6Al-
4V using a Renishaw AM250 SLM machine. The laser power, laser scan speed and hatch
spacing were 200 W, 600 mm/s and 150 µm, respectively, and a ‘meander’ scanning strat-
egy was taken, whereby the hatch path of each subsequent layer was rotated by 67◦ from
the previous one. This strategy serves to reduce any anisotropy, geometric or mechanical,
that might occur if there were no hatch rotation. The test specimens underwent a stress
relieving heat treatment (600 ◦C for 3 hours under an Ar-rich atmosphere) before removal
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FIG. 2: CAD drawings of the 5 mm gauge (right) and 7 mm gauge (left) tensile specimens,

including dimensions.

FIG. 3: CAD drawing of the latticed region of the 5 mm gauge specimen with 1.6̇6 mm unit

cells. The region is shown with (left) and without (right) the net skin that was employed so

that a surface-mounted extensometer could be used during testing.

from the build plate. Figure 4 shows a selection of the 7 mm gauge width specimens prior
to testing, including one which is fully solid and two latticed parts with unit cells of width
3.50 and 7.00 mm.
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FIG. 4: Photographs of a selection of 7 mm gauge parts. From left to right; solid gauge section,

3.50 mm unit cell and 7.00 mm unit cell. The inset shows a close-up of the latticed regions, with

the net skin and internal spars visible.

Tensile testing

Elastic moduli, Elatt., and ultimate tensile strengths, σU latt., were recorded for the
latticed 5 and 7 mm test bars. All measurements were made using an Instron-5969
universal testing machine. The tensile strain was applied at a rate of 0.01 mm/s. An
Instron series 2630 extensometer with 25 mm gauge length was clamped to the center of
the latticed section of each test specimen in order to record the strain. Elastic moduli
were determined from the regions up to 0.5% strain of the experimental stress-strain
curves. Measurements were performed on at least two, and usually three, specimens per
design (each combination of cell size and gauge width), with the means and standard
errors being used for subsequent analysis.

The moduli of completely solid (non-latticed) test specimens were also recorded. These
were 102.3±0.9 and 101±1 GPa for the 5 and 7 mm bars, respectively, and provide the Esol.

of equation 2a. They agree with each other within experimental error and are slightly lower
than values typically associated with cast and forged alloys (∼ 105 − 116 GPa[20, 21]).
The ultimate tensile strength of the solid bars was found to be 1.07± 0.01 GPa, slightly
higher than expected from cast alloy but lower than has been reported for some Ti-6Al-4V
SLM parts[21–23]. This value constitutes σU sol. of equation 2b.

RESULTS AND DISCUSSION

Numerical results from the mechanical testing of all specimens are provided in table
II, where the relative properties, E∗ and σ∗

U , are as defined in equations 2a and 2b. The
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lc
(mm)

vc
(mm3)

v∗

×10−3

Elatt.

(GPa)
E∗

×10−3

σU latt.

(MPa)
σ∗
U

×10−3

5 mm
gauge
bars

1.00 1.00 1.10 17.2± 0.5 169± 6 189± 1 177± 2

1.6̇6 4.63 5.30 12.0± 0.5 118± 5 152± 1 141± 2

2.50 15.6 17.9 10.2± 0.3 100± 3 117.3± 0.4 109± 1

5.00 125 143 7.8± 0.3 76± 3 68.8± 0.8 64± 1

7 mm
gauge
bars

1.00 1.00 0.42 19.7± 0.4 194± 5 174± 4 163± 4

3.50 42.9 17.9 9.0± 0.3 89± 1 102± 1 95± 1

7.00 343 143 7.0± 0.5 70± 5 55± 2 52± 2

TABLE II: Absolute and relative mechanical properties of the latticed specimens for varying

unit cell sizes. The relative properties (v∗, E∗, and σ∗U ) are defined in the text.

unit cell volumes, vc, for each specimen type are also included; for BCC cells these are
simply the unit cell width cubed. v∗ is a property which will be defined and discussed
shortly.

The elastic modulus

The relative elastic moduli are plotted in figure 5 as a function of cell width. The E∗

values decrease over the examined range of cell width, from (19.4± 0.5)% to (7.0± 0.5)%
of the Esol. values obtained from solid bars. The second feature of note is that the data
from both the 5 and 7 mm test bars follow the same distribution, signifying that we may
treat them as a single data set for the purposes of data analysis.

We first hypothesize that E∗ follows a power law with lc similar to that already known
to exist for ρ∗. We suggest,

E∗ = U1 l
n1

c , (6)

where U1 and n1 are analagous to Gibson and Ashby’s C1 and m of equation 3. The
resulting weighted least-squares fit is shown as a dashed line in figure 5. The values of
U1 and n1 were found to be 0.179 ± 0.009 and −0.56 ± 0.05, respectively. However, this
fit is statistically rather poor, with a χ̄2 (reduced-χ2) value of 2.29, and the fit residual,
shown in the upper panel of figure 6, shows significant additional structure. Clearly, this
simple model is incapable of describing the data set well.

Two variations on this scaling law were also trialled; one with a constant to modify the
cell width, the other with a constant to modify the relative elastic modulus. Physically,
such constants could be interpreted as systematic errors associated with the experimental
procedure, or they might be true requirements of the model required to describe the data.
The modified power laws are given by E∗ = U1 (lc + δlc)

n1 and E∗ = U1 l
n1

c + δE∗ , and
are shown in figure 5 as solid and dotted lines, respectively. As anticipated, the χ̄2 values
associated with these fits are much improved, with the former providing a value very close
to unity. Furthermore, the central panel of figure 6 shows far less residual structure for
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FIG. 5: The relative elastic modulus, E∗, of the 5 and 7 mm latticed test bars as a function of

cell width, lc. Weighted least-squares power law fits are shown as dashed, solid and dotted lines.

The fitting procedure is described in the text.

the E∗ = U1 (lc + δlc)
n1 fit, compared to the the unmodified form. The parameters from

this fit were U1 = 0.11±0.01, δlc = −0.8±0.1 mm and n1 = −0.28±0.07. The determined
cell width offset of -0.8 mm could be indicative of a systematic error in the manufacture
of the latticed bars. However, this issue was subsequently investigated; the cell widths
were found to conform well to the expected values.

The second modified power law, E∗ = U1 l
n1

c + δE∗ , provides a poorer fit than that
described above, with χ̄2 = 1.18 and more residual structure, but it is still superior to
the unmodified form. The fitted parameters are U1 = 0.12 ± 0.01, n1 = −1.3 ± 0.4 and
δE∗ = 0.06± 0.01.

Anomalous behaviour of the smallest cells

Furthering the analysis of the E∗(lc) data, we speculate that data from 1 mm cells
in both the 5 and 7 mm latticed test bars may be outliers or simply not described by
the same mathematical model that describes the rest of the data set. Evidence for this
assertion comes from the residuals in figure 6, where the 1 mm data are almost equally
poorly described by all three models trialled so far. There may be a physical cause
for this; the cavities, or voids, in the 1 mm lattice structures are small enough for the
complete removal of Ti-6Al-4V powder to be problematic. If residual powder remained
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FIG. 6: Residuals from the relative elastic modulus fits of figure 5.

in some or many of the internal lattice cavities for the 1 mm cells, the behaviour of those
bars under tension may be quite different from the others. Another possible explanation
is that the performance of these cells is being affected by the presence of loosely bound
powder around the lattice struts and nodes. Loosely bound, or partially sintered, powder
is a persistent issue in SLM and affects different materials to different extents, often
negatively impacting properties such as the surface roughness; its presence is related
to the choice of laser processing parameters and the morphology of the powder. In the
case of our latticed structures, it would have a larger effect for smaller cells, where the
dimensions of the struts and nodes are smallest.

The relative elastic moduli were re-fit with E∗ = U1 l
n1

c , this time excluding those data
from the 1 mm cells; the result is shown in figure 7. The parameters are U1 = 0.144±0.002
and n2 = −0.130 ± 0.004. The χ̄2 value is extremely low at 0.02, most likely indicating
that, with the exclusion of two data points (and the reduction to just three degrees of
freedom for the fitting procedure), the fit is over-paramaterised.

Alternate analysis

In figure 8 we present E∗ as a function of the relative cell volume, v∗. This, we define
as,

v∗ = vc/vlatt. env., (7)
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FIG. 7: 5 and 7 mm E∗ data fit with E∗ = U1 l
n1
c . Data from the 1 mm cells are excluded from

the fit, as described in the text. The lower panel shows the corresponding fit residual.

where vc is the cell volume (given simply by l 3
c ) and vlatt. env. is the volume of the latticed

environment in which the cell resides. For the 5 and 7 mm bars, vlatt. env. has values 875
and 2401 mm3, respectively (i.e. 5× 5× 35 mm and 7× 7× 49 mm, where 35 and 49 mm
are the lengths of the latticed gauge sections of the bars).

Choosing to work with a relative measure of cell size like v∗, rather than the absolute
values of lc or vc, may provide a way to formulate general descriptions of lattices that
are independent of the size of the part, equally applicable to parts of quite different
length scales. There is precedent for this methodology in the way we work with E∗,
for example, instead of E. This is done so that general rules, such as equations 3,
4 and 5, may be developed that apply to a range of materials, including polymers,
ceramics and metals, where the absolute moduli differ greatly. Similarly, ρ∗ is used in-
stead of ρ because the absolute densities of the materials in question also vary significantly.

An unmodified power law was applied and it is shown as a solid line in figure 8.
Weighted least-squares fitting provided the result; E∗ = (0.051± 0.004) v∗(−0.17±0.01) with
χ̄2 = 1.68. The fit is statistically poorer than the previous best, but it has the advantage
of describing the E∗ behaviour equally well over the full range of cell size, including the
smallest cells.
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Ē
∗

 

 

5 mm gauge bars
7 mm gauge bars
weighted least-squares fit

E
∗
∝ v

∗(−0.17 ± 0.01)

χ̄2 = 1.68

Ē
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FIG. 8: The relative elastic modulus, E∗, of the 5 and 7 mm latticed test bars as a function of

relative cell volume, v∗. The inset plot shows the relative elastic modulus per unit cell, Ē∗, also

as a function of v∗.

The ultimate tensile strength

The relative ultimate tensile strengths, σ∗
U , of the 5 and 7 mm latticed bars are shown

in figure 9. They take values similar to those seen for E∗, that is, decreasing from
(17.7± 0.2)% to (5.2± 0.2)% of the strengths of fully-dense test bars. Following the same
approach as outlined above, three power laws, two with additional constants for lc and
σ∗
U , were trialled; they are shown as dashed, solid and dotted lines.

Once again, it is the power law of the form σ∗
U = U2 (lc + εlc)

n2 that provides the
best fit, with the unmodified power law performing significantly worse. The factors are
U2 = 0.7±0.6, εlc = 2±1 mm and n2 = −1.2±0.3. The χ̄2 values for the three trialled fits
are larger than obtained in the E∗ analysis, reflecting statistically poorer fits overall; this
is due mainly to the smaller fractional errors associated with the σU measurements. This
has also given rise to larger uncertainties on the determined parameters U2, εlc and n2.
Interestingly, switching the dependent variable to the relative cell volume, v∗, instead of
lc, as implemented previously, did not provide an improved fit when using the unmodified
power law, σ∗

U ∝ v∗n.
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FIG. 9: The relative ultimate tensile strength, σ∗U , of the 5 and 7 mm latticed test bars as a

function of cell width, lc. Again, a weighted least-squares power law fit, shown as a solid line,

provides the dependence of σ∗U on lc.

The Weibull modulus

We can use the determined parameter n2 from our best fit to estimate the Weibull
modulus of our latticed parts. We speculate that the cell width dependence for σ∗

U is
likely to be, or be similar to, one of those seen in equations 4 and 5. Thus, our σ∗

U

values would decrease with cell size according to l
− 3

mw
c or l

( 1
2
− 3

mw
)

c . The first case yields
mw = 2.5 ± 0.6, whilst the second provides mw = 1.8 ± 0.4. Reasonable sources of
comparison for these values are understandably scarce in the literature, owing to the lack
of research on lattice structures produced by SLM. The most meaningful results currently
available may be the work of Blazy et al. and Ramamurty et al., who provide values
of mw between 8 and 16.7 ± 0.6 for some aluminium foams[24, 25], but since both the
material and the manufacturing process in those works are different from our own, direct
comparison is not advised. Clearly, understanding how our values of mw relate to other
work is worthy of further research.

CONCLUSIONS

The main novel finding of this investigation is that there is a dependence of the
relative elastic modulus of lattice structures on the size of the cells they comprise. Our

best fit suggests E∗ ∝ l
(−0.28±0.07)

c , though the extent to which this proportionality is
applicable to lattices with different unit cell types and different global geometries is not

699



yet fully understood. This finding is significant because previous investigations into
lattices have chiefly focussed on the influence of relative density, with any cell size effect
forming part of a constant, C1, to be determined for each individual case. Our result
could be used to develop more complete predictive models for the design of latticed
parts; at its simplest it suggests a clear advantage in choosing smaller lattice unit cells
if maximum stiffness is required. However, there are two important points of note; (i) a
constant, which we call δlc , was required to modify a basic power law to provide the best
fit to our data, and (ii) even our modified power laws failed to properly describe the data
from the test specimens with the smallest cells. The smallest cells may be outliers, or
they may actually behave differently to the others.

We have shown that a possible solution to these issues lies in analysing the E∗ data
as a function, not of the cell width, but of the relative cell volume, v∗. This methodology
provided a reasonable fit with a simpler power law than was previously achievable. An
advantage of this analytical method is that it may provide a way to generalise the perfor-
mance of lattices of different sizes, in much the same way that the well established use of
E∗ and ρ∗ allows us to directly compare lattices of different materials. If this relationship
proves similarly successful in further investigations, it may ultimately be found that the
relative elastic modulus of lattices can be described generally by,

E∗ = Um ρ∗m1v∗m2 , (8)

where Um is dependent only on the choice of unit cell and the global shape of the part.
The implication would be that a latticed cube composed of 1000 unit cells would have
the same relative elastic modulus regardless of its size, be it 20 mm wide or 100 mm
wide. This requires further investigation.

Lastly, we found a cell size dependence for the ultimate tensile strength of our latticed

bars; the data followed σ∗
U ∝ l

(−1.2±0.3)
C , though, once again, the best fit was achieved

only with an lc offset, εlc . The choice of lc as the independent variable was appropriate
for the analysis of σ∗

U data; there were no significant outliers at low cell width, and there
was no improvement of fit when v∗ was used instead. As above, the major implication
of this finding is that smaller lattice cells should be chosen for applications where high
tensile strength is required. We used our determined lc exponent to estimate the Weibull
modulus of our lattices, making the assumption that σ∗

U follows a law similar to those
laid out by Gibson and Ashby for crushing strength and fracture toughness. We found
mw = 2.5 ± 0.6 or mw = 1.8 ± 0.4, which are relatively small, but the lack of available
sources for comparison makes a proper assessment impossible.
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