
A Two Dimensional Analytical Evaluation of Thermal Fields during Metal Laser 

Sintering Processes 

Chong Teng, Deepankar Pal, Haijun Gong, and Brent Stucker 

Department of Industrial Engineering, University of Louisville, KY 40292 

Abstract 

Metal Laser Sintering (MLS) is a laser based manufacturing technique which is used for 

fabrication of parts in a layer-by-layer fashion using fine metal powders. Parts fabricated using 

MLS find wide applications in a myriad of areas such as medical, dental, and aerospace industries 

due to the availability of high geometric complexity, density, and their thermomechanical 

performance in service. A number of computational studies have been conducted in the past to 

help understand various underlying mechanisms related to laser melting and reconsolidation in 

order to arrive at strategies for better and faster machine architectures and process parameters 

combinations which result in stronger and longer-lasting parts.  

 

As intellectual property barriers fall, due to expiring patents and more competitors licensed 

to produce machines, the desire to produce better next-generation machines is increasing. In 

addition there is a parallel realization that the industry needs better ways to develop new materials 

and control schemes for MLS processing. In order to achieve these goals, in this study we will 

provide an insight into the various thermo-mechanical phenomena which occur during MLS by 

providing a brief update on computational studies in the literature followed by the derivation of an 

efficient fully analytical framework for this problem. A two dimensional example is provided 

illustrating various aspects of this formulation which will be modified for a full 3 Dimensional 

formulation and implementation in the future to achieve the above-mentioned goals. 

Introduction 

Metal Laser Sintering (MLS), also known as Selective Laser Melting (SLM) has become 

more and more important because of the capacities of fabricating broad types of metals, processing 

parts with complex and subtle geometries, and resulting miscellaneous mechanical and thermal 

properties which could benefit all kinds of practical applications in industry. Even though SLM is 

a derivation of Selective Laser Sintering (SLS), it is generally more difficult to control because of 

issues with residual stress induced deformation, balling, incomplete powder melting, material 

phase changes, rapid solidification gradients and complex scan strategies for overlapping of melt 

pools [1, 2]. Therefore, understanding the underlying mechanisms in this Additive Manufacturing 

(AM) process is critical to optimization of process parameters, geometrical design and part 

qualification. Industry currently relies heavily on empirical testing and coupon fabrication in order 

to achieve better product quality. However, the high cost and long testing period for empirical 

testing illustrates the need for physics-based simulation and modeling of MLS processes.  

 

In this paper, an analytical framework has been developed to investigate material 

transformation phenomena during MLS such as metal phase changes, melt pool size and 

temperature change with respect to different process parameters. In addition, latent heat energy 

provides information about physical processes which taking effect during laser beam heating in 

MLS [3]. Melt pool characteristics and the nonlinearity of thermal fields are critical issues in MLS 

processing and feedforward and feedback controls, particularly because of the large amount of 

laser energy released during a very short period of time [4]. In order to investigate these issues, a 
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two dimensional analytical approach is implemented using Matlab that will later be modified into 

a three dimensional formulation to assist in comparisons and validations of experimental results 

and to enable correlated simulation results using finite element analysis (FEA) in future work.  

Mathematical Formulation 

The general heat equation is given by thermal energy balance equation which is derived 

from the first law of thermodynamics. The change of enthalpy energy of a volume is equivalent to 

the total difference between internal energy change and external heat flux change: 

∫ �̇�
𝑣

𝑑𝑣 = ∫ �̇�
𝑣

𝑑𝑣 − ∫ �̇�
𝑣

𝑑𝑣                                                   (1)  

where 𝐻 is enthalpy or heat content per unit volume, 𝑈 is internal energy, and 𝐹 is the heat flux. 

From Maxwell relations, the rate of enthalpy can be represented as: 

                                                 

�̇� = 𝜌𝐶𝑣

𝜕𝑇

𝜕𝑡
                                                                         (2) 

where 𝜌  (kg/m3) is the density, 𝐶𝑣  (J/kg-K) is the specific heat capacity, and 𝑇  (K) is the 

temperature. Also, from Fourier’s law of heat conduction, the rate of heat flux is normally written 

as: 

�̇� = 𝛻(−𝑘𝛻𝑇)                                                                     (3) 

where 𝑘 (W/m-K) is the heat conductivity and ∇ is the gradient operator. The detailed derivations 

of above mentioned thermodynamics laws with thermodynamic potentials can be found in [5]. For 

a homogeneous medium, the spatial and time change of the internal energy remains in equilibrium 

such that: 

�̇� = 0                                                                                      (4)                                                                            

Substituting Eqs. (2), (3), and (4) into Equation (1), gives: 

                                                   

𝜌𝐶𝑣

𝜕𝑇

𝜕𝑡
=  𝑘𝛻2𝑇                                                                           (5) 

                                                                          

where the thermal diffusivity α (m2/s) is defined as: 

                                                             

                                                                            𝛼 =
𝑘

𝜌𝐶𝑣
 

Equation (4) becomes: 

𝜕𝑇

𝜕𝑡
= 𝛼(𝛻2𝑇)                                                                        (6) 
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Equation (6) is widely used to govern the transient problem for a moving heat source [6-

8]. If we only consider the moving source existing in the x-y plane, the two dimensional solution 

of Equation (6) becomes: 

∆𝑇(𝑥, 𝑦, 𝑡) =
𝑄𝑡

(4𝜋𝛼𝑡)𝜌𝐶𝑣
𝑒−

𝑥2+𝑦2

4𝛼𝑡                                                              (7) 

where 𝑄𝑡  (J/m) is the amount of heat liberated by the instantaneous point heat source through 

thickness at a period of 𝑡.  

Laser Energy Modeling 

A Gaussian model is the most common laser energy model used in MLS where a symmetric 

laser irradiance distribution is assumed across the laser beam [9].  By this definition, the heat flux 

is converted into expressions of laser parameters as [10]:  

𝑞(𝑥, 𝑦) =
2𝑃

𝜋𝜔2
𝑒

−
2(𝜔𝑥

2+𝜔𝑦
2)

𝜔2                                                          (8) 

where 𝑃 (W) is the laser beam power, 𝜔 is the radius of the laser beam, and 𝜔𝑥 and 𝜔𝑦 are the 

distance between a point and the center of the laser beam in x and y directions. Integrating Equation 

(8) with respect to laser beam x and y dimensions, the total amount of heat 𝑄 (W) on the x-y plane 

becomes: 

                                                               𝑄 = ∫ ∫ 𝑞(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 

The laser absorptivity is typically assumed to be constant for a specific combination of 

laser wavelength, surface roughness, material and bed surface experimental temperature [11]. A 

typical EOS MLS machine, including the one used in this experiment, has a Yb-fibre laser 

wavelength of 1064 nm with a scan speed that is user-definable below 7.0 m/s. Due to the effects 

of laser absorptivity: 

                                                                     𝑄𝑒𝑓𝑓 = 𝛽𝑄 

The effective laser absorptivity β for a 353 K powder bed temperature is assumed to be 

0.76 for the powder layer and 0.35-0.4 for the underneath solid layer for Ti-6Al-4V [12]. 

Considering a 50 W Yb-fibre laser source with diameter of 100 μm scanning over a powder layer, 

the resulting Gaussian distribution of heat 𝑄𝑒𝑓𝑓 is shown in Figure 1 with a peak power in the 

center of the laser center as 0.0940 W.    
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Figure 1: The Gaussian distribution of effective heat for a laser source with 50 W 

Duhamel Integration 

Solutions to the heat conduction problem (Equation (7)) by conventional methods is not 

possible when the heat flux is temperature dependent. However, Duhamel’s theorem demonstrates 

that instead of solving Equation (7) directly, the solution can be expressed in terms of its 

fundamental solution using an simpler auxiliary problem [7].  In this case, we introduce a dummy 

parameter τ into Equation (7) based on the assumption that heat flux is not temperature dependent. 

The temperature rise caused by a moving laser source from 0 to 𝑡 can be obtained by solving the 

following integration: 

𝑇 = ∫
𝑄∗

4𝜋𝛼(𝑡 − τ)𝜌𝐶𝑣
𝑒

−
[𝑥−𝑣𝑥(𝑡−τ)]2+[𝑦−𝑣𝑦(𝑡−τ)]

2

4𝛼(𝑡−τ) 𝑑τ

𝑡

0

                               (9) 

where 𝑣𝑥  and 𝑣𝑦  are the components of laser movement in x and y directions. For a two 

dimensional solution for 𝑄∗ (W/m), if we move the coordinate system with the laser source, point 

A at time 𝑡 in the new coordinate system (𝑋, 𝑌) can be represented using its old coordinate (𝑥, 𝑦) 

as (𝑋𝐴 = 𝑥𝐴 − 𝑣𝑥𝑡, 𝑌𝐴 = 𝑦𝐴 − 𝑣𝑦𝑡), as shown in Figure 2.  
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Figure 2: Coordinate transformation with respect to laser movement  

The discontinuities of Duhamel’s integration which normally result from different substep 

selections in applied boundary conditions, are dealt with in the literature by breaking the 

integration into several pieces [7].  In this paper, we used a superposition approach by treating the 

whole integration as a summation of piecewise solutions for each step 𝜏𝑖 [13]. For each step, the 

solution is equivalent to its mid position solution times distance. The representative solution of the 

integration in Equation (9) can be written as: 

    

𝑇 = 𝑇0 + ∑
𝑄(𝜏𝑖 − 𝜏𝑖−1)

4𝜋𝛼 (𝑡 −
𝜏𝑖 − 𝜏𝑖−1

2 ) 𝜌𝐶𝑣

𝑒
−

[𝑥−𝑣𝑥(𝑡−
𝜏𝑖−𝜏𝑖−1

2
)]

2
+[𝑦−𝑣𝑦(𝑡−

𝜏𝑖−𝜏𝑖−1
2

)]
2

4𝛼(𝑡−
𝜏𝑖−𝜏𝑖−1

2
)

𝑚

𝑖=1

       (10) 

In order to test if the temperature mismatch converges using Equation (10), we consider a 

Ti-6Al-4V solid with a 100 W laser source moving at 1.2 m/s and elements close to the laser region 

sized to be 10 µm × 10 µm, the corresponding material properties are plotted in Figure 4, Figure 

5, and Figure 6. By choosing different ∆𝜏, after stabilization, the temperature fields are compared 

below in Figure 3. As we can observe, the temperature fields predicted by using different ∆𝜏 are 

very close to each other (maximum difference around 1%) which is good enough to prove that the 

convergence effects between each step are handled well by applying Equation (10). 
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Figure 3: Temperature fields with respect to different Δτ 

Nonlinear Material Properties of Ti-6Al-4V 

The material Ti-6Al-4V is used in this paper and the nonlinear temperature dependent 

material properties which have been obtained from [14] are shown in Figure 4, Figure 5, and Figure 

6. The density decrease between 1800K and 2500K is caused by the material state change, and 

after that it becomes flat. The specific heat capacity and heat conductivity values drop down 

between 900K-1100K because of the material 𝛼 → 𝛼′ → 𝛽  phase transformations and keep 

increasing thereafter until the melting point, where it remains constant. The ratios between bulk 

and powder material properties for density, specific heat capacity, and heat conductivity are 

obtained from [15] where 1923K is used as the melting temperature of Ti-6Al-4V.  
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Figure 4：Density of Ti-6Al-4V with respect to temperature 

 

Figure 5: Specific heat capacity of Ti-6Al-4V with respect to temperature 
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Figure 6: Thermal conductivity of Ti-6Al-4V with respect to temperature 

Latent Heat 

Latent heat is defined as the heat absorbed or released as a result of a material phase 

transformation. In the literature, several methodologies are available for taking into account latent 

heat effects induced by material phase changes, including the apparent heat capacity method [16], 

effective capacity method [17], heat integration method [18], source based method [19], and 

enthalpy method [20].  A review of these methods is given in [21]. In this paper, the following 

equation was used to take care of the heat capacity change during material phase change: 

    𝐶(𝑇) = 𝐶𝑠 +
𝐿𝑓{𝑇−𝑇𝑠}

∆𝑇𝑓
2 +

𝐿𝑣{𝑇−𝑇𝑚}

∆𝑇𝑣
2                                          (11) 

where 𝐶𝑠 is the specific heat capacity of the material at the solidus temperature, 𝐿𝑓 (J/kg) is the 

latent heat of fusion, 𝐿𝑣 is the latent heat of vaporization, 𝑇𝑠 is the solidus temperature, 𝑇𝑚 is the 

melting temperature, ∆𝑇𝑓 = 𝑇𝑚 − 𝑇𝑠 , 𝑇𝑣 is the vaporization temperature, ∆𝑇𝑣 = 𝑇𝑣 − 𝑇𝑚 , and 

{} is the Macaulay brackets (enclosed expression maintains the value when the expression stays 

non-negative while it goes to zero when negative). In order to keep the balance of force, in our 

problem the heat 𝑄𝐿 caused by latent heat can be obtained by: 

𝑄𝐿(𝑡) = 𝜌𝑡𝐿𝑡𝑣𝑡                                                                         (12) 

where during phase change quantities: 𝜌𝑡 (kg/m2) is the area density of the material at time 𝑡, 𝐿𝑡 

is the amount of latent heat at time 𝑡, and 𝑣𝑡 (m/s) is the solidified interface velocity. Substituting 

Equation (11) and (12) into Equation (10), we can calculate the temperature decrease caused by a 

material phase change. As we can see, the latent heat is related with the laser energy input induced 

temperature rise and the corresponding solidified interface movement. A sensitivity analysis is 

carried out by assuming a Ti-6Al-4V solid experiences a phase change from its solidus temperature 
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1873 K to its liquidus temperature 1923K, the resulting temperature decrease by latent heat with 

different solidified interface velocity is shown in Figure 7. 

 

Figure 7: The latent heat induced temperature decrease with respect to different solidified 

interface velocities of Ti-6Al-4V 

Thermal Fields Results 

In MLS, the temperature field around the laser beam is highly nonlinear and the thermal 

wave is hard to predict accurately because the temperature is obtained based on a step by step 

calculation with temperature dependent material properties. This issue is exacerbated by the laser 

beam characteristics of a large amount of energy applied to a very small area for a short period of 

time.  Thus the temperature rise and subsequent material property changes used in the calculation 

are large. The relationships of peak temperature for a Ti-6Al-4V solid part with different process 

parameters such as laser power and scan speed are shown in Figure 8 and Figure 9. In Figure 8, 

the scan speed of the laser beam is kept constant at 1.2 m/s while in Figure 9, the laser power of 

the beam is kept constant at 75 W. 

A case study was carried out in order to investigate the accuracy of this thermal solution.  

A 125 W laser beam moving at a speed of 1.2 m/s along the positive x direction and temperature 

dependent material properties of Ti-6Al-4V were used. The shape of the melt pool was assumed 

to be half of the ellipsoid volume in order to convert the laser beam energy into the corresponding 

planar energy. The laser is assumed to scan directly on the base plate in order to minimize possible 

error created from through thickness cooling (this effect is dominant in powder on top of solid 

melting and solidification processes) since this is a two dimensional rather than three dimensional 

solution. The in-plane thermal contour and three dimensional thermal surface plot for laser beam 

movement of 200 µm are shown in Figure 10 and Figure 11. It was found that the melt pool size 

is about 100 µm and the peak temperature is about 4500K at this time step while the peak 

temperature increases slowly until it hits the value shown in Figure 8.  
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Figure 8: Laser power effects on peak temperature  

 

Figure 9: Scan speed effects on peak temperature 
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Figure 10: Thermal contour of a 125 W 1.2 m/s laser moving 200 µm in distance  

 

Figure 11: 3D Thermal surface plot of a 125 W 1.2 m/s laser moving 200 µm distance     
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Conclusion and Future Work 

A two dimensional analytical solution of thermal fields in metal laser sintering has been 

developed and implemented into Matlab to enable future validation of FEA solutions and 

verification against experiment results. The Duhamel integration method along with a solution for 

the convergence mismatch effect of the superposition approach was applied, and the maximum 

temperature deviation when using different substeps was greatly reduced to about 1% maximum. 

The material phase change induced latent heat energy was taken into account using a correlation 

between solidified interface velocity and temperature decrease. The peak temperature variation for 

different process parameters such as laser power and scan speed are shown. A case study shows 

the ability to predict thermal contours and melt pool shapes, but since the input energy is 

transformed into a planar energy, it is hard to compare this method with experimental results until 

a three dimensional model is completed. Most of the results provided in this paper are based on to 

the assumption of a laser moving across a solid base plate, which melts and solidifies in order to 

avoid possible errors resulting from superimposing some type of through thickness cooling 

assumption between powder and solid since this model is valid only for a two dimensional 

solution. Nevertheless, the predicted shapes of the melt pool and the thermal contours after melt 

pool stabilization from this case study look very much like observed phenomena from experiments.       

In order to accurately compare the thermal field with experiment results, the machine 

operating temperature field needs to be investigated. The results and computational time using this 

approach are highly dependent on the mesh density and mesh quality; thus adaptive mesh 

refinement strategies (AMR) are favored at this point. Multiscale dynamic meshing has been 

previously developed [14], so with appropriate implementation of such mesh refinement methods, 

the current approach can be greatly improved.  

A three dimensional analytical approach is being derived based on the approach 

demonstrated in this paper in order to achieve a more complete and accurate solution and the ability 

to do experimental validation. In addition, this three dimensional analytical solution will also ease 

the possible implementation of wavelet propagation approaches for MLS process modeling and 

simulation for pursuing even faster, more accurate MLS process modeling.     
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