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Abstract. To maintain the forward momentum of additive manufacturing technology, it is necessary to thoroughly evaluate 

new and potentially useful technological developments in this field.  One such development is the intense interest being 

directed to the field of hybrid automata (HA).  Hybrid automata combine both the discrete processing behavior of finite 

automata as well as the continuous, or flow, behavior of dynamical systems. At this point, some important results on hybrid 

automata have been obtained, but many open questions remain, including those concerning the decidability of HS 

operational procedures. (Recall that decidability is directed to a decision problem, that is, a definite true-or-false response 

given by an effective procedure.) Some important decidability results for HAs have been obtained.  For example, in 

[Henzinger et al.1998] the reachability problem for timed automata (an HA class) has been convincingly shown to be 

decidable.  However, it should also be noted that subtle and difficult issues have been identified, e.g., [Fraenzle 1999], 

[Asarin, Collins, 2005].  This paper will provide a summary review of the operational features of HAs as they might pertain 

to additive manufacturing, and then briefly consider the following technical issues:  (i) are the classical models of the real 

numbers best suited to deal with the necessarily approximate measures of physical systems or would non-standard analysis 

of [Robinson 1996] be a better fit; and (ii) would the introduction of “noisy semantics” and finite arithmetic precision, 

following [Freidlin, Wentzell 1984], be a better work around? 

 

 

 

I. Introduction  
 

Additive Manufacturing (AM) has had significant impact on the production of engineering 

prototypes and more recently on the manufacture of functional parts, especially the direct fabrication 

of molds, dies, and other tooling. As now practiced, this style of manufacturing is based on additive 

manufacturing processes which may resolved into the following steps: first, to create a solid geometric 

model of the part to be built and to select a part orientation; second, to form an ordered sequence of 

planar slices which in effect decompose the solid into a sequence of thin cross-sectional polyhedral 

layers; and then to fabricate the part by producing the polyhedral designs by applying such methods as 

stereolithography, selective laser sintering, laminated object manufacturing, or fused metal/ceramic 

deposition [7], [8].   

 

 Within the now-dominant AM paradigm, parametric design is based on the premise that an 

inventory of existing designs can be used to create design templates such that (1) the identified 

functional connections are coded by embedded parametric expressions, and (2) novel variant designs 

may be generated by assigning reasonable values to the parameters and then evaluating the resulting 

expressions in a precisely controlled manner. This program has proven to be significantly more 

difficult than anyone had expected. This paper is an attempt to construct a qualitative parametric 
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engineering model of the product design process in the context of discrete part manufacturing. It seems 

natural to suppose that engineered artifacts may be resolved into components parts that can be usefully 

represented as compact connected 3-manifolds with boundary where the boundary consists of a 

possibly disconnected set of compact smooth 2-manifolds (topological surfaces).  This style of 

manufacturing is based on additive manufacturing processes which may resolved into the following 

steps: create a solid geometric model of the part, defining surface boundaries and identifying interior 

(material) regions from the exterior (void) regions; select a part orientation and then form planar 

slices, decomposing the solid into a sequence of thin cross-sectional polyhedral layers; and fabricate 

the part by producing all of the polyhedra by any of several methods, including: stereolithography, 

selective laser sintering, laminated object manufacturing, fused deposition modeling, and three 

dimensional printing. In classical manufacturing work is applied to the surface of the part either 

through deformation process or by material removal. But in the present context the most useful 

characteristic of AM is that it reduces the 3-space shape of compact objects to a sequence of 2-space 

slices (and possibly some mild “skinning” conditions). [8] 

 

 

A.  Geometric AM Models and Applied Topology.  

 

But there is still more to be observed here: the stack of planar slices, properly understood, is of 

very great importance in its own right. Not only does it allow manufacturers to produce that one 

specific part, but also, suitably transformed, it has the potential to produce infinitely many 

geometrically distinct parts, every one of which is topologically identical to the single specific part 

with which we began.  This important notion should be more precisely defined.  [19] 

 

A topological space is a pair (S, O) where S is an unempty set of points and O is a set of subsets 

of S, called the open sets, which satisfies the following conditions:  O contains both S and the empty 

set , and is closed under finite intersections and arbitrary unions.  A closed set is the set-theoretical 

complement of an open set.  The collection C of all closed sets satisfies the dual conditions:  C 

contains both  and S, and is closed under finite unions and arbitrary intersections.  Let Y be an 

arbitrary subset of S and p be a point, then p is a limit point of Y only if every open set of (S, O) 

contains a point of Y distinct from p. That is, elements of Y get arbitrarily close to p.  Now suppose that 

S and T are topological spaces, then a function f from S to T is said to be continuous, or a map, 

provided it is an into function and for every subset X of S and point p, if p is a limit point of X, then 

f(p) is a limit point of  f(X), the image of X under f.  Equivalently, f is continuous if it is into and the 

inverse image under f of every open set of T is an open set of S.   Given this preliminary discussion, the 

fundamental meaning of topological identity is finally made clear: a function from spaces S to T is a 

homeomorphism provided it is a one-to-one onto function (a bijection) and both the function and its 

inverse are continuous.  

 

  Then, with the topological sketch in place, we can fashion at will an infinite variety of 

topologically identical geometric constructions in two steps: first, we can arbitrarily thicken all (or 

some) of the initial planar slices, while preserving all structural elements (such as holes or voids); and 

second, without tearing or puncturing through the thickened slices, we can reshape them at will, just as 

we would reshape wet clay … well almost!  
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B.  Resemblances (1): Morse Theory. 

 

We are not quite finished yet!  What needs to be added to this story is some structuring 

principle which allows all of the infinitely many possible geometric constructions to at least resemble 

one another. Suppose that the geometry of our first part was a child’s doll, say Raggedy Ann, then 

what we would like to have is a mechanism in place which would ensure that resemblance to Raggedy 

Ann would be at least roughly approximated.  One way to do this is to fix the doll in a plausible fixed 

position, and then to scan her from just above her head (the initial scan point) to just below her shoes 

(the final scan point) while noting for each scan the distance from the initial scan.  Of course, the 

results would be an ordered set (top-down) of planar slices!  [6] 

 

Again, we’ll need a bit more topology [6], [7], [19]. An n-dimensional manifold (n-manifold) M 

is a separable Hausdorff topological space such that for every point p, there is a neighborhood of p, 

which is homeomorphic to Euclidean n-space or to Euclidean n-halfspace.  Let U be an open set for 

some point p of M and let h be a homeomorphism from U into n-space, or equivalently, any open n-

ball, then the pair (U, h) is called a chart of dimension n. An atlas A on M is a collection of charts 

whose open sets cover M.  Suppose that (U, h) and  (V, k) are charts whose open sets have a nonempty 

intersection, say W, then h and k given rise to a homeomorphism on the n-space images of W , 

specifically, (kh -1): h(W) k(W), and which establishes functional relationships between the n-tuples 

in the respective images of  W. If all of the functions so established are differentiable (in class Ck or 

C) then M is said to be a differentiable (smooth) manifold.   

 

The collection of points (if any) with neighborhoods homeomorphic to the n-halfspace define 

the boundary of the manifold, M.  Then given two topological spaces X and Y, let f,g: X  Y  be 

continuous functions. Then f and g are homotopic iff there is a continuous mapping h: X  [0,1]  Y 

such that for all x in X,  h(x,0) = f(x) and h(x,1) = g(x).  The mapping h is a homotopy between f and g 

and the product space X  [0,1] is the homotopy cylinder. The existence of a homotopy between 

functions establishes that the functions can be continuously deformed into one another. 

 

The final piece that needs to be added to this story is that there needs to be a closer connection 

between the topological structure of the compositions that we’re proposing to manufacture and the 

critical points of smooth functions on the manifold (points at which all partial derivatives of the 

function are null). Critical points consist of maxima, minima, and saddle points.  First, assume that M 

is a nice 3-mainfold and that M, the boundary of M, is the disconnected union (possibly empty) of 

nice manifolds V and W.  Intuitively, think of V and W as planes which sandwich M between them. 

Then let f be a smooth mapping of M into a real closed interval [a,b] such that f -1(a) = V and  f -1(b) = 

W.  Second, generate slices through M, that is, if x in [a,b], then f -1(x) is such slice.  Not all such 

functions are useful. What we want to do is to restrict our attention to Morse functions whose critical 

points on M are non-degenerate (the Hessian matrix of partial second derivatives is non-singular at the 

point). On nice manifolds, these functions are plentiful.  [6], [19] 

 

The point of this exercise is to use f to scan M to build a CW-complex that has the same 

homotopy type as M. The cell complex is built up by a sequence of cell attachments, which is 

completely determined by the sequence of critical points.  As f slides between critical points, the 

topology of the manifold does not change, that is, no cells need to be attached. When f reaches a 

critical point, the topology of the manifold changes in way that requires the cell complex to be updated 
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by attaching a k-cell, where k is the index of the critical point (the number of negative eigenvalues of 

the Hessian matrix).  Since nice manifolds are compact, there are at most finitely many critical points, 

which implies that the sequence of critical points pi and the associated critical slices f -1(xi) completely 

encode the intrinsic topology of M.  

 

C.  Resemblances (2): Reeb Graphs. 

 

Once a Morse function f has been defined on M, a Reeb graph can be used to generate a 

skeleton of M  [6], [19].  A quotient space is formed on M  R  by identifying points, which belong to 

the same connected component of a slice. That is, if p and q points, then (p, f(p)) is identified with (q, 

f(q)) if f(p) = (f(q) and p and q are in the same connected component of f -1(f(q)).  The nodes of the 

Reeb graph will be the critical points of M and the edges will be given by the connected components 

between critical slices.  From the perspective of Morse theory, the most interesting slicings are those 

which (1) begin and end with minimal patches and which (2) mark the critical regions of the 3-

manifold under study, that is, regions in which either the number of components or their topological 

properties change.  An example of a change of the second kind is the first appearance of a new 

boundary patch (or void surrounded by boundary elements) in a patch whose earlier stages had none. 

Let slicings of this kind be called Morse slicings.  In general, 3-manifolds admit of many Morse 

slicings. 

 

 

 

 

                     
 

 

 

Fig. 1 :  Reeb graph of torus                                   Fig. 2 : Reeb graph of 2-torus 

 

 

 

In effect, what Reeb graphs really do is to create stratified structures, that is, a single 

component at the first (or top) level, which is called the root of the structure and which may be refined 

into a branching networks of components (the descendants) at the lower levels.  The condition which 

must be satisfied is that every descendant node must be linked to the parent node by a unique sequence 

of links.  Such organization structures are called rooted trees. Stratification also leaves the parent’s 

boundary intact, allowing it to become a container of the boundaries the children.   
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Boundaries drawn in this manner impose a nest structure on the product: at the highest level is 

the product itself, followed by its immediate descendants, and so on, until all of the boundaries have 

been accounted for. In the artifact-as-network model, stratification boundaries mark components, 

which can then be identified by symbolic “tags” or labels. This symbolic structure permits stratified 

product networks to form a framework with respect to which the design features of components are 

defined. Features of one component may be either synthesized from those of its descendant 

components in a defined stratification or inherited by virtue of its links to other (in some cases, all 

other) components.  

 

 Given a 3-manifold K and a Morse slicing (X1,...,Xm), it is possible to construct a  combinatorial 

variant of a Reeb graph. Under the assumption that the slicing has already been reduced by eliminating 

consecutive pairs of homeomorphic slices, then  

 

(1)  the vertices of the Reeb graph are components of slices; and  

(2)  the arrows of the Reeb graph link each component of slice Xi to all of the components of 

slice Xi+1 which descend from it.  

 

As in the smooth case, Reeb graphs concisely encode important topological properties of 3-manifolds: 

the vertices encode the components of slices, and the arrows encode the 3-manifolds (like cylindrical 

solids) which link a component of slice Xi with all of the components of slice Xi+1 from which descend 

from it. The 3-manifolds paired with Reeb graph arrows may have voids and tunnels. However, Reeb 

graphs are less successful in capturing properties affecting the geometric realizations of 3-manifolds.   

 

For example, there are many ways to embed an encoded Reeb graph into 3-space which are not 

geometrically equivalent (isotopic) to one another.  This has to do with the mathematics of knots in 3-

space. The multiplicity of these relational ties goes a long way in explaining the observed conceptual 

diversity among feature categories.   

 

Again, functional features are inherited from above by considering the constraints imposed by 

the component's children. Specifically, the functional capabilities and operational behavior of 

components may be modeled by transfer functions which, given time-sequences of inputs (and 

possibly information about the current state of the component), produce time-sequences of outputs 

(and possibly a new state) after a specified time lag. Mating features are both synthesized from below 

and inherited from above because of the requirements imposed by assembly and joining processes.  

Form features are those through which all of the (often) contending requirements of the part are finally 

reconciled and by which the connectivity-induced constraints are resolved. 

 

 

 

II. On the Architecture of AM: Two Recent Reports 
 

 

The “planar slice” AM architecture remains a central paradigm and undoubtedly will continue 

to develop as it has done now for a quarter of a century.  A very interesting example of current 

developments AM was described in a recent report in Science.  Zheng et al. [21] have reported a way 
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to build ultralight and ultrastiff mechanical materials by constructing a class of cellular materials, 

thereby mimicking natural foamlike structures, such as trabecular bone, plant parenchyma, and sponge, 

each of which combines low weight with superior mechanical properties. By reducing the degree of 

random porosity occurring in natural materials, they proposed to develop a class of materials that 

contains micro- and nanoscale building blocks arranged in an ordered hierarchy. The authors report 

that there were several proposals for the unit cells, including an octet-truss (a stretch-dominated 

structure) and a tetrakaidecahedron (a bend-dominated structure). The critical feature sizes of the unit 

cells ranged from  20m to 40nm. The fabrication of the microlattices was enabled by projection 

microstereolithography, a layer-by-layer AM process which they describe as able to build “arbitrary 

three dimensional structures.”  The authors report that the specific stiffness of the Ni-P stretch-

dominated metallic lattice stays very nearly constant, measured at 1.8  106 m2 /s2 and 2.1  106 m2 /s2 

at densities of 14 mg/cm3 and 40 mg/cm3, respectively. The article concludes with the claim that 

“fabricating ordered lattice structures at these lengths scales brings them into the regime in which it 

becomes possible to design microstuctured functional materials with superior bulk-scale properties.”  

 

This interesting report is one example among many of the vigor of the AM engineering 

community. In thinking about this more carefully, and especially by happening across the Biomedical 

Engineering Society (BMES), it struck me, as it has obviously struck many others, that a strongly 

supported collaboration between BMES (and similar groups) and the AM community would be 

mutually beneficial.  The 2014 paper by Kamm and Bashir  [16], entitled “Creating Living Cellular 

Machines,” begins with the following comments: “ One of the greatest opportunities lies in the 

potential to understand populations of multiple cell types and their interactions. … Yet, it can be 

argued that a tremendous gap exists between understanding processes at the level of a single cell and 

the behavior of large-scale tissues, i.e. how he local rules of interaction result in global functionalities 

and diverse prototypes. This is an issue involving complex systems of multiple interacting components 

that could fruitfully draw upon considerable advances in the engineering realms of forward design and 

manufacturing of large, complex systems.” [16, p445]  This paper suggests that a significant direction 

of the future growth for AM technology could be enhanced by investigating “soft” architectures, which 

are likely to dominate the biological approaches. In applications of this sort the analogue of the 

granular “planar slice” would be “soft” polymers, hydrogels, or other biomaterials. I presume that the 

introduction living cellular material would be accomplished by an injection process, and that this could 

result in local but significant deformation of the “soft” material. In this case, it also seems that 

mathematically useful description of the process is one which allows a deformable topological process, 

perhaps, a structural approach that jointly handles both the temporal and the metric properties of the 

space. This task is made no easier when such added features as cell motility and intercellular chemical 

diffusion between the introduced samples are taken into account.   

 

 

III. Hybrid Automata 
 

 

A. Toward a Definition of Hybrid Automata. 

 

In section IV below, I intend to sketch out the view that this interesting class of hybrid 

automata, whose defining characteristic is that they are designed to function in both discrete and also 

in continuous modes, are plausible candidates for the role of supervisory controllers in the context of 
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additive manufacturing.  I put this proposal forward tentatively in the hope that the technical issues 

which would need to be resolve to accomplish this goal are still under very active discussion.  [4], [13], 

[15]  

 

The general notion of hybrid automata (HAs)is that they are able to display both discrete (or  

jump) as well as continuous (or flow) dynamics.  The technical definition of hybrid automata begins by 

introducing directed graphs, usually abbreviated to digraphs.  More precisely, a digraph is a structure 

(V, E) in which V an unempty set of vertices, which are also called nodes, and E is a possibly empty 

set of edges. It is also understood that the vertex set and the edge set of a digraph are mutually disjoint. 

It will be assumed that the edges have a definite direction, that is, every edge points from one vertex to 

another.  If v and w are connected vertices, then edges between them may have one of two possible 

directions: v  w or v  w, and this means that every edge is oriented.  [2], [3], [5], [9] 

 

The definition of digraphs given above admits a very large class of structures in terms of which 

the inter-component relational ties can be explicitly accounted for. For example, digraphs may have 

many (even infinitely many) distinct parallel and antiparallel edges between the same two vertices. 

The first step is straightforward: the vertices corresponding to assembled components are symbolically 

“tagged” and the arrows consist of both organization links that connect parents with their children and 

also a complex web of links between components.  

  

 To properly understand the implications of this 2-way hybrid structure, note that each vertex 

can be interpreted both as a place in which one or more actions are initiated by the node's immediate 

predecessors (if any).  The interweaving of product and process data in a single structure is very useful.  

In effect, it supplies a single unified support system for many of the operational control methods.  For 

example, if the digraph is interpreted in terms of the processes to be performed, then it contains the 

information needed to identify and initiate the actions that will be needed to produce the required 

effects.  Hybrid automata also require that there may be a multiplicity of edges between any two 

vertices, that is, the digraphs which define that basic groundwork of hybrid automata are 

multidigraphs. The only edge configurations which are explicitly disallowed are loops, that is, edges 

which are directed from one vertex to itself.  We now have enough basic information to proceed to a 

suitable definition of the functional components of formal model of computation.  

 

 

(HA1) Control Digraph: a finite directed multidigraph (V, E) whose vertices are called control 

modes, or locations, and whose edges are called control switches.  

 

 

(HA2) Variables:  

(i) a finite set X = {x1 , x2 , … ,  xn } of real-valued variables, where the index n is the 

dimension of the hybrid automata; 

(ii) a finite set  DX = {Dx1 , Dx2 , … ,  Dxn }, which are first derivatives of the variables (with 

respect to time) during continuous change; and  

(iii) a finite set +X = { +x1 , +x2 , … , +xn } of “+” marked variables which represent values at the 

conclusion of discrete change.  
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(HA3) Initial, Invariant, and Flow Conditions: Three vertex labeling functions init, inv, and 

flow that assign to each control mode (i.e., to each vertex v in the control digraph) three 

predicates: 

(i) init(v) is a predicate whose free variables are in X which assigns initial conditions to each 

control mode; 

(ii) inv(v) is a predicate whose free variables are in X which assigns invariant conditions to 

each control mode; and  

(iii) flow(v) is a predicate whose free variables are in X  DX which assigns invariant 

conditions to each control mode. 

 

The rule (HA3) explicitly introduces the logical notion “predicate” which is properly understood as an 

expression which is applied to one or more arguments, i.e., either variables that may be assigned 

different values from one time to another or constants whose values are fixed in advance.  Unlike 

functions, the values returned by the application of predicates are limited to a specific range of truth-

values, usually limited to “true” or “false” but which can be extended to include a much larger 

collection of allowable values.   

 

(HA4) Events: a finite set Σ of events and an edge labeling function event: EΣ that assigns a 

suitable control switch (i.e., to edges in the control digraph) an event.  

 

(HA5) Jump Conditions: a edge-labeling function jump that assigns to each control switch e in 

E a predicate jump(e) whose free variables are in X  +X.  

B. Putting Hybrid Automata to Work. 

 

Having identified the components, the next step is to describe execution of hybrid automata. 

The first, and most obvious point, is that there are two operational modalities: a continuous modality in 

which the process is a flow, which may be pictured as a kind of evolution, and a modality in which the 

change is a discrete jump.  [2], [3], [9], [11], [14], [15] 

 

The idea is that both modalities can be properly handled by accepting variant of the familiar 

class of labeled transition system as an operational paradigm.  In this case, we first identify a state 

space Q, which may be infinite, and a subset Q0 of all initial states, then identify a (possibly infinite) 

set Rel of binary relations rj   QQ.  Each binary relation is a set of ordered pairs of states, so for any 

rj we may distinguish dom(rj), the set of all first members of the relation, and rng(rj), the set of all 

second members of the relation.  

 

The operation of a labeled transition system is not straightforward:  (i) pick any initial state in 

Q0,  (ii) given that state, say q0, select from Rel any relation rj  such that q0 is a element of dom(rj) and 

then add to the sequence of states the corresponding element of  rng(rj); (iii) continue (perhaps to 

infinity) until no further additions are possible. This procedure is only roughly described in this case 

and a bunch of qualifications and distinctions would need to be made.  

 

 The useful observation is that there are two sequences involved: the sequence of states from Q 

and also the sequence of relations from Rel. Having sketched labeled transition systems in general, the 

next task is to focus more narrowly on hybrid systems and in particular on timed transition systems for  

n-dimensional hybrid automata of the form (Q, Q0, A, Rel):  
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(HA6)  The state space of an n-dimensional hybrid automaton is defined as Q, Q0    V  Rn,       

where Rn is an n-dimensional vector space.  Thus, the elements of Q and Q0 are ordered pairs 

of the form (v, x), where v is a control mode (i.e., a vertex) and x is an n-dimensional vector.   

 

(HA7) The edge label set of an n-dimensional hybrid automaton is defined as A   Σ  R0, 

that is, the union of all of the edge labels defined in (HS4) and the set of all non-negative real 

numbers. (Recall that the set components of A are taken to be mutually disjoint.) 
 

(HA8) (i) The ordered pair (v, x) is an element of  Q iff  the closed predicate init(v)[X = x] is 

true; and (ii) the ordered pair (v, x) is an element of  Q0 iff both init(v)[X = x] and  inv(v)[X = 

x] are true. 

 

(HA9) For each event  in Σ and for each rk in Rel,  rk((v, x), (v’, x’)) iff there is a control 

switch e in E such that  

(i) the edge e is from v to v’,  

(ii) the closed predicate jump(e)[ X, +X  = x, x’] is true; and  

(iii) event(e) = . 

 

(HA10) init and inv Rules: (i) The ordered pair (v, x) is an element of  Q iff  the closed 

predicate init(v)[X = x] is true; and (ii) the ordered pair (v, x) is an element of  Q0 iff both 

init(v)[X = x] and  inv(v)[X = x] are true. 

 

(HA11) jump (Discrete) Transitions:  

For each event  in Σ and for each rk in Rel,  rk((v, x), (v’, x’)) iff there is a control switch e in 

E such that  

(i) the edge e is from v to v’,  

(ii) the closed predicate jump(e)[ X, +X  = x, x’] is true; and  

(iii) event(e) = .  

 

(HA12) flow (Continuous) Transitions:  

For each nonnegative real   and for each r  in Rel ,  r((v, x), (v’, x’)) iff v  =  v’ and there is a 

differentiable function f : [0, ]  Rn , with the first derivative Df : (0, )  Rn ,  

such that: 

(i) f(0) =  x  and  f() =  x’ ;  
(ii) for all reals  in (0, ), both init(v)[X = f()] and flow(v)[X, DX = f(), Df()]  

 are true; and 

(iii) the function f  is called a witness for the transition r((v, x), (v’, x’)). 
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IV. A Model for Supervisory Hybrid Automata 

 
 

 

The discussion in the previous section has sketched in outline the basic operational structure of 

hybrid automata.  The main effort in this section is going to be devoted to a consideration of the 

possible application of hybrid automata theory to the supervisory control of continuous systems.  This 

requires reasonably well-defined linkage between a continuous plant on one end and a discrete system 

on the other. One obvious problem is that the ends of this linkage do not speak the same language!  

That is, the behavior of the plant is governed by a well-defined family of ordinary differential 

equations, but the computational end of this configuration, usually taken to be a discrete event system 

(DES) which is in fact an event-driven finite-state automaton. [18] 

 

Therefore, in order to communicate at all, there needs to be a bidirectional interface which 

moves (1) the analog-to-digital signals (i.e., the continuous-time output or plant-state) from the plant to 

the DES, and also (2) the digital-to-analog signals (i.e., the discrete-time output, or DES-state) from 

the DES to the plant.  Having this distinction available is useful, but there are still fundamental 

differences between the continuous realm of plant-states on the one hand and DES-states on the other.  

  

Let’s first approach this from the perspective of the plant, and specifically the notion of a plant-

event.  As explained in [18], “a plant event is simply and occurrence in the plant…  In the case of 

hybrid control, a plant event is defined by specifying a hypersurface that separates the plant’s state 

space into two disjoint sets. The plant event occurs whenever the plant state trajectory crosses this 

hypersurface.”   

 

Though not explicitly introduced here, the inherent structure of plant space is an n-dimensional 

vector space through which the plant-event moves and the overarching mathematical framework is that 

of dynamical system theory.  The authors of [18] also make it quite clear that “crossing the 

hypersurface” is not a simple matter to define in practice: (1) the trajectory could have a very brief 

excursion across the hypersurface and could even repeatedly re-cross it, and (2) the normal practice 

would require an unambiguously clear crossing event.  The authors propose that in order for a crossing 

to be recognized, a set of smooth functional should be used to disambiguate the situation ([18], 1029).   

If all has gone to plan, then the bidirectional interface uses the generator subsystem to convert the 

continuous-time plant-state to an asynchronous symbolic input to the DES control system. 

   

From the perspective of the DES, the operation of the bidirectional interface accepts symbolic 

inputs from the actuator subsystem and then produces appropriate symbolic outputs for the generator.  

It should be noted that behavior of the DES system is a matter of a explicit computational conversion 

from input symbolic-text (for the actuator) to output symbolic-text (for the generator).  

  

At this point, the notion of a system controller, perhaps better called the supervisor, can be 

straightforwardly introduced. Here is the main line taken: there is in the world a physical plant whose 

operational style depends upon life in a bounded continuum, and also in the world there is a supervisor 

whose operational style depends upon life in symbolic realm of at most denumerably infinite symbolic 

structures, and finally there is in the world a supervisor whose operational style is to shuttle symbolic 

expressions from one part of itself (the actuator part) to another part of itself (the generator part) 
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subject to the condition that this shuttling shall always and everywhere carry finite and only finite 

messages.   

 
 

 

V. Discussion 
 

 

 

First, the easiest generalization about AM manufacturing is that, if and when anything gets 

made, it will almost inevitably get made in a closed box.  And the second easiest generalization about 

AM manufacturing is that any one closed box will have virtually no contact with whatever happens in 

any other closed box.  

 

I do accept the point that the discussion of supervisory HAs, particularly in Section III.C, was a 

bit of a stretch, but in a larger sense what I am recommending is that AM technology be fully 

incorporated into the industrial engineering environment.   

 

The commercial viability of AM and the ability of this technology to add value to such product 

classes as automobiles, household appliances and industrial machine tools is now widely accepted. 

Functional requirements and detailed specifications need to be developed. Validation procedures will 

be needed to assure that the functional requirements are satisfied by interlinked networks of HAs.  

 

AM technology can offer more cost-effective and higher-quality solutions compared to 

traditional devices with similar functionality, or they offer possibilities that cannot be realized at all 

using traditional systems. Compared to the traditional devices, AM can be produced from small 

amounts of raw materials, use little energy and generate small volumes of waste products. But it must 

also be clearly understood that there are substantial technical and engineering barriers to be overcome. 

 

  Second, this paper, more perhaps than earlier ones, has brought home to me the need to take 

great care in the construction of important mathematical notions.  I am now focusing on Non-Standard 

Analysis (NSA) – and I believe that this notion will be an increasingly powerful tool in the engineering 

tool box.  This work was developed by several authors including Skolem and also Laugwitz among 

others, but the main systematic development of NSA was achieved by Robinson, esp. in his book Non-

Standard Analysis, which was published in 1966.  Here’s a very brief summary of this mathematical 

idea (taken from Alberverio et al.[1]): the main result of NSA is that “the geometric line or continuum 

can support a point set richer than the standard reals. This … gives us a framework for a geometric 

analysis of physical phenomena on many scales …”  

  

          This book was well-received, especially by those mathematicians who had been acquainted with 

Model Theory.  Those less familiar with this logical material were put off by such notions as 

ultrafilters, ultraproducts, and other seemingly alien notions. In the early days it was commonly 

believed that anything that could be done within NSA could also be done in analysis without using 

NSA techniques.  However, it soon became obvious that this idea (or hope) was not true.  Today NSA 

is showing signs of robust health, especially in the area of applied analysis and related areas of 

mathematics which have direct and immediate bearing on the engineering community.  
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        There are other areas of mathematics which should also be mentioned.  One very interesting 

example is the work of Stefan Hilger, who developed the notion of measure chains (also called  time 

scales) in order to be able to unify the study of differential equations and difference equations into a 

single theory.   

 

         Finally, I am fortunate to have been given the opportunity in my present role at NIST to be able 

to explore these intriguing areas more thoroughly and more deeply than would otherwise have been 

possible. 
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