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Abstract 
 

A Plethora of user generated 3D models are available online. With rapid proliferation and 
diffusion of additive manufacturing machines in households, it has now become possible to 
download these virtual objects and print them out as physical parts. Although printing small size 
parts (within print volume of low cost 3D printers) is relatively an easy task, additive fabrication 
of large size parts (part volumes greater than print volume of low cost 3D printer) remains a 
challenging task for novice 3D printer users. In this paper the authors present a computational 
pipeline to 3D print large size 3D models that can be easily downloaded from online websites. 
The pipeline essentially enables decomposition of large objects into smaller parts that can be 3D 
printed and then assembled. To assemble the printed parts a three-pronged approach is outlined. 
First, an interface based on graph grammar rules has been developed to generate assembly 
instructions. Second, an interactive segmentation of the desired 3D model is carried out using a 
Segmentation Guide Interface (SGI). SGI has been developed to assist a user to carry out 
component to sub-component segmentation. Third, we have also developed an interface that aids 
a user in printing small size pieces that can be printed in print volume of a commercial 3D printer 
(such as Makerbot®) and then assembled to create components that are too large to be printed in 
print volumes of low cost 3D printers. We demonstrate the efficacy of developed pipeline by 
creating assembly instructions for multiple large sized 3D table models available online. 

 
Introduction 

 
The rapid development in 3D printing field has resulted in the beginning of a new era in 

personal fabrication. 3D printers are easy to use and are capable of printing almost any 3D CAD 
model. The widespread availability of 3D CAD models online has further stimulated personal 
fabrication. For example, online repositories have far more varieties of virtual furniture models 
than real ones in your nearby furniture store.  

 
Our goal is to enable individual users to 3D print their favorite 3D models by leveraging 

online shape repositories. In personal fabrication domain 3D printing until now has mostly been 
used for printing objects for trivial use or showpieces. In order to achieve large scale acceptance 
3D printers should break free from their stereotypical personal fabrication use and print objects 
that have more practical utility. It has been observed that the maximum size of an object that a 
domestically affordable 3D printer can fabricate in one pass (the printing volume) is limited by 
practical considerations. This problem has curbed the large scale adoption of low cost 3D 
printers. Larger objects must therefore be printed as multiple separate parts and assembled.  
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In this paper, we outline a computational pipeline to 3D print large size 3D models 
available online. Using the computational pipeline a user can semantically segment the 3D model 
into its component parts. Once the segmentation is completed the user is provided guidance in 
slicing the individual components into primitive shapes (sub components) which can be printed 
in the limited build volume of commercially available 3D printers. The pipeline provides basic 
information to a user such as the number of sub-components required for each component, the 
shape of each sub-component and how to assemble the sub-components once they are printed. 
Additionally, we have developed a graph grammar based technique to generate assembly 
instructions. The generated assembly instruction joins components using off-the-shelf connectors 
found in furniture assembly domain. 

 
Our key contributions are:  
 

(1) We outline a computational pipeline that guides a user to 3D print large parts in 
commercially available 3D printers by segmenting them into smaller and printable sizes. 
 

(2)  We have developed a set of new graph grammar rules that can be used for generating 
assembly instructions to assemble furniture like tables. 
 
We demonstrate the validity of our computational pipeline by generating assembly 

instruction of 3D models of IKEA-style tables downloaded from Google 3DWarehouse, 
Princeton Shape Benchmark, and Polantis. All our test models have arbitrary topology and 
structure. None of the 3D table models have the geometry or connector information needed for 
fabricating them. 

 
Related Work 

	  
In the present section, three key areas related to the presented research namely (1) 3D printing 
(2) Graph Grammar, and (3) Mesh segmentation are briefly reviewed.  
 
3D Printing 

With the advancement of 3D printing we are witnessing the first stages of manufacturing 
democratization. It is believed that individual users will play a role in designing and creating 
their own products in the future [Gross 2007, Landay 2009]. Users can readily build their own 
customized products like plush toys [Mori, et.al 2007], chairs [Luo, et.al 2012], furniture [Lau, et 
al. 2011], garments [Umetani et al. 2011], Burr puzzles [Xin et al. 2011], and planar sections 
[McCrae et al. 2011, Hildebrand et al. 2012]. The current trend portends to revolutionize design 
and fabrication and could possibly give rise to a new class of creators and products [Mota, 2011]. 
We aim to propel this trend further. While the professional and higher end 3D machines are 
capable of producing large complex objects, the personal and less costly 3D printers are 
constrained by their print size and cost. The limited print volume of affordable 3D printers is the 
main cause of their limited usage. Efforts are been made to overcome these barriers. 

 
Luo et.al, [2012] has developed a new method called “chopper”. Chopper can be used to 

chop a given large objects into smaller pieces. These smaller pieces can be printed in 3D printers 
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and assembled to create a large object. This method automatically generates male and female 
connectors on the cut surfaces. Once the object is printed, the user can assemble the parts without 
any assembly instructions. This method focuses on printing showpieces and the connectors 
generated do not provide much structural rigidity to the printed parts. In the computational 
pipeline outlined in this paper, a set of assembly instructions are generated to guide the user in 
assembling the 3D printed parts. The connectors used to assemble the parts are off-the-shelf 
connectors and the placement of these connectors provides structural rigidity to the final 
assembled part. 

 Lau et.al, [2011] developed a graph grammar technique to create assembly instructions 
for virtual furniture models. In their work, the end user has the ability to use the assembly 
instructions to build furniture models with standard tools and wooden materials. In the presented 
work, we guide the user to segment the 3D model into small parts. These segmented parts can be 
3D printed in the limited build volume of low cost 3D printers. We then use graph grammar rules 
to generate assembly instructions for the printed models. The user can have little to no 
experience of working with tools. 

 
Graph Grammar  

Graph grammars have found applications in various fields such as concurrent systems, 
engineering, programming languages, and biology. It has been used to develop methods for 
understanding and modelling new architecture [Stiny 1980], cities [Parish, et.al 2001], buildings 
[Muller, et.al 2006] and details of facades [Wonka, et.al 2003]. Coffee maker grammar was one 
of first examples of using grammars for product design [Agarwal, et.al 1998]. Their grammar 
described a language that generates a large class of coffee makers.  Shea et.al,  [1997] presented  
a  parametric  shape  grammar  for  the  design  of  truss structures that uses recursive annealing 
techniques for topology optimization. Other engineering applications include lathe grammar 
[Brown, et.al 1997], grammar for machine design [Schmidt, et.al 1995], grammars for 
mechanical clocks [Starling, et.al 2003] and gear trains in [Starling, et.al 2005]. One of the 
interesting implementations of graph grammars is in the area of function-based design 
[Sridharan, et.al 2004]. In more recent applications graph grammar has been used to develop new 
design concepts to represent different topologies, configurations or shapes within a single search 
space [Rai, et.al 2011]. Lau et.al, [2011] have used graph grammar techniques to generate 
assembly instructions for shelves, cabinets, and tables to build with standard wooden materials. 
We have developed graph grammar rules for generating assembly instructions for printing large 
size 3D printed objects. The novelty of our work is in the fact that a novice user can use our 
pipeline to easily assemble the 3D printed parts. 

Mesh Segmentation  
 

In our work we segment the 3d model manually into its component parts. This is enabled 
through mesh segmentation techniques. Mesh segmentation techniques can be based on 
curvature and geodesic distances [Mangan, et.al 1999], dihedral angles [Shlafman, et.al 2002], 
Planarity and normal direction [Coheh-Stiner, et.al 2004, Attene, et al 2006], and Slippage 
[Gelfand, et.al 2004]. These attributes are sensitive to local surface features and to pose changes. 
Therefore, these techniques are not suitable for segmenting the same object in different poses. 
Topology-based approaches like spectral analysis [Liu, et.al 2004], average geodesic distance 
(AGD) [Hilaga, et.al 2001] and Reeb-graphs [Attene, et.al 2003] can be used for mesh 
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segmentation of object in different poses. Nevertheless, they are vulnerable to topological and 
connectivity changes and do not distinguish well between shape differences. 

 
In our work we use Shape Diameter Function (SDF). The Shape-Diameter Function 

(SDF) is a scalar function defined on the mesh surface. It expresses a measure of the diameter of 
the object's volume in the neighborhood of each point on the surface. Using the SDF one can 
easily segment 3D models and perform part-retrieval [Shapira, et.al 2008]. 
 

Basic Components of Computational Pipeline  

 

Figure 1: Flowchart showing different steps of computational pipeline for printing and assembling parts bigger 
than the print volume of 3D printers. 

(Figure 1) illustrates the overall framework of the developed pipeline. The pipeline can 
accept 3D CAD models as input in any one of the following two ways: (1) A 3D CAD model 
created using CAD software like SolidWorks, CATIA, or PRO-E, or (2) A 3D CAD model 
obtained from online repositories such as Google Warehouse, Princeton Shape Benchmark, and 
Polantis.  

The Semantic Segmentation Interface (SSI) is used to segment the inputted 3D CAD 
models into component parts. Each segmented part is saved individually. The SSI is based on 
SDF [Shapira, et.al 2008]. In order to carry out Semantic Segmentation using SDF vertex and 
face information is required. As a result it has to be ensured that the CAD model is in .obj 
format. If the input 3D model is not in .obj format then MeshLab software can be used to convert 
the 3D CAD file into the required (.obj) format.  
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GraphSynth (a graph grammar software) is used to create assembly instructions to 
assemble the segmented parts. For assembly instruction generation we have developed twenty-
four rule graph grammar that defines different ways to assemble tables (Table 1). By simply 
executing different combinations of grammar rules, assembly instructions for a variety of tables 
can be generated. A user skilled in wood working can use the instructions generated by 
GraphSynth to make the object using wood and simple fasteners. 

In our proposed approach it has been assumed that a user has little or no experience with 
wood working tools. As a result our computational pipeline enables a not-so-skilled user to 3D 
print the parts. 3D printers require the input files to be in .stl format as a result the segmented 
components that are in .obj format have to be converted to .stl format. .obj to .stl format 
conversion can also be carried out using MeshLab. In case segmented 3D components do not fit 
in the build volume of the 3D printer they are further segmented. We further segment the 
components into sub-components using slicing software called netfabb Basic.  

The printed sub-components are assembled to create components. The components are 
then assembled to create the overall object by using the assembly instructions generated by graph 
grammar interface. The tool components and the associated methods are described in detail in 
the following sub-sections. 

Semantic Segmentation Interface (SSI) 

There is lack of assembly information in the 3D models available online and most of the 
3D models are stored as a single part. The Semantic Segmentation Interface (SSI) is used to 
semantically segment 3D CAD models into component parts (Figure 2a). SSI is based on a 
volume-based shape-function called the shape-diameter function (SDF). The SDF is a scalar 
function defined on the mesh surface. In essence it represents a measure of the diameter of the 
object’s volume in the neighborhood of each point on the surface [Shapira et al 2008]. In order to 
carry out Semantic Segmentation using SDF, vertex and face information is required. As a result 
it has to be ensured that the input 3D CAD model is in .obj format. If the inputted 3D CAD 
model is not in .obj format then MeshLab can be used to convert it into .obj format. User through 
interaction with SSI segments the 3D CAD model by drawing a box around the part (Figure 2b). 
The user can also select different colors to color segmented parts in different colors.  This helps 
in differentiating different segmented parts. Each part can then be exported separately. 	  

 
 
 
 

(a) (c) (b) 

Figure 2: (a) Semantic Segmentation Interface, (b) Semantic segmentation carried out by drawing a boundary 
around the part to be segmented, (c) Segmented table top, (d) The segmented table into its constituent parts 

(d) 
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Graph Grammar for generating assembly instructions 
 
 Graph grammars are comprised of rules for manipulating nodes and arcs within a graph. 
In our computational pipeline the graph grammar rules specify a formal language for generating 
assembly instructions from an initial user defined graph (seed graph). The development of these 
rules encapsulates a set of valid operations that can be used to assemble different parts of a table. 
Through the application of each grammar rule the current state of graph is transformed into a 
new state, incrementally evolving towards a desired solution.  
 
A typical graph grammar rule is comprised of a left-hand side (LHS) and a right-hand side 
(RHS). The LHS contains the conditions, upon which the applicability of a rule is determined. 
Accordingly, the LHS describes the state of the graph for a particular rule to be applicable. The 
RHS, on the other hand, contains the resulting graph transformation. It describes the new state of 
the graph after the application of the rule. We have developed a twenty four-rule graph grammar 
that defines ways to assemble different parts of a table (Table 1). The set of twenty four-graph 
grammar rules were created by studying actual assembly instructions used for assembling 
different types of tables.   

Rule	   LHS	   RHS	   Description	  

Rule 1 TableTop→TopSupport TableTop→ C10 → TopSupport 
	  

	  

Rule 2 TableTop→Legs TableTop→ C1 → Legs 
	  

Rule 3 TopSupport→TopSupport TopSupport → C11 → TopSupport 

 

Rule 4 ShelfSupport → Shelf ShelfSupport →C13 →Shelf 
 

Rule 5 ShelfSupport → Legs ShelfSupport → C3_3 → Legs 	  

Rule 6 Legs → Shelf Legs → C2 →Shelf 
	  

C10	  

C1	  

C11	  

C3_3	  

C13	  

C13	  
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Rule 7 TableTop →VerticalFront TableTop →C5 →VerticalFront 
	  

Rule 8 VerticalFront →Bottom VerticalFront →C4 →Bottom 
	  

Rule 9 Bottom →Wheel Bottom →C6 →Wheel 
	  

Rule10 SideSupport_round 
→Shelf_Round 

SideSupport_round →C8 
→Shelf_Round 

	  

Rule 11 TableTop →VerticalSide TableTop → C3 →VerticalSide 
	  

Rule 12 Legs →M Legs → C1 →M 	  

Rule 13 M → M M →C1 → M 

	  

Rule 14 TableTop_round → 
SideSupport_round 

TableTop_round →C3_2  
→SideSupport_round 

	  

Rule 15 TableTop 
→VerticalSide_Horizontal 

TableTop →C3_1 → 
VerticalSide_Horizontal 

	  

Rule 16 TopSupport→Legs TopSupport → C12→ Legs 	  

Rule 17 Drawer 
Side→C4→Back→C4→ 

Side→C1→Front→C1→Side 
	  

Rule 18 VerticalSide → Bottom VerticalSide →C4 →Bottom 
	  

C5	  

C4	  

C6	  

C8	  

C3	  

C1	  

C1	  

C3_2	  

C3_1	  

C12	  

C4	  

C1,	  C4	  
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Table 1: Rules to generate assembly instructions for tables	  

 
 

 

 

 

 

 

By simply executing different combinations of graph grammar rules, assembly instructions for 
variety of tables can be generated. The generation of assembly instruction starts with the user 
defining the initial contact points of the table. This is a simple step and the user inputs contact 
point information in the form of a seed graph (Figure 3). Once the seed graph is defined, in the 
following steps different graph grammar rules are used to automatically recognize different 

Rule 19 TableTop →VerticalPartition TableTop →C3_1 → 
VerticalPartition 

	  

Rule 20 TableTop 
→HorizontalPartition 

TableTop→ 
C3_1→HorizontalPartition 

	  

Rule 21 VerticalSide_Horizontal→Sh
elf 

VerticalSide_Horizontal → C13 

 →Shelf 
	  

Rule 22 

Bottom 
→VerticalSide_Horizontal,V
erticalPartition, 
HorizontalPartition,VerticalS
ide_Horizontal 

Bottom 
→C3_1→VerticalSide_Horizontal,
VerticalPartition, 
HorizontalPartition, 
VerticalSide_Horizontal 

	  

Rule 23 VerticalSide → Shelf VerticalSide →C7 →Shelf 
	  

Rule 24 SideSupport_round →Legs SideSupport_round →C12 →Legs 

	  	  	  

Figure 3: User defined initial contact point of the segmented table 

C3_1	  

C3_1	  

C13	  

C3_1	  

C7	  

C12	  
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connections and appropriate connectors. This continues until all the connectors for the whole 
assembly are identified. 

	   A complete sequence of application of different assembly instruction graph grammar 
rules to create assembly instructions for a table shown in (Figure 3) has been illustrated in 
(Figure 4). In order to generate assembly instructions graph grammar approach starts with a seed 
graph which is defined by the user. This results in the seed graph to become LHS in step 1. After 
this stage the process of recognize, choose, and apply is invoked in an iterative manner resulting 
in a new LHS and RHS at each step. The assembly instruction for the table example shown here 
can be derived by application of rule sequence {1, 1, 1, 1, 6, 6, 6, 6}. Since tables have repetitive 
parts like legs we notice that the same rules have been applied more than once. The graph 
grammar interface can generate assembly instructions for a wide range of tables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applicable rule 1, 6 

Apply rule 1 four times 

Applicable Rule 6 

Apply rule 6 four 
times 

TERMINATE 

C1	  

Legs	  

Table	  Top	  

C2	  

Shelf	  

Figure 4: Application of rule sequence {1, 1, 1, 1, 6, 6, 6, 6} creates the assembly instructions for the 
example table from initial seed graph 
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Segmentation Guide Interface (SGI) 

A single component can be too big to 3D print at one go.  The idea behind the 
development of SGI is to guide the user to carry out further segmentation of the segmented 
components. SGI enables the user to compare the build volume of the 3D printer to the volume 
of the component. If the print size of the component is smaller than the print volume of 3D 
printer then the part is ready to be printed. Otherwise SGI provides information regarding the 
shape and number of sub-components that the component should be segmented into. SSI also 
provides the user with visual information regarding type of connectors and how to use those 
connectors to join the sub-components. 

 
The Segmentation Guide Interface has been developed in Visual C#. Visual Studio 

supports Visual C# with a full-featured code editor, compiler, project templates, designers, code 
wizards, a powerful and easy-to-use debugger, and other tools. The .NET Framework class 
library provides access to many operating system services and other useful, well-designed 
classes that speed up the development cycle significantly.  
 
A sequence illustrating the interaction with SGI is presented below:  
 
1) Prompt the user to enter the build 

dimensions of the printer.  
Maximum printable area and 
volume is calculated (Figure 5a). 

2) The user is then prompted to 
enter the shape of the table top. 
A choice of three shapes is 
displayed (Figure 5b). 

3) Once the user selects the shape 
of the table top. The user is 
prompted to enter the dimensions 
of the table top. Using this 
information area and the volume 
of the table top are calculated 
(Figure 5c). 

4) A list of possible connector types 
is displayed (Figure 5d) to join 
the sub-components. A (.gif file) 
appears to help the user visualize 
the selected connector. 

5) The user then clicks on the 
segmentation button. The 
interface responds by displaying 
the number and shape of each 
sub-component that the user 
needs to generate for creating the 
overall component (Figure 5e). 

6) Similar steps are followed to segment the Legs of the table. 

 (a) 

(b) 

(c) 

(d) 

(e) 

Figure 5: Segmentation Guide Interface working for 
segmenting the Table top 
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The suggestions provided by the 
segmentation guide interface are passed on to 
netfabb Basic software. Netfabb Basic is very 
simple to use software and is often used to 
segment parts that are bigger than the build 
volume of 3D printers. netfabb Basic is a freeware 
for handling .stl files. The freeware includes 
advanced model browsing, STL fixing, 
measurement and quality management. The 
freeware also includes a basic slicing module and 
assists the user in data preparation and 3D Printing. 

 
The .stl files of the components are imported into netfabb Basic and cut option is used to 

slice portions of the model (Figure 6). The number of pieces and the shape to be segmented is 
based on feedback from SGI. Each single piece is exported separately. User can often save time 
if the parts repeat themselves; in such cases only one sub-component is exported. These parts are 
then separately exported to the 3D printer’s software to begin printing. 

 
Results 

 The outlined computational pipeline is tested on a set of five table CAD models. The 
CAD models for these tables were downloaded from Google 3D Warehouse, Polantis, and 
Princeton Shape Benchmark websites. An illustrative example shows how the computational 
pipeline could be used to 3D print and assemble a simple table (Figure 7).	  The run time of the 
entire proposed approach depends on the user familiarity with the different software involved. 
The software involved is very easy to learn and use. 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

 

Figure 6: Semantically segmented components 
being segmented into sub-components using 

netfabb Basic. 

(d) 

(c) (b) (a) 

(f) (e) 

(g) 
Figure 7: (a) Downloaded model is segmented into its constituent components using SSI, (b) SGI is used to 

determine the shape and number of sub-components to be created, (c) GraphSynth is used to generate assembly 
instructions, (d) Segmented sub-components are 3D printed, (e) 3D printed sub-components are assembled, (f) The 

final table is assembled using assembly instructions generated by GraphSynth. and (g) the final assembled table 

1396



Assembly instructions generated by the piepline for four other tables is shown in Figure 8. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)	  

(c)	  

(a)	  

(b)	  
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Conclusion 

 We have developed a computational pipeline to enable a user to 3D print parts that are 
larger than the print volume of 3D printers. To demonstrate the utility of the developed pipeline, 
we 3D print segmented parts of five different tables using MakerBot®	   Replicator™ 2X and 
assemble these parts using the assembly instructions generated by the computational pipeline. 
Some printed parts had warping problems resulting in significant distortion of the printed parts. 
Sometimes post processing of parts like enlarging hole size and hammering certain joints is 
required. The finish quality of the parts is dependent on the size and alignment of the print. For 
example, the segmented legs when printed in upright position gave better fit compared to 

Figure 8: Assembly Instruction for IKEA style furniture 

(c)	  

(d)	  
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horizontal prints. We believe that with further advancement in 3D printing processes these issues 
can be easily addressed. 

To make our framework more general, one can extend the presented pipeline to work 
with any arbitrary 3D model. This could be achieved by extending the initial set of 24 rules 
presented in this paper. The graph grammar rules defined in the pipeline have been derived 
manually. Automatic graph grammar rule generation for an arbitrary 3D model is an avenue for 
future research. The interfaces used in our approach require user interaction to carry out manual 
segmentation. It would be beneficial to enable automatic segmentation of the components and 
the sub-components. 
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