
A GRAPH GRAMMAR BASED APPROACH TO 3D PRINT AND ASSEMBLE
FURNITURE

Sulabh Gupta and Rahul Rai

Design Analytics Research and Technology (DART) Lab,
Department of Mechanical and Aerospace Engineering,

University at Buffalo-SUNY, Buffalo-NY, 14260

Abstract

A Plethora of user generated 3D models are available online. With rapid proliferation and
diffusion of additive manufacturing machines in households, it has now become possible to
download these virtual objects and print them out as physical parts. Although printing small size
parts (within print volume of low cost 3D printers) is relatively an easy task, additive fabrication
of large size parts (part volumes greater than print volume of low cost 3D printer) remains a
challenging task for novice 3D printer users. In this paper the authors present a computational
pipeline to 3D print large size 3D models that can be easily downloaded from online websites.
The pipeline essentially enables decomposition of large objects into smaller parts that can be 3D
printed and then assembled. To assemble the printed parts a three-pronged approach is outlined.
First, an interface based on graph grammar rules has been developed to generate assembly
instructions. Second, an interactive segmentation of the desired 3D model is carried out using a
Segmentation Guide Interface (SGI). SGI has been developed to assist a user to carry out
component to sub-component segmentation. Third, we have also developed an interface that aids
a user in printing small size pieces that can be printed in print volume of a commercial 3D printer
(such as Makerbot®) and then assembled to create components that are too large to be printed in
print volumes of low cost 3D printers. We demonstrate the efficacy of developed pipeline by
creating assembly instructions for multiple large sized 3D table models available online.

Introduction

The rapid development in 3D printing field has resulted in the beginning of a new era in

personal fabrication. 3D printers are easy to use and are capable of printing almost any 3D CAD
model. The widespread availability of 3D CAD models online has further stimulated personal
fabrication. For example, online repositories have far more varieties of virtual furniture models
than real ones in your nearby furniture store.

Our goal is to enable individual users to 3D print their favorite 3D models by leveraging

online shape repositories. In personal fabrication domain 3D printing until now has mostly been
used for printing objects for trivial use or showpieces. In order to achieve large scale acceptance
3D printers should break free from their stereotypical personal fabrication use and print objects
that have more practical utility. It has been observed that the maximum size of an object that a
domestically affordable 3D printer can fabricate in one pass (the printing volume) is limited by
practical considerations. This problem has curbed the large scale adoption of low cost 3D
printers. Larger objects must therefore be printed as multiple separate parts and assembled.

1386

In this paper, we outline a computational pipeline to 3D print large size 3D models
available online. Using the computational pipeline a user can semantically segment the 3D model
into its component parts. Once the segmentation is completed the user is provided guidance in
slicing the individual components into primitive shapes (sub components) which can be printed
in the limited build volume of commercially available 3D printers. The pipeline provides basic
information to a user such as the number of sub-components required for each component, the
shape of each sub-component and how to assemble the sub-components once they are printed.
Additionally, we have developed a graph grammar based technique to generate assembly
instructions. The generated assembly instruction joins components using off-the-shelf connectors
found in furniture assembly domain.

Our key contributions are:

(1) We outline a computational pipeline that guides a user to 3D print large parts in
commercially available 3D printers by segmenting them into smaller and printable sizes.

(2) We have developed a set of new graph grammar rules that can be used for generating
assembly instructions to assemble furniture like tables.

We demonstrate the validity of our computational pipeline by generating assembly

instruction of 3D models of IKEA-style tables downloaded from Google 3DWarehouse,
Princeton Shape Benchmark, and Polantis. All our test models have arbitrary topology and
structure. None of the 3D table models have the geometry or connector information needed for
fabricating them.

Related Work

	
In the present section, three key areas related to the presented research namely (1) 3D printing
(2) Graph Grammar, and (3) Mesh segmentation are briefly reviewed.

3D Printing

With the advancement of 3D printing we are witnessing the first stages of manufacturing
democratization. It is believed that individual users will play a role in designing and creating
their own products in the future [Gross 2007, Landay 2009]. Users can readily build their own
customized products like plush toys [Mori, et.al 2007], chairs [Luo, et.al 2012], furniture [Lau, et
al. 2011], garments [Umetani et al. 2011], Burr puzzles [Xin et al. 2011], and planar sections
[McCrae et al. 2011, Hildebrand et al. 2012]. The current trend portends to revolutionize design
and fabrication and could possibly give rise to a new class of creators and products [Mota, 2011].
We aim to propel this trend further. While the professional and higher end 3D machines are
capable of producing large complex objects, the personal and less costly 3D printers are
constrained by their print size and cost. The limited print volume of affordable 3D printers is the
main cause of their limited usage. Efforts are been made to overcome these barriers.

Luo et.al, [2012] has developed a new method called “chopper”. Chopper can be used to

chop a given large objects into smaller pieces. These smaller pieces can be printed in 3D printers

1387

and assembled to create a large object. This method automatically generates male and female
connectors on the cut surfaces. Once the object is printed, the user can assemble the parts without
any assembly instructions. This method focuses on printing showpieces and the connectors
generated do not provide much structural rigidity to the printed parts. In the computational
pipeline outlined in this paper, a set of assembly instructions are generated to guide the user in
assembling the 3D printed parts. The connectors used to assemble the parts are off-the-shelf
connectors and the placement of these connectors provides structural rigidity to the final
assembled part.

 Lau et.al, [2011] developed a graph grammar technique to create assembly instructions
for virtual furniture models. In their work, the end user has the ability to use the assembly
instructions to build furniture models with standard tools and wooden materials. In the presented
work, we guide the user to segment the 3D model into small parts. These segmented parts can be
3D printed in the limited build volume of low cost 3D printers. We then use graph grammar rules
to generate assembly instructions for the printed models. The user can have little to no
experience of working with tools.

Graph Grammar

Graph grammars have found applications in various fields such as concurrent systems,
engineering, programming languages, and biology. It has been used to develop methods for
understanding and modelling new architecture [Stiny 1980], cities [Parish, et.al 2001], buildings
[Muller, et.al 2006] and details of facades [Wonka, et.al 2003]. Coffee maker grammar was one
of first examples of using grammars for product design [Agarwal, et.al 1998]. Their grammar
described a language that generates a large class of coffee makers. Shea et.al, [1997] presented
a parametric shape grammar for the design of truss structures that uses recursive annealing
techniques for topology optimization. Other engineering applications include lathe grammar
[Brown, et.al 1997], grammar for machine design [Schmidt, et.al 1995], grammars for
mechanical clocks [Starling, et.al 2003] and gear trains in [Starling, et.al 2005]. One of the
interesting implementations of graph grammars is in the area of function-based design
[Sridharan, et.al 2004]. In more recent applications graph grammar has been used to develop new
design concepts to represent different topologies, configurations or shapes within a single search
space [Rai, et.al 2011]. Lau et.al, [2011] have used graph grammar techniques to generate
assembly instructions for shelves, cabinets, and tables to build with standard wooden materials.
We have developed graph grammar rules for generating assembly instructions for printing large
size 3D printed objects. The novelty of our work is in the fact that a novice user can use our
pipeline to easily assemble the 3D printed parts.

Mesh Segmentation

In our work we segment the 3d model manually into its component parts. This is enabled
through mesh segmentation techniques. Mesh segmentation techniques can be based on
curvature and geodesic distances [Mangan, et.al 1999], dihedral angles [Shlafman, et.al 2002],
Planarity and normal direction [Coheh-Stiner, et.al 2004, Attene, et al 2006], and Slippage
[Gelfand, et.al 2004]. These attributes are sensitive to local surface features and to pose changes.
Therefore, these techniques are not suitable for segmenting the same object in different poses.
Topology-based approaches like spectral analysis [Liu, et.al 2004], average geodesic distance
(AGD) [Hilaga, et.al 2001] and Reeb-graphs [Attene, et.al 2003] can be used for mesh

1388

segmentation of object in different poses. Nevertheless, they are vulnerable to topological and
connectivity changes and do not distinguish well between shape differences.

In our work we use Shape Diameter Function (SDF). The Shape-Diameter Function

(SDF) is a scalar function defined on the mesh surface. It expresses a measure of the diameter of
the object's volume in the neighborhood of each point on the surface. Using the SDF one can
easily segment 3D models and perform part-retrieval [Shapira, et.al 2008].

Basic Components of Computational Pipeline

Figure 1: Flowchart showing different steps of computational pipeline for printing and assembling parts bigger
than the print volume of 3D printers.

(Figure 1) illustrates the overall framework of the developed pipeline. The pipeline can
accept 3D CAD models as input in any one of the following two ways: (1) A 3D CAD model
created using CAD software like SolidWorks, CATIA, or PRO-E, or (2) A 3D CAD model
obtained from online repositories such as Google Warehouse, Princeton Shape Benchmark, and
Polantis.

The Semantic Segmentation Interface (SSI) is used to segment the inputted 3D CAD
models into component parts. Each segmented part is saved individually. The SSI is based on
SDF [Shapira, et.al 2008]. In order to carry out Semantic Segmentation using SDF vertex and
face information is required. As a result it has to be ensured that the CAD model is in .obj
format. If the input 3D model is not in .obj format then MeshLab software can be used to convert
the 3D CAD file into the required (.obj) format.

1389

GraphSynth (a graph grammar software) is used to create assembly instructions to
assemble the segmented parts. For assembly instruction generation we have developed twenty-
four rule graph grammar that defines different ways to assemble tables (Table 1). By simply
executing different combinations of grammar rules, assembly instructions for a variety of tables
can be generated. A user skilled in wood working can use the instructions generated by
GraphSynth to make the object using wood and simple fasteners.

In our proposed approach it has been assumed that a user has little or no experience with
wood working tools. As a result our computational pipeline enables a not-so-skilled user to 3D
print the parts. 3D printers require the input files to be in .stl format as a result the segmented
components that are in .obj format have to be converted to .stl format. .obj to .stl format
conversion can also be carried out using MeshLab. In case segmented 3D components do not fit
in the build volume of the 3D printer they are further segmented. We further segment the
components into sub-components using slicing software called netfabb Basic.

The printed sub-components are assembled to create components. The components are
then assembled to create the overall object by using the assembly instructions generated by graph
grammar interface. The tool components and the associated methods are described in detail in
the following sub-sections.

Semantic Segmentation Interface (SSI)

There is lack of assembly information in the 3D models available online and most of the
3D models are stored as a single part. The Semantic Segmentation Interface (SSI) is used to
semantically segment 3D CAD models into component parts (Figure 2a). SSI is based on a
volume-based shape-function called the shape-diameter function (SDF). The SDF is a scalar
function defined on the mesh surface. In essence it represents a measure of the diameter of the
object’s volume in the neighborhood of each point on the surface [Shapira et al 2008]. In order to
carry out Semantic Segmentation using SDF, vertex and face information is required. As a result
it has to be ensured that the input 3D CAD model is in .obj format. If the inputted 3D CAD
model is not in .obj format then MeshLab can be used to convert it into .obj format. User through
interaction with SSI segments the 3D CAD model by drawing a box around the part (Figure 2b).
The user can also select different colors to color segmented parts in different colors. This helps
in differentiating different segmented parts. Each part can then be exported separately. 	

(a) (c) (b)

Figure 2: (a) Semantic Segmentation Interface, (b) Semantic segmentation carried out by drawing a boundary
around the part to be segmented, (c) Segmented table top, (d) The segmented table into its constituent parts

(d)

1390

Graph Grammar for generating assembly instructions

 Graph grammars are comprised of rules for manipulating nodes and arcs within a graph.
In our computational pipeline the graph grammar rules specify a formal language for generating
assembly instructions from an initial user defined graph (seed graph). The development of these
rules encapsulates a set of valid operations that can be used to assemble different parts of a table.
Through the application of each grammar rule the current state of graph is transformed into a
new state, incrementally evolving towards a desired solution.

A typical graph grammar rule is comprised of a left-hand side (LHS) and a right-hand side
(RHS). The LHS contains the conditions, upon which the applicability of a rule is determined.
Accordingly, the LHS describes the state of the graph for a particular rule to be applicable. The
RHS, on the other hand, contains the resulting graph transformation. It describes the new state of
the graph after the application of the rule. We have developed a twenty four-rule graph grammar
that defines ways to assemble different parts of a table (Table 1). The set of twenty four-graph
grammar rules were created by studying actual assembly instructions used for assembling
different types of tables.

Rule	 LHS	 RHS	 Description	

Rule 1 TableTop→TopSupport TableTop→ C10 → TopSupport
	

	

Rule 2 TableTop→Legs TableTop→ C1 → Legs
	

Rule 3 TopSupport→TopSupport TopSupport → C11 → TopSupport

Rule 4 ShelfSupport → Shelf ShelfSupport →C13 →Shelf

Rule 5 ShelfSupport → Legs ShelfSupport → C3_3 → Legs 	

Rule 6 Legs → Shelf Legs → C2 →Shelf
	

C10	

C1	

C11	

C3_3	

C13	

C13	

1391

Rule 7 TableTop →VerticalFront TableTop →C5 →VerticalFront
	

Rule 8 VerticalFront →Bottom VerticalFront →C4 →Bottom
	

Rule 9 Bottom →Wheel Bottom →C6 →Wheel
	

Rule10 SideSupport_round
→Shelf_Round

SideSupport_round →C8
→Shelf_Round

	

Rule 11 TableTop →VerticalSide TableTop → C3 →VerticalSide
	

Rule 12 Legs →M Legs → C1 →M 	

Rule 13 M → M M →C1 → M

	

Rule 14 TableTop_round →
SideSupport_round

TableTop_round →C3_2
→SideSupport_round

	

Rule 15 TableTop
→VerticalSide_Horizontal

TableTop →C3_1 →
VerticalSide_Horizontal

	

Rule 16 TopSupport→Legs TopSupport → C12→ Legs 	

Rule 17 Drawer
Side→C4→Back→C4→

Side→C1→Front→C1→Side
	

Rule 18 VerticalSide → Bottom VerticalSide →C4 →Bottom
	

C5	

C4	

C6	

C8	

C3	

C1	

C1	

C3_2	

C3_1	

C12	

C4	

C1,	 C4	

1392

Table 1: Rules to generate assembly instructions for tables	

By simply executing different combinations of graph grammar rules, assembly instructions for
variety of tables can be generated. The generation of assembly instruction starts with the user
defining the initial contact points of the table. This is a simple step and the user inputs contact
point information in the form of a seed graph (Figure 3). Once the seed graph is defined, in the
following steps different graph grammar rules are used to automatically recognize different

Rule 19 TableTop →VerticalPartition TableTop →C3_1 →
VerticalPartition

	

Rule 20 TableTop
→HorizontalPartition

TableTop→
C3_1→HorizontalPartition

	

Rule 21 VerticalSide_Horizontal→Sh
elf

VerticalSide_Horizontal → C13

 →Shelf
	

Rule 22

Bottom
→VerticalSide_Horizontal,V
erticalPartition,
HorizontalPartition,VerticalS
ide_Horizontal

Bottom
→C3_1→VerticalSide_Horizontal,
VerticalPartition,
HorizontalPartition,
VerticalSide_Horizontal

	

Rule 23 VerticalSide → Shelf VerticalSide →C7 →Shelf
	

Rule 24 SideSupport_round →Legs SideSupport_round →C12 →Legs

	 	 	

Figure 3: User defined initial contact point of the segmented table

C3_1	

C3_1	

C13	

C3_1	

C7	

C12	

1393

connections and appropriate connectors. This continues until all the connectors for the whole
assembly are identified.

	 A complete sequence of application of different assembly instruction graph grammar
rules to create assembly instructions for a table shown in (Figure 3) has been illustrated in
(Figure 4). In order to generate assembly instructions graph grammar approach starts with a seed
graph which is defined by the user. This results in the seed graph to become LHS in step 1. After
this stage the process of recognize, choose, and apply is invoked in an iterative manner resulting
in a new LHS and RHS at each step. The assembly instruction for the table example shown here
can be derived by application of rule sequence {1, 1, 1, 1, 6, 6, 6, 6}. Since tables have repetitive
parts like legs we notice that the same rules have been applied more than once. The graph
grammar interface can generate assembly instructions for a wide range of tables.

Applicable rule 1, 6

Apply rule 1 four times

Applicable Rule 6

Apply rule 6 four
times

TERMINATE

C1	

Legs	

Table	 Top	

C2	

Shelf	

Figure 4: Application of rule sequence {1, 1, 1, 1, 6, 6, 6, 6} creates the assembly instructions for the
example table from initial seed graph

1394

Segmentation Guide Interface (SGI)

A single component can be too big to 3D print at one go. The idea behind the
development of SGI is to guide the user to carry out further segmentation of the segmented
components. SGI enables the user to compare the build volume of the 3D printer to the volume
of the component. If the print size of the component is smaller than the print volume of 3D
printer then the part is ready to be printed. Otherwise SGI provides information regarding the
shape and number of sub-components that the component should be segmented into. SSI also
provides the user with visual information regarding type of connectors and how to use those
connectors to join the sub-components.

The Segmentation Guide Interface has been developed in Visual C#. Visual Studio

supports Visual C# with a full-featured code editor, compiler, project templates, designers, code
wizards, a powerful and easy-to-use debugger, and other tools. The .NET Framework class
library provides access to many operating system services and other useful, well-designed
classes that speed up the development cycle significantly.

A sequence illustrating the interaction with SGI is presented below:

1) Prompt the user to enter the build

dimensions of the printer.
Maximum printable area and
volume is calculated (Figure 5a).

2) The user is then prompted to
enter the shape of the table top.
A choice of three shapes is
displayed (Figure 5b).

3) Once the user selects the shape
of the table top. The user is
prompted to enter the dimensions
of the table top. Using this
information area and the volume
of the table top are calculated
(Figure 5c).

4) A list of possible connector types
is displayed (Figure 5d) to join
the sub-components. A (.gif file)
appears to help the user visualize
the selected connector.

5) The user then clicks on the
segmentation button. The
interface responds by displaying
the number and shape of each
sub-component that the user
needs to generate for creating the
overall component (Figure 5e).

6) Similar steps are followed to segment the Legs of the table.

 (a)

(b)

(c)

(d)

(e)

Figure 5: Segmentation Guide Interface working for
segmenting the Table top

1395

The suggestions provided by the
segmentation guide interface are passed on to
netfabb Basic software. Netfabb Basic is very
simple to use software and is often used to
segment parts that are bigger than the build
volume of 3D printers. netfabb Basic is a freeware
for handling .stl files. The freeware includes
advanced model browsing, STL fixing,
measurement and quality management. The
freeware also includes a basic slicing module and
assists the user in data preparation and 3D Printing.

The .stl files of the components are imported into netfabb Basic and cut option is used to

slice portions of the model (Figure 6). The number of pieces and the shape to be segmented is
based on feedback from SGI. Each single piece is exported separately. User can often save time
if the parts repeat themselves; in such cases only one sub-component is exported. These parts are
then separately exported to the 3D printer’s software to begin printing.

Results

 The outlined computational pipeline is tested on a set of five table CAD models. The
CAD models for these tables were downloaded from Google 3D Warehouse, Polantis, and
Princeton Shape Benchmark websites. An illustrative example shows how the computational
pipeline could be used to 3D print and assemble a simple table (Figure 7).	 The run time of the
entire proposed approach depends on the user familiarity with the different software involved.
The software involved is very easy to learn and use.

	

	

	

	

	

	

	

	

	

	

Figure 6: Semantically segmented components
being segmented into sub-components using

netfabb Basic.

(d)

(c) (b) (a)

(f) (e)

(g)
Figure 7: (a) Downloaded model is segmented into its constituent components using SSI, (b) SGI is used to

determine the shape and number of sub-components to be created, (c) GraphSynth is used to generate assembly
instructions, (d) Segmented sub-components are 3D printed, (e) 3D printed sub-components are assembled, (f) The

final table is assembled using assembly instructions generated by GraphSynth. and (g) the final assembled table

1396

Assembly instructions generated by the piepline for four other tables is shown in Figure 8.

(b)	

(c)	

(a)	

(b)	

1397

Conclusion

 We have developed a computational pipeline to enable a user to 3D print parts that are
larger than the print volume of 3D printers. To demonstrate the utility of the developed pipeline,
we 3D print segmented parts of five different tables using MakerBot®	 Replicator™ 2X and
assemble these parts using the assembly instructions generated by the computational pipeline.
Some printed parts had warping problems resulting in significant distortion of the printed parts.
Sometimes post processing of parts like enlarging hole size and hammering certain joints is
required. The finish quality of the parts is dependent on the size and alignment of the print. For
example, the segmented legs when printed in upright position gave better fit compared to

Figure 8: Assembly Instruction for IKEA style furniture

(c)	

(d)	

1398

horizontal prints. We believe that with further advancement in 3D printing processes these issues
can be easily addressed.

To make our framework more general, one can extend the presented pipeline to work
with any arbitrary 3D model. This could be achieved by extending the initial set of 24 rules
presented in this paper. The graph grammar rules defined in the pipeline have been derived
manually. Automatic graph grammar rule generation for an arbitrary 3D model is an avenue for
future research. The interfaces used in our approach require user interaction to carry out manual
segmentation. It would be beneficial to enable automatic segmentation of the components and
the sub-components.

References

[1] Gross, M. "Now more than ever: computational thinking and a science of design." Japan Society for
the Science of Design 16, no. 2 (2007): 50-54.

[2] Landay, James A. "Technical perspective Design tools for the rest of us."Communications of the
ACM 52, no. 12 (2009): 80-80.

[3] Mori, Yuki, and Takeo Igarashi. "Plushie: an interactive design system for plush toys." In ACM
Transactions on Graphics (TOG), vol. 26, no. 3, p. 45. ACM, 2007.

 [4] Luo, Linjie, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. "Chopper: partitioning models
into 3D-printable parts." ACM Trans. Graph. 31, no. 6 (2012): 129.

[5] Lau, Manfred, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. "Converting 3D furniture models to
fabricatable parts and connectors." In ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 85. ACM,
2011.

[6] Umetani, Nobuyuki, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. "Sensitive couture for
interactive garment modeling and editing." ACM Trans. Graph. 30, no. 4 (2011): 90.

[7] Xin, Shiqing, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He, and Daniel Cohen-Or. "Making burr
puzzles from 3D models." In ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 97. ACM, 2011.

[8] McCrae, James, Karan Singh, and Niloy J. Mitra. "Slices: a shape-proxy based on planar
sections." ACM Trans. Graph. 30, no. 6 (2011): 168.

[9] Hildebrand, Kristian, Bernd Bickel, and Marc Alexa. "crdbrd: Shape fabrication by sliding planar slices."
In Computer Graphics Forum, vol. 31, no. 2pt3, pp. 583-592. Blackwell Publishing Ltd, 2012.

[10] Mota, Catarina. "The rise of personal fabrication." In Proceedings of the 8th ACM conference on
Creativity and cognition, pp. 279-288. ACM, 2011.

[11] Stiny, George. "Introduction to shape and shape grammars." Environment and planning B 7, no. 3
(1980): 343-351.

[12] Parish, Yoav IH, and Pascal Müller. "Procedural modeling of cities." InProceedings of the 28th annual
conference on Computer graphics and interactive techniques, pp. 301-308. ACM, 2001.

[13] Müller, Pascal, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural
modeling of buildings. Vol. 25, no. 3. ACM, 2006.

[14] Wonka, Peter, Michael Wimmer, François Sillion, and William Ribarsky.Instant architecture. Vol. 22,
no. 3. ACM, 2003.

1399

[15] Agarwal, Manish, and Jonathan Cagan. "A blend of different tastes: The language of coffee makers."
(1996).

[16] Shea, Kristina, Jonathan Cagan, and Steven J. Fenves. "A shape annealing approach to optimal
truss design with dynamic grouping of members." Journal of Mechanical Design 119, no. 3 (1997): 388-
394.

[17] Brown, K. N., and Jonathan Cagan. "Optimized process planning by generative simulated
annealing." Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 11, no. 03 (1997):
219-235.

[18] Schmidt, Linda C., and Jonathan Cagan. "Recursive annealing: a computational model for machine
design." Research in Engineering Design 7, no. 2 (1995): 102-125.

[19] Starling, Alex C., and Kristina Shea. "A grammatical approach to computational generation of
mechanical clock designs." In DS 31: Proceedings of ICED 03, the 14th International Conference on
Engineering Design, Stockholm. 2003.

[20] Sridharan, Prasanna, and Matthew I. Campbell. "A grammar for function structures." In ASME 2004
International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, pp. 41-55. American Society of Mechanical Engineers, 2004.

[21] Rai, Rahul, Pranay Kilaru, Ravi Vallepalli, and Matthew I. Campbell. "A Novel Search Algorithm for
Interactive Automated Conceptual Design Generator (ACDG)." In ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 987-
996. American Society of Mechanical Engineers, 2011.

[22] Mangan, Alan P., and Ross T. Whitaker. "Partitioning 3D surface meshes using watershed
segmentation." Visualization and Computer Graphics, IEEE Transactions on 5, no. 4 (1999): 308-321.

[23] Shlafman, Shymon, Ayellet Tal, and Sagi Katz. "Metamorphosis of polyhedral surfaces using
decomposition." In Computer Graphics Forum, vol. 21, no. 3, pp. 219-228. Blackwell Publishing, Inc,
2002.

[24] Cohen-Steiner, David, Pierre Alliez, and Mathieu Desbrun. "Variational shape approximation."
In ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 905-914. ACM, 2004.

[25] Attene, Marco, Bianca Falcidieno, and Michela Spagnuolo. "Hierarchical mesh segmentation based
on fitting primitives." The Visual Computer 22, no. 3 (2006): 181-193.

[26] Gelfand, Natasha, and Leonidas J. Guibas. "Shape segmentation using local slippage analysis."
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp.
214-223. ACM, 2004.

[27] Hilaga, Masaki, et al. "Topology matching for fully automatic similarity estimation of 3D
shapes." Proceedings of the 28th annual conference on Computer graphics and interactive techniques.
ACM, 2001.

[28] Attene, Marco, Bianca Falcidieno, and Michela Spagnuolo. "Hierarchical mesh segmentation based
on fitting primitives." The Visual Computer 22, no. 3 (2006): 181-193.

[29] Shapira, Lior, Ariel Shamir, and Daniel Cohen-Or. "Consistent mesh partitioning and skeletonisation
using the shape diameter function." The Visual Computer24, no. 4 (2008): 249-259.

1400

	

1401

