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Abstract 

 

 Parts with complex geometry can be produced by an additive manufacturing process 

without a significant increase of fabrication time and cost. One application of AM technologies 

is to fabricate customized lattice structures to enhance products’ performance with less material 

and less weight. Thus, design methods of customized lattice structures have recently attracted 

great research interests. Most existing design methods only consider the distribution of lattice 

struts’ thickness as a primary design variable for customized lattice structures. Few of them 

notice the importance of lattice orientation with regard to its structural performance. In this 

paper, a design method for customized lattice-skin structures is proposed to optimize the 

distribution of lattice orientations inside the design domain. In this design method, an initial 

Functional Volume (FV) is divided into several sub-FVs and connected with additional 

Functional Surfaces (FSs). The orientation of uniform lattice in each sub-FV is regarded as the 

design variable. To optimize the design variables, an equivalent analysis model based on the 

effective orthotropic properties of lattice structures is built. On the basis of this model, genetic 

algorithm is applied to obtain the optimized distribution of lattice orientations. Two case studies 

are provided at the end of this paper to validate the proposed design method. 

 

 

 

1 Introduction 

 

Lattice structures are a unique classification of cellular structures. This type of structure 

can be regarded as a space truss structure composed of struts, nodes with certain repeated 

arrangement in three-dimensional space. Among different cellular structures, lattice structures 

are the most attractive type for their inherent advantages. Firstly, compared to those disordered 

cellular foam, only a small portion of a lattice structure is needed to determine its properties for 

the high degree of order. Thus, this type of structure enables designers much more freedom to 

realize their design goals. Besides that, lattice structures can also be designed to be a stretching 

dominated structure for load bearing with high stiffness as well as a bending dominated structure 

for compliant mechanism with a large deformation. Due to the aforementioned reasons, lattice 

structures have high potential in a wide range of applications, such as automobile, aerospace and 

medical devices and bio-implants. 

 

However, the high manufacturing complexity is always the biggest barrier for the wide 

application of lattice structures. Traditionally, lattice structures are usually fabricated by 

conventional manufacturing techniques such as sheet-metal forming, investment casting and 

metal wire bonding. These fabrication processes are both time and cost consuming. Moreover, 
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because of manufacturing limitation, only the lattice structures with simple external geometry 

and some specific topologies can be fabricated, which severely restricts the design freedom to 

achieve advanced functionalities. Recently, this situation has been changed by the rapid 

development of Additive Manufacturing (AM) technologies. AM enables the fabrication of 

lattice structures without additional cost and time. Moreover, it also provides more design 

freedom to further optimize the lattice structures for the improvement of functional performance.  

To take full advantage of those design freedom provided by AM for the fabrication of a wide 

variety of lattice structures, some research has been done on the optimization of lattice structures 

for a better functional performance. Most of them focus on redistribution of material inside 

lattice structures. To achieve this purpose, there are two ways. The first way is to optimize the 

distribution of lattice strut’s thickness. For example, an optimization method of lattice strut’s 

thickness is proposed by Rosen [1]. In this design method, the thickness of lattice strut is 

regarded as design variables. To reduce the number of design variables, lattice struts are divided 

into ten groups and the thickness of struts in each group are supposed to be equal. Besides 

directly taking lattice strut’s thickness as a design variable, different topology optimization 

methods [2, 3] have also been used to optimize the distribution of lattice strut’s thickness. In 

these design methods, the thickness of each lattice strut has been decided by the optimal relative 

density distribution which can be obtained from the topology optimization methods. To further 

reduce the number of design variables, a heuristic optimization method of lattice structure is 

recently developed by Nguyen et al.[4]. In this optimization method, there are only two design 

variables which are the largest and smallest strut’s diameter. The diameter of each strut can be 

interpolated between these two design variables based on local stress value.  

 

The second way to achieve the optimal distribution of material is to change the lattice 

frame. Originally, a lattice structure consists of several lattice unit cells which are periodically 

distributed inside 3D space. To achieve the optimal distribution of material, some techniques 

have been used to reshape the lattice unit cells. Thus, the frame of a lattice structure has been 

changed. For example, based on a space warping technique, a lattice frame design method has 

been proposed by Chen [5] to redistribute material according to the stress distribution of a 

designed structure. Brackeet et al. [6] recently proposed another similar design method for a 

lattice frame. Instead of using space warping technique in Chen’s method, a dithering method is 

used to represent a gray scale stress fringe with variably spaced black dots. These spaced black 

dots can be also used as the lattice cell’s vertices. Like Chen’s approach, this design method also 

enables the variation of lattice size and shape according to stress distribution inside the design 

space.  

 

Besides those design methods which aim to redistribute material inside a design domain 

for a better performance, a few design methods are proposed to adapt lattice unit cell’s shape and 

orientation according to given design conditions. Design methods of a conformal lattice structure 

are firstly proposed by Wang and Rosen [7-9]. Differences between a conformal lattice structure 

and an ordinary periodic lattice structure are shown in            Figure 1. It is clear that both shape 

and orientation of lattice unit cells are changed to adapt to macro shape of the design domain. A 

case study has been provided by Wang to compare the performance between a conformal lattice 

and an ordinary periodic lattice. The result shows that a conformal lattice may have a better 

strength than periodic lattice since the lattice unit cells are reoriented according to the external 

loads. Instead of conforming to the macro shape of the design domain, a design method of load 
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adaptive lattice is proposed by Teufelhart and Reignhart [10-12]. In this design method, lattice 

frame is built based on the force flux inside the design domain, which can align the orientation of 

each lattice unit cell along the principal stress direction. Thus, the structural performance of the 

designed structure can be improved by this design method.  

 

                             
                               (a) Periodic lattice structure            (b) Pseudo-periodic lattice structure 

           Figure 1 Difference between periodic lattice and conformal lattice        

                                 

To summarize the existing design methods of lattice structures, it is clear most of them 

focus on redistribution of material inside the design domain. Only a few of them consider the 

effect of lattice orientation on the structural performance. Moreover, there are also some 

limitations of those design methods for lattice orientation. For example, geometrical conformal 

lattice cannot guarantee a better functional performance than that of periodic lattice. 

Furthermore, to generate a conformal lattice structure for arbitrary design domain is still a 

difficult task. As to load adaptive lattice, the frame of this type of lattice structures is built based 

on the analysis of design domain filled with solid materials. However, when the solid material is 

replaced by lattice structures, both stress and strain fields may change. Thus, the orientation of a 

lattice unit cell is no longer accordant with local principle stress direction. To deal with these 

limitations of existing lattice design method, a design method of a lattice-skin structure is 

proposed in this paper to optimize the lattice orientation. Compared to existing design methods, 

the proposed design methods can deal with design domain that has arbitrary shape. Moreover, 

this design method is also easy to implement without a heavy computational burden. 

 

In this paper, several basic concepts are first introduced in the Section 2. Based on these 

basic concepts, a detailed discussion on the proposed process is presented in Section 3. In 

Section 4, two cases studies are given to validate the efficiency of the proposed design method. 

At end, this paper is wrapped up with a short conclusion and some future research work.  

 

2 Basic concepts 

 

2.1 Functional Volumes and Functional Surfaces 

 

In the proposed design method, Functional Volumes (FVs) and Functional Surfaces (FSs) 

are used to represent the design space which can satisfy given functional requirements. These 

two concepts have been defined in the previous research [13] where a FV is a geometrical 

volume designed for certain functional purposes, while a FS is a geometrical surface which can 

fulfill certain functional requirements. A typical example of FSs and FVs is shown in Figure 2. 

In this example, there are seven FSs which are in green color. These FSs generally play to three 

functions. Two FSs at the bottom of pedestal bearing mainly provided support for the designed 

part. Two cylindrical surfaces and their connected top surfaces are used for the assembly of 
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connection bolts. The big cylindrical surface at the top of part is designed to provide support for 

the connected shaft. To connect these seven FSs, a FV is given, which is in grey color shown in 

Figure 2.   

Functional Surface

Functional Volume

 
Figure 2 An example of functional surfaces and a functional volume 

 

Both FSs and FVs can be obtained from the conceptual design stage. Thus, in this design 

method both FSs and FVs are assumed as inputs. During the design process, the input FVs can 

be filled with either solid material, lattice structure or a combination of them. In the proposed 

design method, the input FVs can be categorized into two groups according to their features on a 

mesoscale. They are FVs with lattice and FVs with solid material. As for those FVs filled with a 

combination of lattice and solid material, a further decomposition should be done to divide them 

into these two basic types FVs mentioned above. An example of FV decomposition is shown in 

Figure 3. In this example, the initial FV are divided into two FVs based on stress distribution 

calculated from the initial analysis. A solid material is used to fill FV1 which has a relatively 

high stress. As for FV2, due to the relatively low stress, the lattice structure is used. Moreover, to 

connect two new generated FVs, the additional FS is used which is also shown in Figure 3. 

 

 
Figure 3 Decomposition of FV  

 

Based on the given FSs and FVs, the design method described in this paper can be 

regarded as the process of seeking an optimized distribution of lattice orientation inside those 
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FVs filled with lattice structures. To realize this design purpose, the FVs with lattice structures 

are further divided into several sub-FVs which are connected by additional FSs. These sub-FVs 

will be filled with lattice structures in different orientations, which can further improve the 

functional performance of designed structures. 

 

2.2 Effective material model for lattice structure 

 

In this paper, we only consider linearly elastic design with orthotropic lattice structures. 

Some typical unit cells of orthotropic lattice structures are shown in Figure 4. It is clear that there 

are three mutually orthogonal symmetric planes for each unit cell. Thus, a Cartesian coordinate 

system can be built based on these three symmetric planes. This Cartesian coordinate system is 

called as lattice local coordinate system in this paper.  

  
(a) “X” shape lattice         (b) Octet lattice          (c) Square lattice 

Figure 4 typical orthotropic lattice topology 

To reduce the computational load during the optimization process, the uniform lattice 

structures on a meso-scale are regarded as anisotropic homogenous materials on a macro-scale. 

The macro effective material properties in given FVs are characterized by the constitutive law 

shown below:  

 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

𝜀𝑘𝑙                          (1)  

 

Where 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

 is the rotated effective stiffness tensor of lattice structure;  𝜎𝑖𝑗 is the macro stress 

tensor and 𝜀𝑘𝑙 is the macro strain tensor. In this paper, Voigt-Kelvin notation is used to describe 

the above tensors in a matrix form. To calculate the rotated effective stiffness tensor, the 

unrotated effective stiffness tensor 𝐶0𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

 must firstly be calculated. In this paper, an energy 

based homogenization method [14]  is used to calculate the unrotated effective stiffness tensor in 

the lattice local coordinate system. Due to the symmetric properties, the unrotated stiffness 

tensor 𝐶0𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

  can be expressed in matrix notation as   

 

𝐂0
𝑒𝑓𝑓

=

[
 
 
 
 
 
 
𝑐11

0 𝑐12
0 𝑐13

0 0 0 0

𝑐21
0 𝑐22

0 𝑐23
0 0 0 0

𝑐31
0 𝑐32

0 𝑐33
0 0 0 0

0 0 0 𝑐44
0 0 0

0 0 0 0 𝑐55
0 0

0 0 0 0 0 𝑐66
0 ]

 
 
 
 
 
 

                                 (2) 
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Where 𝐂0
𝑒𝑓𝑓

 is the matrix form of tensor 𝐶0𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

. Based on the unrotated stiffness tensor, the 

following tensor transformation relationship can be used to calculate the rotated stiffness tensor: 

 

𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

= 𝜆𝑖𝑚𝜆𝑖𝑛𝜆𝑘𝑜𝜆𝑙𝑝𝐶0𝑚𝑛𝑜𝑝
𝑒𝑓𝑓

            (3) 

 

This relationship can also be expressed in the matrix form as: 

 

𝐂𝒆𝒇𝒇 = 𝐐𝑻 ⋅ 𝐂𝟎
𝒆𝒇𝒇

⋅ 𝐐                  (4) 

 

Where 𝐂𝒆𝒇𝒇 is the matrix form of rotated stiffness tensor. 𝐐 is the rotational matrix which is 

defined as: 

 

𝐐 =

[
 
 
 
 
 
 

𝑙11
2 𝑙12

2 𝑙13
2 𝑙12𝑙13 𝑙11𝑙13 𝑙11𝑙12

𝑙21
2 𝑙22

2 𝑙23
2 𝑙22𝑙23 𝑙21𝑙23 𝑙21𝑙22

𝑙31
2 𝑙32

2 𝑙33
2 𝑙32𝑙33 𝑙31𝑙33 𝑙31𝑙32

2𝑙21𝑙31 2𝑙22𝑙32 2𝑙23𝑙33 𝑙22𝑙33 + 𝑙23𝑙32 𝑙21𝑙33 + 𝑙23𝑙31 𝑙21𝑙32 + 𝑙22𝑙31

2𝑙11𝑙31 2𝑙12𝑙32 2𝑙13𝑙33 𝑙12𝑙33 + 𝑙13𝑙32 𝑙11𝑙33 + 𝑙13𝑙31 𝑙11𝑙32 + 𝑙12𝑙31

2𝑙11𝑙21 2𝑙12𝑙22 2𝑙13𝑙23 𝑙12𝑙23 + 𝑙13𝑙22 𝑙11𝑙23 + 𝑙13𝑙21 𝑙11𝑙22 + 𝑙12𝑙21]
 
 
 
 
 
 

(5) 

 

The component 𝑙𝑖𝑗 in the Eq.5 can be obtained from the transformation matrix between 

lattice local coordinate system and global coordinate system.  

 

[
𝑥′

𝑦′

𝑧′

] = 𝐋 [
𝑥
𝑦
𝑧
] = [

𝑙11 𝑙12 𝑙13

𝑙21 𝑙22 𝑙23

𝑙31 𝑙32 𝑙33

] [
𝑥
𝑦
𝑧
]         (6) 

 

Where 𝑙𝑖𝑗 is the component of transformation matrix L; (𝑥, 𝑦, 𝑧)𝑇 and (𝑥′, 𝑦′, 𝑧′)𝑇 are the 

representations of a vector A in lattice local and global coordinate system respectively. In this 

research, the relationship between lattice local system and global coordinate system is 

parameterized with triplet Euler angles (𝛼, 𝛽, 𝛾) in ZYZ order, which is demonstrated in Figure 

5. In this parametrization scheme, the lattice local coordinate system is regarded as a reference 

coordinate system. Thus, the global coordinate system for structural analysis is the derived 

system from the reference coordinate system. The transformation matrix between a referenced 

coordinate system and a derived coordinate system can be obtained according to the definition of 

Euler angle, which can be expressed as: 

 

𝐋 = [−

cos 𝛼 cos 𝛽 cos 𝛾 − sin 𝛼 sin 𝛾 sin 𝛼 cos 𝛽 cos 𝛾 + cos 𝛼 sin 𝛾 − sin 𝛽 cos 𝛾
cos 𝛼 cos 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 −sin 𝛼 cos 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 sin 𝛽 sin 𝛾

cos 𝛼 sin 𝛽 sin 𝛼 sin 𝛽 cos 𝛽
]  (7) 

 

Based on Eq.4-7, the rotated effective stiffness tensor 𝐂𝒆𝒇𝒇 can be calculated from the 

unrotated stiffness tensor 𝐂𝟎
𝒆𝒇𝒇

. In the proposed design method, the rotated stiffness tensor is 

used in the optimization process to evaluate the performance of designed structures. 
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XYZ: Lattice local Cord.

xyz:    Global Cord.  
Figure 5 Relationship between lattice local coordinate and global coordinate 

 

3 Proposed design method 

 

The general design flow of the proposed design method is shown in Figure 6. It consists 

of six major design steps. These six design steps can be further divided into two categories. The 

first three design steps are used to prepare the equivalent analysis model. Based on this 

equivalent analysis model, the next three steps are applied to obtain the optimized distribution of 

lattice orientations and generate the optimized lattice-skin structure. In the next two sub-sections, 

the details about these major design steps will be discussed.  

 

Divide FVs into sub-FVs

FVs and FSs
Functional 

Requirements

Select initial parameters of 

lattice structures

Build equivalent analysis 

model

Optimize lattice 

orientations in sub-FVs

Check the performance of 

optimized structure

Output the lattice-skin 

structure

Lattice-Skin 

structure

Lattice 

Database

Data Item

Design step

Support Database

Design flow

Data flow

 
Figure 6 General design flow 
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3.1 Equivalent analysis model 

 

The equivalent analysis model plays a pivotal role in the overall design process. The 

structural response calculated from this equivalent analysis model will be used in the following 

orientation optimization process. Thus, both accuracy and computational load should be 

considered in the equivalent analysis model. To achieve these purposes, a multi-material 

structural model is used as the equivalent analysis model in this paper. In this model, the 

effective orthotropic material properties of lattice structures in each sub-FV are firstly 

determined based on a homogenization method and its lattice orientation. Then, these properties 

are assigned to the elements for each sub-FVs respectively. For other elements which represent 

FSs and FVs filled with solid material, the solid isotropic material model is used to describe their 

material properties. The detailed steps of building this equivalent analysis model will be 

discussed in the following paragraphs. 

 

The first step of building the equivalent analysis model is to divide the initial FVs with 

lattice into several sub-FVs. As it mentioned in the Section 2.1, the lattice orientations in these 

sub-FVs will be regarded as the design variables during the optimization process. This paper 

offers two different ways to generate these sub-FVs. One of them is to direction divide the FVs 

according to its macro shape or load condition. The example of sub-FV generation for arch 

structures is shown in Figure 7. In this example, the initial FV are divided into 4 sub-FVS along 

the circumferential direction. This generation method of sub-FVs is suitable for those FVs with 

regular shapes. For those FVs with irregular shapes, solid meshing method is used to generate 

coarse volume elements for given FVs. These volume elements can be used to construct the sub-

FVs. In this step, another factor which designers should consider is the number or the size of 

sub-FVs for each given FV. It is apparently a large number of sub-FVs or small size of sub-FVs 

will provide more design freedom to achieve the optimal orientation distribution. However, it 

should also be noted that the increasing of the number of sub-FVs will also lead to the increasing 

of design variables and computation load. Moreover, more additional FSs will be added to 

further increase the weight of a structure. Thus, an overall consideration is needed for designers 

to select an appropriate number of sub-FVs. 

 

Four sub-FVsInput FV

Sub-FV1
Sub-FV2
Sub-FV3
Sub-FV4

 
Figure 7 Generation of sub-FVs 

 

Then, the initial parameters of lattice structures are selected based on the general 

functional requirements and initial structural analysis. These initial parameters include topology 

of the lattice unit cell, size of lattice unit cell and the relative density of lattice structures. To 
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facilitate the selection process, a database which stores the properties of different types of lattice 

properties are needed. In this database, lattice structures on a meso scale are regarded as 

homogenous material on a macro scale. Effective properties are associated with lattice structures 

with different topology. The material selection method proposed by Ashby and Cebon [15] can 

be used to select appropriate lattice topologies for given design problems. It should be noted that 

the selection step of lattice topology may generate multiple results. Thus, further work is needed 

to compare the performance of these lattice structures with different topologies. Based on the 

selected lattice topology, the relationship between lattice relative density and lattice properties 

such as stiffness or thermal coefficient rate can be calculated. This relationship can help 

designers to determine the appropriate relative density of a lattice structure in each sub-FVs. As 

to lattice unit cell size, designers should consider both the characteristic dimension of a designed 

structure and the capability of selected manufacturing method. Generally, the unit cell size 

should be smaller than a tenth of the characteristic dimension of macro structure. 

 

Based on the selected parameters of lattice structures, the unrotated effective properties 

of lattice structures can be calculated by homogenization method. In the following optimization 

process, the orientation of a uniform lattice structure in each sub-FV is given and regarded as a 

design variable. Based on lattice orientation and calculated effective properties, the rotated 

effective properties of the lattice structure in each sub-FV can be obtained. These rotated 

effective properties will be assigned to the elements in different sub-FVs respectively. At the 

end, the FEA method can be applied to solve this equivalent analysis model for its structural 

response under given boundary conditions. This structural response will be used to optimize the 

distribution of orientations inside FVs, which will be discussed in the next sub-section.    

 

3.2 Orientation Optimization 

 

Based on the equivalent analysis model discussed in the previous subsection, the 

optimization process can be applied to obtain the distribution of lattice orientation inside FVs. 

This paper mainly focuses on the design of structural stiffness. Thus, the strain energy of the 

designed structure under given boundary conditions is regarded as the optimization objective. To 

increase the stiffness of designed structure, the optimization problem of lattice orientation can be 

expressed as: 

 

min:  𝑝(𝛉) =
1

2
∫𝜎𝑖𝑗(𝛉)𝜀𝑖𝑗(𝛉)𝑑𝑉 

S.T.:  𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

(𝛉)𝜀𝑘𝑙     (8) 

 

Where 𝛉 is a vector of design variables. Its component 𝜃𝑖 is the Euler angle of lattice structures 

for the ith sub-FV. It should be noted from Eq.8 that both strain and stress fields are implicit 

functions of lattice orientation variables. They will change with the variations of orientation 

variables. Thus, it is difficult to analytically calculate the gradient of objective functions with 

respect to lattice orientations. Some relaxations have been made in existing optimization 

methods for orthotropic material. For example, in the strain based method [16], the strain field is 

assumed to be invariable with respect to the variation of orientation variables, while in the stress 

based method[17] , the stress field is assumed to be fixed. Besides these relaxations, finite 

difference method can also be used to calculate the gradient of objective function. However, the 

computational load of this method largely depends on the number of design variables. In view of 
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these difficulties, a non-gradient based genetic optimization method is used in this paper. The 

flowchart of the genetic optimization algorithm used in this paper is described in Figure 8. It 

consists of six major steps. In the optimization process, the equivalent analysis model discussed 

in the previous sub-section will be used to calculate the value of objective function. This result 

will be considered as the fitness for each individual in every generation. Moreover, the maximum 

iteration number is defined as the stop criterion of the optimization algorithm used in this paper. 

  

 
Figure 8 A general flow genetic algorithm 

 

After the optimization process, the optimal distribution of lattice orientation in sub-FVs 

can be obtained. Based on the optimization result, the lattice-skin structure can be constructed for 

desired functional performance. To further verify the performance of designed lattice structures, 

another analysis model of generated lattice-skin structure is used after the orientation 

optimization. In this analysis model, a lattice-skin structure is considered as a truss structure with 

the combination of solid FVs and the skins generated based on FSs. In this structure, beam 

elements are used to represent the lattice struts, while tetrahedron elements are used to mesh 

solid FVs and skins. FEA is applied to solve this analysis model. Compared to the equivalent 

analysis model used in the optimization process, this verification model contains more detailed 

information on a meso-scale. Thus, it can provide a more accurate result. However, the 

computational load will also increase significantly compared to the equivalent analysis model 

used in the optimization process. Thus this model is only used at the end of a design process to 

check the functional performance of optimized structure. After verification process, the 3D 

model of optimized lattice-skin structure can be built by CAD software and fabricated by AM 

processes.   
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4 Case study  

 

In this section, two different design cases are given to validate the proposed design 

method. The input FSs and FVs with given load and boundary conditions are shown in Figure 9 

for these two design cases. In Figure 9, q represents a uniform pressure whose value equals to 1 

MPa. To reduce the weight of designed structures, these two FVs will be filled with lattice 

structures in the following design processes.  

FSs
FVs

10mm

q

30mm 30mm
70mm

40mm

120mm

 
 

FSs
FVs

q

40mm120mm

10mm

 
Figure 9 The input FSs and FVs of two design cases 

 

This paper mainly focuses on the optimization of lattice orientation. Thus, for simplicity, 

lattice structures with the given initial parameters shown in Table 1 are supposed to fill those two 

input FVs. Moreover, Table 1 also provides the initial thickness of skins which is used to represent 

FSs in the design cases.  

 
Table 1 Initial parameters of lattice-skin structure 

Lattice Topology Lattice Size(mm) Strut’s thickness(mm) 

Square lattice 2 × 2 × 2 0.3 

 

In these two design cases, all of external loads are in-plane loads and parallel to XY 

plane. Moreover, dimensions of given FVs on z direction are smaller than the dimensions on x or 

y direction. Thus, given FVs can be regarded as 2D plates and the structural analysis of these two 

design cases can be simplified as plane stress problems. Based on this simplification, the design 

variable of lattice orientation can also be simplified by assuming Euler angles 𝛽 and 𝛾 as zero. 

This means lattice only rotated with respect to Z axis on XY plane. Moreover, due to the 

symmetrical properties of lattice topology, the Euler angle 𝛼 only varies in the range of 0 to 90 

degree.  

 

To optimize the distribution of lattice orientation in given FVs. The given FVs for two 

design cases are divided into sub-FVs which are shown in Figure 10. Based on these sub-FVs, 

the equivalent analysis models of the two design cases are built respectively. In these equivalent 

analysis models, the effective material properties of lattice structures with given parameters are 
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calculated by an energy based homogenization method. In the calculation process of lattice 

effective properties, the solid material is assumed to have normalized Young’s modulus which 

equals to 2.1E5 MPa and Poisson Ratio which equals to 0.3. The calculation result of effective 

properties is shown in Eq.9.  

 

𝐂0
𝑒𝑓𝑓

=

[
 
 
 
 
 

6384 0.1378 0.1378 0 0 0
0.1378 6384 0.1378 0 0 0
0.1378 0.1378 6384 0 0 0

0 0 0 1764 0 0
0 0 0 0 1764 0
0 0 0 0 0 1764]

 
 
 
 
 

  (9) 

 

An initial analysis has been done for each design case by a commercial FEA software 

ANSYS. In the initial analysis, the orientation angle 𝛼 for each sub-FVs is set as zero. The 

analysis result of these two design cases is shown in Figure 11. It is clear that stress in not 

continuous on the boundary between lattice structures and solid skins. This is due to their 

different material properties.  

Sub-FV1

Sub-FV2

Sub-FV3

Sub-FV4

Sub-FV5

Sub-FV1
Sub-FV2
Sub-FV3
Sub-FV4
Sub-FV5
Sub-FV6

 
     (a) sub-FVs for design case 1                              (b) sub-FVs for design case 2 

Figure 10 Sub-FVs of given two design cases 

 

 
                           (a) Design case 1                                                 (b) Design case 2 

Figure 11 The stress distribution of initial analysis on the equivalent models 

 

Based on these two equivalent analysis models, the optimization method described in 

Section3.2 is used to update the orientation angle 𝛼 for each sub-FV. Table 2 is given to show 
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the parameters used in the optimization process. The minimum strain energy and average strain 

energy of each generation are shown in Figure 12. The optimization results are shown in Table 3. 

To build a lattice-skin structure with optimized orientation angles, a parametric lattice-skin 

modeling tool called IntraLattice is developed based on Grasshopper a graphic algorithm editor 

for Rhino CAD software. Based on this lattice-skin modeling tool and optimal lattice orientation, 

3D model of lattice-skin structure is built for each design case and shown in                                            

Figure 13.  

 
Table 2 Parameters of GA algorithm 

Population 

size 

Generation 

gap 

Chromosome 

length 

Crossover 

rate 

Mutation 

rate 

Maximum 

Iteration 

20 0.9 10 0.7 0.07 30 

 

Table 3 The optimization result of orientation angle in each sub-FV 

 Sub-FV1 Sub-FV2 Sub-FV3 Sub-FV4 Sub-FV5 Sub-FV6 

Design 

Case 1 
89.9120 12.1408 2.7354 77.0674 89.9120 - 

Design 

Case 2 
31.4078 35.1026 25.3372 60.8798 61.0557 84.7214 

 

 

 

 
 

Figure 12 Optimization history of given design cases 

 

 

                                (a) Design case 1                              (b) Design Case 2 

                                           Figure 13 3D model of two design cases 
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To verify the design results of the proposed design method, verification models are built 

for both design cases based on Karamba a FEA analysis tool for Grasshopper. The strain energy 

of each optimal design is calculated based on these verification models. The results are shown in 

Table 4. Meanwhile, the uniform lattice with the same orientation angle in each sub-FVs is also 

considered for both two design cases. Based on the equivalent models, the maximum and 

minimum lattice orientation angles for each design case are firstly obtained. Then, verification 

models are used to calculate their strain energy respectively. The calculation results are shown in 

Table 5. This table clearly indicates that the orientation angle of lattice structures has a great 

effect on the overall structural performance. Moreover, compared to the results shown in Table 4 

for optimal lattice orientation, it shows the proposed design methods can further improve the 

structural stiffness by reorienting the orientation angle in each sub-FV.  

 
Table 4 Strain energy of optimal design 

Design Configuration Strain 

Energy/KJ 

 Volume/(mm3) 

Optimal orientation for design case 1 7.6 7088.68 

Optimal orientation for design case 2 12.4 6110.37 

  

Table 5 Strain energy of uniform lattice  

Design Configuration Strain 

Energy/KJ 

 Volume/(mm3) Orientation Angle 

Design case 1 of minimal 

stiffness orientation 

46.73 7088.68 45° 

Design case 1 of maximal 

stiffness orientation 

11.5 7088.60 0° 

Design case 2 of minimal 

stiffness orientation 

137.5 6100.63 5° 

Design case 2 of maximal 

stiffness orientation 

12.9 6118.37 50° 

 

5 Conclusions and future research 

 

In this paper, a design method of lattice-skin structure is proposed to determine the 

distribution of lattice orientation angles inside a design domain. This design method can be 

mainly divided into two stages. In the first stage, equivalent analysis model is established based 

on the effective material model of lattice structures on a macro scale. Then the genetic 

optimization algorithm is applied to find the optimal lattice orientation angle for each sub-FVs. 

Two design cases are given to validate the proposed design method. From their results, it is 

obvious that the orientation angle plays a significant role in the structural performance of 

designed parts. Moreover, the results also show that the optimal distribution of orientation angles 

can further improve the stiffness of designed parts without increasing their weight. Generally, the 

proposed design method in this paper provides a way to design and realize the non-uniform 

lattice orientation in a continuous design domain. This non-uniform lattice orientation has proved 

to be more stiffness efficient by two design cases. However, there are still some future research 

work needs to be done for this proposed method, which is listed below.  
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1 It is necessary to consider the distribution of relative density and lattice orientation 

simultaneously. The structural performance may be further improved by integrating those 

existing design methods of heterogeneous lattice into the proposed method in this paper.  

 

2 The optimization method of skin thickness is needed to consider in the future research. 

It is clear that skins play an important role in the proposed design method. However, currently, 

the value of skin thickness is directly given by designers. Thus, to further improve the functional 

performance of designed parts, thickness of skin should be taken as another design variable in 

the future research. 

 

3 A detailed guideline to build sub-FVs is needed. The proposed method in this paper 

only provides a general method to separate FV into sub-FVs. It should be noted that both the 

shape and size of sub-FVs may have the potential effect on the final performance of designed 

products. Thus, more research is needed to evaluate the quality of sub-FVs. Based on that, a 

detailed guideline can be generated.  
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