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Abstract 

Many models have been developed to model powder beds and these methods can be 

implemented to model a powder bed for Selective Laser Sintering, Selective Laser Melting and 

any other technique of additive manufacturing which uses powder beds.  Two of the main 

systems are the Discrete Element Method (DEM) and the Geometric Method.  The purpose of 

this paper is to analyze each of the methods. It will first highlight how each of the models creates 

the powder bed.  The next aspect reviewed is the computational time and its causes.  And lastly, 

each of the methods will be examined for their accuracy as shown from various experiments that 

have been reported in literature.  In addition to these methods, there are several others that have 

been proposed that will also be studied and compared to highlight the strengths and weaknesses 

of each. 

Introduction 

Multiple fields of science are interested in the simulation of a powder bed for various different 

applications; some of these fields include physics, chemistry, and engineering.  Each of these 

areas of science have their own needs for what data is to be collected from the models that they 

create.  Since there is such a wide range of needs for the data being collected, there is as also a 

wide range of need for the types of models that are in the literature.  Most of the models studied 

assumed that the powder particles could be represented by perfect spheres.  This would help to 

simplify the calculations performed by the system.  Another generalization that can be made 

about the various systems is that the powder particles are incompressible.  This results in again a 

much simpler and easier to implement model.  When reviewing these systems, there are several 

aspects which can be compared to determine which method is best for each application.  The 

main controls that are analyzed are the computational time required and the mechanical 

properties of the powder bed created.  In addition to these main model characteristics, the results 

from the various models are compared to experimental data to validate their results.  This 

validation is two-fold.   The first piece of data used to validate the simulation is the packing 

density of the model.  This is done by taking the total volume of the spheres and dividing it by 

the volume of the powder bed, which is the complement of the void fraction.  The other 

benchmark which is used to determine the effectiveness of a model is to calculate the average 

coordination number.  The coordination number is the number of contacts that a particle has with 

its surrounding particles.  Therefore, the coordination number of a powder bed is the average 

coordination number of all of the particles. This value is very difficult to determine 

experimentally, therefore it is commonly used to compare various models and not used to 
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validate them.  Overall, these two parameters are used to determine the effectiveness of a model 

and to compare models.  

The models reviewed here only take into account the creation of the powder bed.  There are 

several models in research which will model not only the creation of the powder bed, but will 

also model the melting of the powder particles and the creation of the final product.  One 

representative paper is by King et. al. [1] which starts by laying particles over a Cartesian mesh 

background.  Once the powder bed is created, several mechanisms are utilized to model the 

melting and other processes which occur.  Some of the main processes included are: absorption, 

vaporization, capillary forces, gravity, convection, conduction, phase transformation, and many 

others.  This model will first create the powder bed and then calculate the effect that the laser 

imposes on the powder particles based on these forces.  This paper [1] is similar to other papers 

such as [2], [3] and [4] which all have some variation of modeling process which predicts the 

finished product.  These models are not reviewed in depth in this work due to a slightly different 

focus.  This research is focused solely on the creation of the powder bed.  Therefore, the 

information in this paper is the foundation on which the other research can be conducted. 

Discrete Element Method 

The use of the discrete element method (DEM) began in 1979 by Cundal et. al. [5].  Their new 

method was to track the contact forces of a given particle throughout the entire simulation 

process.  This idea has integrated itself into the simulation of powder beds.  There are several 

different approaches that have been used in an attempt to model a powder bed using this method.   

Each of the DEM models starts out in a very similar way.  To begin either one particle is selected 

and placed arbitrarily above the container as in [6] or multiple particles are generated and placed 

over the container as in [7].  These particles are selected to have different distributions.  Some of 

the more rudimentary approaches use a mono-sphere approach.  The more elaborate models use 

a distribution of radii to determine the size of the particles.  The most common distribution is a 

normal distribution centered on the mean particle size.  Once the particles are created, they are 

released and allowed to fall depending on the forces that are being used by the current 

simulation.  All of the models that were found had several of the basic forces in common but, in 

an attempt to increase the accuracy of the model, some authors have added other forces which 

manifest themselves in smaller amounts.  To begin, the major forces which are present in all of 

the simulations include the force of gravity, contact forces, and the force of friction.  In most 

cases these are represented by Newton's second law of motion which is shown in equation 1. [8] 

  

   

  
          

   

  
           

Where translational and angular velocities are represented by vi and ωi respectively.  Ii, Fi, mi and 

Ti represent the moment of inertia, total force, mass and torque of particle i.  Using Newton's 

1119



laws of motion the forces of friction, gravity, and contact forces can be determined.  These forces 

are then summed to determine the total forces on the particles. 

Some of the authors have then added some interaction forces to increase the accuracy of their 

model.  The two methods of calculating the interaction forces that have been found in the 

literature are the use of Van der Waals forces and JKR interaction model.  The Van der Waals 

forces which are used in [6] are shown in equation 2. 

  
  

  

    
       

Where A is Hamakers constant, which is material dependent, n is the number of particles, h is the 

distance between the particles, assuming that they are of the same size with radius R.  The other 

method of computing the interaction forces is to use the JKR.  This model of interaction was 

developed in [9] and used by [7] in the modeling of powders.  Equation 3 outlines the three main 

equations governing these interactions. 

     
   

   
                   

 

  
 

    
 

  
 

    
 

  
        

 

  
 

 

  
 

 

  
      

Where v is the Poisson ration, E is Young's modulus and E
*
 is a modified Young's modulus, R is 

the radius of every sphere in contact and R
*
 is a modified radius, α is the contact radius, and γ is 

the surface energy.   Many of the researchers prefer to use the Van der Waals forces due to the 

ease with which it can be implemented into the model.  However, this model cannot take into 

account any deformation that might occur due to strong interactions.  That is why some 

researchers have used the JKR model to simulate the interaction forces. 

Once all of the forces have been summed, it is simple to determine the direction and velocity at 

which a given particle will be moving.  These particles would then be moved depending on the 

time step that was applied.  Some of the authors, such as [6], used a constant time step which was 

found by using trial and error.  This method works but either wastes computational time when 

particles are not interacting very much or, does not have a high resolution when the particles are 

interacting a lot.  Therefore, one of the authors [10] used an adaptive time step which will only 

allow a particle to move a set amount and will not allow a change in force greater than a given 

amount.  This will result in less time lost computing when the particles are not interacting much.  

Overall, DEM is a robust model which can be applied to multiple situations but is very 

computationally expensive.  A representative group of papers is listed in Table 1 to demonstrate 

the results which were found.  It should be noted that [6] is only simulating the powder bed in 2 

dimensions, as opposed to 3 dimensions like the other papers.  It has been stated in [6] that this 

could increase the packing density by approximately by 25%.  Other DEM simulations that were 

found included [8], [11], and [12], all of which had the components similar to these DEM 

simulations and only varied slightly in their approach and the conclusions which they were 

attempting to draw. 
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Table 1: Summary of common DEM simulation 

Author Forces Used Results 

Siiriä, et. al. [10] Gravity, Contact Forces between 

particles and between particles and 

walls, friction between particles 

and between particles and wall 

Highest packing density 0.55. 

Friction coefficient had largest 

effect on the particle packing 

density 

 

Cheng, et. al. [6] Gravity, Contact Forces between 

particles and between particles and 

walls, friction between particles 

and between particles and wall, 

Van der Waals interaction forces 

Highest packing density 0.8696 

which did not take into account 

Van der Waals forces or friction. 

Van der Waals interaction forces 

and friction reduced the packing 

density substantially. 

Deng, et. al. [7] Gravity, Contact Forces between 

particles and between particles and 

walls, friction between particles 

and between particles and wall, 

JKR interaction model 

As the particle diameter is 

increased the density begins to 

reach equilibrium at 0.4 but, 

with smaller particles the density 

could be as high as 0.85 

 

Geometric Models 

Another prevalent model which is used to simulate the creation of a powder bed is known as the 

geometric model.  There are several different algorithms in the literature which are meant to 

create a powder bed quicker than the DEM models.  For this review, two methods will be 

outlined, but more can be found in [13], [14], [15], and many others. 

The first model outlined is by Han et. al. [16], which is referred to as a compression algorithm.  

To begin this method, the direction of compression must be given.  Once this direction is given, 

the volume to be filled with particles is filled with spheres randomly so that there is no overlap 

between any of the particles.  This is shown in figure 1a as the red spheres.  When this is 

completed, the volume is filled but the density is extremely low.  The next step is to compress 

the spheres together.  To do this a list of the neighboring spheres of each sphere is created and 

the distance which a sphere can move in the compressive direction is calculated.  The space is 

then updated, which moves the particles the smallest distance of all of the particles.  This is 

repeated until the difference in the initial and final potential energy is below a given tolerance.  

Once the particles have been compressed, a shaking algorithm is implemented.  This algorithm is 

similar to the compression except the compression direction is randomly selected from a set 

range of angles centered on the direction of compression.  This will ensure that the particles are 

at their absolute minimum potential energy.  This can be seen in figure 1b where all of the 

spheres are now at the bottom of the container.  This process is then repeated starting with 

refilling the container until the container is full.  A schematic can be seen in figure 1 which 

demonstrated this process at work.  In figure 1c the red spheres are those that have already been 
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placed and the green represent the refilling of the container.  They are compressed in figure 1d.  

This is repeated until the container is finally filled in figure 1h.  This model resulted in an 

extremely fast, 181 seconds, packing of over 26,000 spheres into a structure with a 0.5289 

packing density.    

 

Figure 1: Schematic of compressive algorithm [16] 

The other geometric method presented is from Jerier et. al. [17] and their method focused on a 

tetrahedral mesh into which the spheres are inserted.  After this mesh is created spheres are 

added at the nodes and at the centers of the edges, this can be seen in figure 2a.  The spheres 

which are on the nodes are given a radius which corresponds to the length of the shortest 

adjacent edge.  Whereas, the spheres at the center of an edge are given a radius of L/8 where L is 

the length of the edge on which they are positioned.  If these given radii are outside of the 

predefined rmax and rmin then the radius is either set to a random number within the range if it is 

too large or, set to rmin if the radius is too small.  Once this has been done, a sphere is placed at 

the barycenter of every triangle and tetrahedron in the mesh.  The last step to obtain a loose 

packing is to place a sphere at the midpoint of the barycenter and the nodes of each tetrahedron, 

which will result in figure 2b.  This results in a packing of the mesh which does not consider the 

boundaries of the mesh.  To fix this problem virtual spheres are created which approximate the 

external planes of the mesh.  Then, any sphere that contacts these spheres is eliminated, as seen 

in figure 2c. To obtain a greater packing density the structure is searched looking for the voids 
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which could be filled with smaller spheres.  This is done by finding where four adjacent spheres 

create a tetrahedral.  A fifth sphere is placed into the void which is created by the set of spheres, 

resulting in a much more dense packing which can be seen in figure 2d.  If this step is left out 

then the packing density of this model is only 0.45.  Overall, this method created a 0.75 packing 

density. 

 

Figure 2: Steps for creating powder bed using tetrahedral mesh [17] 

As can be seen from these two methods highlighted, in general the geometric method is a very 

computationally efficient method of creating a powder bed.  A multi-thousand particle powder 

bed can be created in a matter of minutes as opposed to other methods which could take days.  

However this method does have its negatives.  For starters, it does not create a mechanically 

stable powder bed.  Another issue with this system is that it does not return the contact forces 

and other forces that are present within the system.  For some applications this is the ideal way to 

model the powder bed. 

Comparison of DEM and Geometric Models 

When comparing these methods of modeling the powder beds there is no apparent way to 

determine which is the overall best method.  Each of the systems has applications in different 

sectors of research.  The basic similarities and differences are outlined in Table 2. 
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Table 2: Comparison of DEM and Geometric Simulations Features 

 DEM Geometric 

Time per Simulation Long Short 

Computational Efficiency Low High 

Mechanically Stable Yes No 

Inter-Particle Forces Recorded Yes No 

Stresses Recorded Yes No 

 

As Table 2 outlines, there are several different parameters that can be used to compare the 

various methods of creating a powder bed.  The first is the amount of time and the computational 

power which is required.  The geometric method exceeds the DEM method when analyzing these 

parameters.  This is because there is much more computational power required to compute the 

forces within the powder bed.  The means to evaluate these methods is to compare the 

computational times which are reported in several papers; this comparison can be seen in Table 

3.  Evaluating the table, one can see a drastic difference in the amount of time which is required 

for each of these methods.  To create a powder bed using a DEM simulation it is expected that at 

least an hour will be used if a powder bed of more than a hundred particles is studied.  Some 

methods are faster than others, but DEM is still a time-consuming method.  On the contrary, 

when using a geometric method, the slowest method was able to create a powder bed, with an 

order of magnitude more particles, in less than 2 hours.  This shows that if computational time is 

of the utmost importance then the geometric method should be the method of choice.   

Table 3: Comparison of computational time of DEM and Geometric Methods 

Author Method Used Results 

Cheng et. al. [6] DEM 2 hours for 9,000 spheres 

Siiria et. al. [10] DEM 1-10 hours for 100 spheres based on parameters used 

Mueller [14] Geometric 6,628 seconds for 61,991 spheres 

Han et. al. [16] Geometric 181 seconds for 26,787 spheres 

Jerier et. al. [17] Geometric 300 seconds for 35,000 spheres 

   

Another mode of evaluating these methods is to compare the packing densities and coordination 

numbers reported in the various papers.  To do this, a sample of the papers has been compared in 

Table 4 and Table 5 comparing the packing densities and coordination numbers respectively.  

When analyzing Table 4, it is clear that both of the methods yield packing densities that are 

similar to the experimental results.  The main difference in these results is that the packing 

density of the DEM methods is only dependent on the forces which are used in the model.  Since 

these forces are what dictate the packing density, the results are a better representation of the 

experimental results.  This is in contrast to the geometric model which can create a powder bed 

with a specific packing density.  In the geometric models, the packing density is used as a 

parameter which will stop the creation of the powder bed.  This leads to the necessity of either 
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performing DEM simulations or experiments to determine what values are appropriate for the 

packing density to be used in the simulation.   

Table 4: Comparison of packing densities of DEM and Geometric Methods 

Author Method Used Results 

Finney [18] Experimental Packing Density 0.636 (with particles of normal 

distribution) 

Deng et. al.  [7] DEM Packing Density 0.65 (with particles of singular 

diameter) 

Siiria et. al. [10] DEM Highest Packing Density 0.55 (with particles of singular 

diameter) 

Shi et. al. [19] DEM Stable Packing Density 0.578 (with particles of normal 

distribution) 

Jerier et. al. [13] Geometric Packing Density 0.7-0.4 based on user inputs (with 

particles of normal distribution) 

Mueller [14] Geometric Packing Density 0.59-0.37 depending on ratio of 

container height to particle diameter (with particles of 

singular diameter) 

Han et. al. [16]  Geometric Packing Density 0.5289 (with particles of normal 

distribution) 

 

Table 5 compares the coordination numbers of the various methods.  When reviewing a paper 

such as [20], it becomes obvious that there are multiple different values which have been 

reported in the literature.  This has led to different results based on several parameters, the largest 

factor is the material used.  For this reason, the value of the DEM solutions are usually assumed 

to be a more accurate estimate of the actual coordination number due to the method of the 

powder bed generation.  As can be seen from the data which is displayed in Table 5, the DEM 

solutions produce a coordination number which is slightly smaller than that of the geometric 

models.  The difference in these simulations can be again attributed to the methods used to 

generate the results.  In the DEM simulation, the model is a more realistic representation of the 

actual method of building a powder bed.  This results in a bed which has a coordination number 

more closely aligned with reality.  In the geometric method, the coordination number can be 

varied within the model by changing the initial parameters which determine when the program 

will end.  R.M. German in [20] reports that there can be a wide variance in the reported values 

based on the material and other variables.  Therefore, this parameter should be used as a decisive 

factor with caution. 
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Table 5: Comparison of coordination number of DEM and Geometric Methods 

Author Method Used Results 

Deng et. al. [7] DEM Coordination Number of 4-6  varying on Particle 

diameter (10-1000um) 

Shi et. al. [19]  DEM Stable Packing Coordination Number 5.97 

Jerier et. al. [13] Geometric Average Coordination Number 6 

Jerier et. al. [17] Geometric Coordination Number 4.75-7.5 based on particle sizes 

 

Due to the uniqueness of each model, various sectors of research rely on each of the models 

differently.  One area of study that relies heavily on DEM simulations is the concrete industry.  

This area of research is very interested in the stresses that are felt by the particles of the concrete 

which dictated the use of the DEM simulations to find the state of each particle.  On the other 

hand, for the use in modeling of powder beds for additive manufacturing it is usually only 

necessary to obtain a proper density and coordination number for the powder bed.  Therefore, in 

most cases, the geometric method would be the best option because it is computationally cheap 

and has a short time per simulation; which would allow for more time and computation power to 

be spent on modeling of the thermal processes which are taking place within the system.  The 

main problem with the geometric models is they contain an induced coordination number.  In the 

modeling of the powder bed additive manufacturing systems this is crucial because the 

coordination number is one of the key factors which dictate the flow of heat through the powder 

bed.  If a powder bed has a higher coordination number then heat will flow faster through the 

system, since heat travels faster by conduction than convection.  This problem can be mitigated 

by selecting a geometric model which mimics the coordination numbers which are reported in 

the literature from DEM simulations.   

Other Models 

There are a few other models which are not as commonly used as DEM and the geometric 

method.  These methods include, but are not limited to, the ballistic method powder bed 

generation, and the Monte Carlo simulation of powder beds. 

The ballistic method for creating a powder bed can be found in [21], [22] and others.  This model 

is a hybrid between the DEM and the geometric models.  In this simulation a particle is selected 

and given a random radius, and x-y coordinates and placed high above the container.  It is then 

moved down toward the powder bed until contact is made with either another particle or the 

floor.  If contact is made with the floor the particle is considered at its final location.  If it hits a 

particle then it is rotated about the place of contact until another contact is made.  After this 

contact, the particle is rotated about these two points of contact until a third contact is made.  

This is then considered its final location.  If the particle at any time contacts the floor or wall 

during these rotation it is then considered to be in its final location.  This method allows for a 

much faster simulation than the DEM method and allows for a seemingly more random packing 
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of the particles.  Based on the literature presented in [22] and the results presented, this method 

provides coordination numbers and porosities which are comparable to DEM simulation, 

geometric simulations, and experimental results. 

Another approach to creating a powder bed that has been shown in the literature [23] and [24] is 

the use of Monte Carlo algorithms.  Just as all of the other methods for powder bed creation this 

method varies depending on the author.  In general, this method begins with filling a domain 

with a specific number of particles.  These particles are given a random direction and distance to 

move.  This motion is considered valid if the particle does not come into contact with a wall or 

another particle.  This is considered a Monte Carlo step due to its use of random number 

generators to find the path and length.  This Monte Carlo step is then repeated a given number of 

times.  After the Monte Carlo steps are completed, the minimum distance between spheres is 

found to be δ.  The domain is then scaled down by a factor derived from δ and the simulation is 

run again.  This is method is completed until a specific packing density is created or the packing 

density between steps does not change more than a given threshold. 

Conclusion 

In general, all of these methods have been used to create powder beds which have been validated 

by experimental results.  As was stated previously, the use of each method is dictated by the 

results which are desired from the simulation.  The main factor which will determine the method 

used is the necessity of the contact forces.  If these forces are required, then DEM is the only 

method which can be used.  If these forces are not essential, then computationally it would be 

more efficient to use the geometric, ballistic, or Monte Carlo simulations.  These last simulations 

would be the best for modeling of additive manufacturing powder bed systems due to their low 

computational time and accurate model.  Overall, Table 2 can be used to help determine which 

method is the best for any given situation. 
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