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Abstract 
 
Selective laser melting (SLM) is a powder bed based additive manufacturing process to 
manufacture functional parts. The high-temperature process will produce large tensile residual 
stress which leads to part distortion and negatively affect product performance. Due to the 
complex process mechanism and coupling multi-physics phenomena, the micro-scale single laser 
scan modeling approach is not practical to predict macro part distortion since it demands an 
exceedingly long computational time. In this study, a temperature-based multiscale modeling 
approach has been developed to simulate material phase transition of powder-liquid-solid for fast 
prediction of part distortion. An equivalent body heat flux obtained from the micro-scale laser 
scan can be imported as “temperature-thread” to the subsequent layer hatching process. Then the 
hatched layer with temperature filed can be used as a basic unit to build up the macro-scale part 
with different scanning strategies. The temperature history and residual stress fields during the 
SLM process were obtained. In addition, the part distortion can be predicted with a reasonable 
accuracy by comparing with the experimental data.   
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1.  Introduction 
 

1.1 SLM process 
 
Selective laser melting (SLM) is a powder bed based additive manufacturing process, which 

is capable of producing functional parts in a layer upon layer fashion directly from CAD data 
[1,2]. Unlike other additive manufacturing processes such as selective laser sintering (SLS), 
SLM is able to produce metal parts with near full density and mechanical properties comparable 
to those by conventional casting and forming [3,4]. In the past decade, SLM has drawn great 
attentions in aerospace, automotive, biomedical, and energy industries [5-8]. 

 
In a typical SLM experiment setup, a powder layer is placed onto a substrate plate inside a 

building chamber with an inert atmosphere. A laser is used to fully melt the powder material in 
the selected area to achieve near full density. After one layer is deposited, another powder layer 
will be placed and melt until a part is produced. Serval defects usually exist in a SLM part. High 
temperature gradient due to the rapid heating and cooling generates high thermal stress and leads 
to part distortion and cracks [9]. Balling effect caused by high viscosity and the surface tension 
of the molten material may result in very poor surface finish [10]. Also, residual gas content, 
unmelt powder, and oxidized particle may also lead to porosity of the manufactured component 
[11,12]. 

 
 

1.2 Part distortion of SLM part 
 
Powder material is locally melted by moving laser during a SLM process. The uneven heat 

input as well as the rapid cooling of the material would generate large amount of tensile residual 
stresses in the component. Once the residual stress exceeds the yield point of the material will 
produce plastic deformation which leads to permanent distortion of the part. Part distortion due 
to tensile residual stress is one of the major defects of SLM parts. It not only reduces the part 
geometrical accuracy but also and detrimentally affects the functional performance of the end-
use parts. A post processing to fix the distortion would dramatically increases the manufacturing 
cost.  Experimental works have been done to investigate the distribution of the residual stress and 
the mechanism of part distortion. [13,14]. Several methods have been explored to prevent or 
reduce part distortion for a SLM process [9,15]. Preheating of the metal powder bed and the 
substrate is the most widely used method to reduce the part distortion during a SLM process.  

 

 

1.3 Assessment on current prediction methods 
 
Numerical modeling as a powerful tool has been widely used to predict residual stress and 

part distortion of the additive manufacturing processes. Simulation works have been done to 
predict residual stress and distortion of SLM parts on a small domain (usually single track or 
single wall).  Dai et al. [16] simulated the effect of powder-to-solid transition to investigate the 
residual stress and distortion of metal and ceramic powders at the micro-scale. Hodge et al. [17] 
studied the thermal and mechanical history of a SLM process on the meso-scale (12 layers of 
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powder). A volumetric moving flux was used to melt powder materials with material state 
change taken into consideration during the process. Aggarangsi et al. [18] explored the residual 
stress reduction method of a SLMed thin-wall structure by using a secondary moving heat flux to 
preheat the powder material in a finite element model. Heigel et al. [19] studied the thermal 
history and mechanical response of a single wall deposited on a single-side fixed substrate, the 
deflection history of the substrate was simulated and validated.  

 
Several studies predicted residual stress and part distortion in SLM on the macro-scale. 

Nickel et al. [20] applied a constant heat flux to heat an entire scan line at the same instant. 
Different scanning patterns were considered to predict the residual stress and distortion. Zaeh et 
al. [21] applied a uniform thermal load adjusted from experimental data to heat up 20 real layers 
at the same time to predict the temperature and residual stress distribution of a cantilever. 
Prabhakar et al. [22] directly applied a uniform heat source simultaneously to the whole layer to 
simulate the residual stress formation of tensile test coupons produced by electron beam melting 
(EBM) as well as the distortion of the substrate.  

 
 

1.4 Pressing issues and research objective 
 

It should be noted that a coupled thermal-mechanical analysis for several single scans at the 
micro-scale with a fine mesh model would take many hours or many days to complete, which 
depends on model size and computer performance. However, a practical SLM part on the macro-
scale requires millions of micro-scale laser scans which would dramatically increases the 
computational load for the numerical calculation of coupled analysis. Thus, it is extremely 
difficult to predict part distortion of a practical SLM part if every single scan is simulated even 
using a very powerful work station. 

 

A multi-scale approach is highly needed to achieve acceptable accuracy of part distortion and 
residual stress with low computational cost. The approach developed in this study divides a SLM 
process for a practical part into three scales, i.e., micro-scale, meso-scale and macro-scale. At the 
micro-scale, the material is melt by a single laser scan and the thermal history of the melt pool is 
recorded. At the meso-scale, the thermal history from the micro scale model is extended to a 
whole layer. At the macro-scale, a practical part is built layer upon layer by applying the thermal 
load developed from the meso-scale model. The three different length scales are integrated 
through the thermal history of the melt material via the “temperature-thread” method. The total 
number of elements can be reduced dramatically using the multiscale approach. And the total 
computational time for the integrated three scales is reduced significantly compared to the 
conventional modeling methods.  

 
The objective of this study is to develop a temperature-thread multi-scale finite element 

model for efficient prediction of practical SLM part distortion and residual stress by: (a) 
developing a novel equivalent heat source within a meso-scale model from a micro-scale laser 
scan model; (b) modeling the power-liquid-solid material state transition during the SLM 
process; (c) calculating the residual stress field and distortion of a practical part on a macro-scale 
model; and (d) validating the predicted distortion with the experimental data. 
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2.  SLM Experiment Conditions 
 

2.1 Process parameters 

The laser source in this study is a continuous Nd:YAG laser with a wavelength of  1064 
nm. The process parameters are listed in Table 1.  

 
Table 1  SLM process parameters 

 
Laser power Laser spot diameter Scan speed Scan spacing Layer thickness 

W μm mm/s μm μm 
300 600 50 100 150 

 

2.2 Material properties 
This study aims to predict part distortion and validate with the experimental data using the 

lab-made iron-based powders [4]. As the material properties of the powder are not available, a 
commercial powder from EOS GmbH named DirectSteel® is used to approximate the iron-based 
powders.  The comparison between the iron-based powder and DirectSteel® is listed in Table 2. 
Temperature-independent mechanical and thermal material properties of DirectSteel® are listed 
in Table 3. The substrate is a 1 mm thick steel plate. 

 
Table 2  Comparison of chemical composition between iron-based powder and DirectSteel®  
 

Powder material 
Fe Ni Cu P 

Ref. 
wt.% wt.% wt.% wt.% 

Iron-based powder 62.66 20 15 2.34 [4] 
DirectSteel® Powder 59.3  0.4 29.1  1.4 9.6  0.9 1.5  0.1 [23] 

 
Table 3 Material properties of solid DirectSteel® [24] 

 

Elastic Modulus Poisson's ratio Tensile strength Yield strength 

GPa - MPa MPa 

15.3 0.41 600 400 

Melting point 
Coefficient of 
thermal expansion 

Thermal conductivity Specific heat 

oC 10-6/K W/m∙K J/kg∙K 

1330 9 13 375 

 
 
3.  Multiscale Simulation Methodology 

 
In order to achieve efficient prediction of part distortion and residual stress fields with low 

computational cost, a temperature-thread based multi-scale finite element method has been 
developed. The temperature is transferred from the micro-scale model to the macro-scale model 
using the method. The procedure is shown in Fig. 1. 
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Fig. 1  Temperature-Thread based method for the prediction of distortion of SLM parts. 
 
First, the powder material is melt by a moving heat flux to calculate the temperature field of a 

molten pool in the micro-scale scan model. Thermal history of the melt pool is recorded. Second, 
an equivalent heat source is developed based on the thermal history in the micro-scale scan 
model, then heat load is directly applied to the meso-scale hatch model. Third, the thermal 
history of one hatch layer is applied to the macro-scale part model, and each hatch layer is 
activated one by one until the whole part is built. 

 

3.1 Micro Scan Model 
Model dimension and mesh 
In the micro-scale scan model, the commercial FEA package ABAQUS/Standard was used to 

perform a thermal analysis to predict the temperature field in the melt pool. Fig. 2 shows the 
mesh design. A half symmetrical model with respect to the X-Z plane was developed to reduce 
the computational time. The model consisted of two components: powder layer and substrate. 
The powder layer was 5 mm in length, 0.3 mm in width and 0.5 mm in thickness and modeled 
using a fine mesh with an element size of 50 μm (length) × 50 μm (width) × 37.5 μm (thickness). 
The substrate was 5 mm in length, 0.3 mm in width and 5 mm in height. A relatively coarse 
mesh for the substrate was used. The initial temperature of powder and substrate was set to room 
temperature 20 °C.  

 
Heat input modeling  
A moving Gaussian distributed heat flux is developed to model the heat input of the scanning 

laser in the micro-scale model. The Gaussian distributed heat input model was shown in Fig. 2. 
The heat flux was applied on the top surface of the powder layer by using ABAQUS subroutine 
DFLUX. The power intensity of heat source is determined by laser absorption coefficient ܣ of 
the powder material, laser power ܲ, laser spot size ݀௦ and the coordinates of the laser spot center 
(x, y). The heat flux moves along X direction (see Fig. 2) from point A to point B. The thermal 
history of the center point of scanning track AB can be recorded. 

 

Output 
 Melt pool geometry  
 Temp. history of the melt pool 

Micro laser scan model 
 Thermal analysis 
 Powder heated by moving heat flux

Meso layer hatch model 
 Thermal analysis 
 Equivalent heat input 
 Whole hatch heated at same time 

Macro part model 
 Thermal-mechanical analysis 
 Apply equivalent heat source 
 Applied hatch by hatch 

Output 
 Temp. history of one hatch  

Output 
 Residual stress field  
 Part distortion 
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Fig. 2  Model dimension, mesh, and heat input for the micro laser scan model. 
 
Material state transition modeling 
The material state transition (powder-liquid-solid) of a SLM process was modeled using 

ABAQUS subroutine USDFLD. A material state function of the part during the process was 
defined as ݂, as shown in Fig. 3. The starting material of SLM process in this study is iron-
based metal powder, the state function for powder is defined as ݂= 1. After the powder material 
was melt by laser, the material state was recognized as liquid ( ݂= 2). When the material re-
solidified after cooling down, the material state function was set to ݂= 3. Different material 
properties for powder, liquid and solid state were defined based on each corresponding material 
state functions. 

 
 

 
 

Fig. 3  Modeling of material state transition. 
 
The material state was identified by the current temperature ܶ, the maximum temperature  

ܶ௫ and the melting temperature ܶ of the material. When the maximum temperature of the 
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material during the entire process is lower than the melting temperature, the material state is 
identified as powder. When the current temperature of the material is higher than the melting 
point, the material state is identified as liquid. When the maximum temperature of the material is 
higher than the melting point while the current temperature is lower than the melting point, the 
material state is identified as solid. 

 
Temperature history output 
Fig. 4(a) shows the temperature contour of the melt pool when the laser is located at the 

center of the scan track. The thermal history of the melt pool center as shown in Fig. 4(a) is 
shown in Fig. 4(b). The rapid heating and cooling process of the material which are completed in 
mini-seconds was achieved. 

 

 
 

Fig. 4  Temperature contour in the melt pool and temperature history at center of the melt pool. 
 

3.2 Meso Hatch Model 

 
Scan spacing 
Scan spacing is an important process parameter in SLM. It determines the length of overlap 

between two neighboring scan tracks. A large scan spacing would result in unmelt of the metal 
powders, which could form pores and decrease the density of the part. On the other hand, a small 
scan spacing represents a higher energy input per unit area, where the metal powder could be 
molten sufficiently. In this study, the scan spacing was incorporated in the equivalent heat source 
model. The shape of the melt material underneath the laser spot was semi ellipsoid. In the meso-
scale model, it was simplified to a cuboid with a length of laser spot diameter, a width of scan 
spacing, and a depth of melt pool. The equivalent body flux was defined as the power density 
(w/m3) which represents the input power for unit volume of melt material. 

 
Equivalent heat source modeling 
Based on the thermal history of the melt pool from the micro-scale model, an equivalent heat 

source model was developed as shown in Fig. 5. The heat input was modeled by a body heat flux 
 ,laser spot diameter ݀௦ ,ܣ which is associated with laser power ܲ, laser absorption coefficient ݍ
melt pool depth ݀, and hatch spacing ܪ. The body heat flux q was given by Eqn. (1): 
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ݍ ൌ

ܣ ∙ ܲ
݀௦ ∙ ݀ ∙ ܪ

 (1) 

 

 
 

Fig. 5  Equivalent heat source modeling approach for meso layer hatch model. 
 

3.3 Macro Part Model 

 
Model dimension and mesh 
In the macro part model, one powder layer was deposited on a substrate. The substrate was   

a steel plate with the dimensions of 1mm (thickness) × 45 mm (length) 22 mm (width). The part 
dimensions were 35 mm (length) × 15 mm (width) × 0.15 mm (height) (Fig. 6). In the part 
region, a fine mesh with an element size of 250 μm (length) × 250 μm (width) × 50 μm 
(thickness) was used. In the substrate region, a coarse mesh was used to reduce computational 
time. The initial temperature of powder and substrate was set to 20 °C. 

 

 
 

Fig. 6  Mesh design and part dimension in macro part model. 
 
Boundary conditions 
Three heat loss mechanisms were considered in the macro part model, i.e., heat conduction to 

the substrate, the heat convection of the melt pool to the surrounding powder bed and 
atmosphere, and the heat radiation to the atmosphere. The details of heat transfer modeling were 
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shown in Fig. 7.  In order to simulate the deformation of the part after the SLM process, the two 
sides were both fixed during the process and then released after the process was finished. 

 

 
 

Fig. 7  Heat transfer modeling and boundary conditions in the macro part model. 
 
Part build-up modeling 
The scanning strategy in the SLM experiment [4] is a sequential scan pattern (totally 70 

scans) as shown in Fig. 8(a).  In this study, the sequential pattern was simplified by using an 
equivalent heat input model as shown in Fig. 8(b). The scanned area was divided into seven 
zones: from #1 to #7. The #1 zone was heated by the equivalent body heat flux and then cooled 
down for ten seconds. Same heating strategy was applied to other 6 zones sequentially.  

 

 
 

Fig. 8  Scanning pattern applied to the macro part model. 
 

Fig. 9 shows the temperature history of four locations on the top surface of the part. All 
selected locations were on the boundary of corresponding scanned zones. The first peak 
temperature for each location was from the heating process of the scanned zone, and the second 
peak temperature was caused by the heating process of next scanned zone. Since the second peak 
is higher than material melting temperature, the material located on the boundary of the two 
neighboring scanned zones will be re-melt during the heating of the next scanned zone. 
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Fig. 9  Temperature history of the selected locations on the top surface of the part. 
 
 
4.  Model Validation and Discussions 

 

4.1 Part distortion 

 
In the experiment, the distortion (in the normal direction of the top surface) of the substrate 

was measured on the unprocessed side. In the simulation, a nodal path located at the bottom 
surface of the substrate along the distortion direction (Z) was created as shown in the dash line in 
Fig. 10. The distortion in the Z direction along this nodal path was normalized and compared to 
the measurement (Fig. 10). The prediction and experimental data show a similar bending trend. 
A concave up shape curve was observed. The formation of this curve is due to the thermal 
history of the part and the substrate. At first, the material located in the upper layer of the part 
expanded because of the laser heating. As the material cools down, the plastic strain in the upper 
layers became smaller than the lower layers. Finally, a concave shaped distortion was formed. 
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Fig. 10  Part distortion prediction vs. the experimental data. 
 

Fig. 11 shows the distortion history for the center location of the substrate bottom surface 
during the entire SLM process. A maximum distortion value of 0.35 mm was observed. Seven 
peaks in the plot represent seven heating processes for each hatch. The followed seven flat lines 
as shown in Fig. 11 mean the cooling process of the model. During every heating process, the 
bottom surface moves towards the laser beam (+ Z direction). During the every cooling process, 
the bottom surface moves away from the laser beam (- Z direction). 

 

 
 

Fig. 11  Distortion history for the center location of the bottom surface. 
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4.2 Residual stress 

Fig. 12 shows the von Mises residual stress contour and Fig. 13 shows the six stress tensor 
components of the part residual stress after cooling down to room temperature. The maximum 
von Mises stress (583 MPa) is located on the top surface of the part.  And it is higher than the 
yield point which means plastic deformation occurs after the process. Stress concentration was 
observed at the edge of the part. 

 

 
 

Fig. 12  von Mises stress contour of the part after cooling down to room temperature. 

 

Large amount of tensile residual stresses in X and Y direction were observed on the top 
surface of the part as shown in Fig. 13(a) and Fig. 13(b). The residual shear stresses S33, S12, S13, 
and S23 were negligible compared to the normal residual stresses S11 and S22. It is because most 
of the deformation of the part and substrate occurred in X and Y direction. 
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Fig. 13  Residual stress contours (w. substrate). 

 

 Fig. 14(a) shows residual stress S11 profile in depth direction. The node path was located at 
the center of the model. The maximum tensile residual stress was found on the top surface of the 
part, and the tensile stress decreases as the depth increases. A sudden change of residual stress 
(S11) was found on the boundary between the part and substrate, changing from tensile (+240 
MPa) on the part to compressive (-170 MPa) on the substrate. The predicted residual stress 
profile was very similar to the typical simplified residual stress profile in depth direction [13].  
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Fig. 14  Residual stress profile in depth direction: (a) predicted residual stress profile and the 
node path; (b) simplified residual stress profile on a substrate (redraw from [13]). 

 
 
5.  Conclusions 

A temperature-thread based multiscale modeling approach has been developed for efficient 
prediction of part distortion in SLM. Thermal information has been transferred through the 
micro-scale laser scanning to meso-scale layer hatching and the macro-scale part build-up. The 
predicted distortion was verified by the experimental data. The key findings are summarized as 
follows: 

 
 An equivalent heat source has been developed from the thermal history of melt pool 

in micro-scale laser scanning model and applied to the meso-scale hatch layer, which 
are incorporated in the macro-scale part to predict part distortion.  

 The material state transition phenomenon (powder-liquid-solid) during the SLM 
process was modeled using different field functions based on the material’s current 
temperature, maximum temperature, and melting temperature. 

 Tensile residual stress with a value near the yield point of the material was found on 
the top surface of the part. A typical residual stress profile in depth direction for a 
SLMed part was predicted. 
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