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Abstract 

Powder-bed based Additive Manufacturing is a class of Additive Manufacturing (AM) 
processes that bond successive layers of powder by laser melting to facilitate the creation of parts 
with complex geometries. As AM technology transitions from the fabrication of prototypes to 
end-use parts, the understanding of the powder properties needed to reliably produce parts of 
acceptable quality becomes critical. Consequently, this has led to the use of powder 
characterization techniques such as scanning electron microscopy (SEM), laser light diffraction, 
x-ray photoelectron spectroscopy (XPS), and differential thermal analysis (DTA) to both 
qualitatively and quantitatively study the effect of powder characteristics on part properties. 
Utilization of these powder characterization methods to study particle size and morphology, 
chemical composition, and microstructure of powder has resulted in significant strides being 
made towards the optimization of powder properties for powder-bed based AM processes. This 
paper reviews methods commonly used in characterizing metallic AM powders, and the effects 
of powder characteristics on the part properties in these AM processes. 

1 Introduction 

Additive manufacturing (AM) is a layer-based approach used for the creation of parts 
directly from Computer-Aided Design (CAD) files. Rather than utilize subtractive methods to 
remove material from a larger piece, parts are built by bonding successive layers of material 
typically through heat input, a binder, or by chemical means [1–3]. This new approach facilitates 
the production of components with high geometrical complexity that would otherwise be 
impossible to create through conventional manufacturing processes [4,5]. Although many 
different AM process variations exist [6–10], it is important to realize that all can be categorized 
according to the state of the starting material: liquid, solid, and powder [3]. Yet, the existing 
literature indicates that many of the successful attempts to produce functional AM components 
stem from using powder as the raw input material [11]. 

This is due to the advantages that powdered material has when compared to liquid and 
solid starting materials. One of the major benefits is its ability to serve as a support structure [1], 
as is the case in the Selective Laser Sintering/Selective Laser Melting (SLS/SLM) and Electron 
Beam Melting (EBM) processes. Other reasons stem from its flexibility in powder mixing to 
produce parts of various chemical composition [12], and the potential for direct recycling to 
yield little to no waste material [13].  
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Due to these reasons as well as the overwhelming desire to produce functional 
components, a great deal of focus has been centered on the use of metallic powders in the 
SLS/SLM, EBM, and Direct Metal Deposition (DMD) processes. Among others, Ti-6Al-4V 
[17–19], 316L stainless steel [20–22], 17-4 PH stainless steel [23–25], IN625 [26–28], and 
IN718 [29–31] are some of the most commonly studied materials. The use of Ti-6Al-4V is 
prominent in aerospace and medical applications where the combination of its strength and 
lightweight properties prove extremely attractive for components such as gas turbines and 
airfoils [32] as well as hip joints and bone plates [33]. IN718 is also used in aerospace 
applications in addition to pumps and tooling where high temperatures and fatigue are often 
encountered [29]. Due to its versatility, 316L stainless steel is used in a large variety of areas 
including aircraft, automotive, and medical industries [20]. 

Although the use of powder in AM is quite common, optimization of powder properties 
(such as those shown Figure 1) to yield desired performance characteristics has posed a serious 
challenge to researchers. This complication not only stems from the dependence of powder 
behavior on both the bulk solid properties and their interaction with the AM system during the 
build process [31], but also the underlying physics of particle to particle consolidation [2]. The 
impact of particle size, shape, and surface roughness in powder-bed fusion processes has been 
observed in several studies [11,32–36] to conclude that morphological properties of powder 
influence the density of powder after deposition onto the build platform, sintering kinetics 
between particles, and the surface roughness and density of manufactured parts. Thus, it is 
critical that powder properties be studied and controlled to ensure reliability and repeatability of 
the components that are produced. Although many studies have been conducted, a lack of 
understanding regarding the effects of initial particle characteristics on the properties of built 
parts still exists. As the AM industry matures and the desire to produce functional AM 
components increases, the need to close this knowledge gap becomes clear [2,37–39]. 

Accomplishing this task warrants the use of powder characterization techniques. Table 1 
gives a listing of commonly used powder characterization methods in AM, and organizes each 
into three categories: particle morphology, particle chemistry, and particle microstructure. When 
selecting and/or optimizing a powder for any given process, it is imperative that each is 
considered. In AM, this approach is rarely ever taken. Instead, a powder that is deemed suitable 

Figure 1: Classification of Powder Properties 
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in terms of size and chemistry is chosen whereby the process parameters are then optimized to 
yield parts of acceptable quality. However, it must be realized that if AM processes are ever to 
rival traditional manufacturing methods, tuning of powder properties must also be regarded as 
necessary. This can only be accomplished through the use of powder characterization methods to 
correlate powder characteristics to material properties. In this paper, an overview of the powder 
characterization efforts in AM of metallic components aimed at understanding the effect of 
material characteristics on part properties is given, as well as pertinent research needs regarding 
future characterization of powders 

2 Powder Morphology 

Particle morphology refers to the size, shape, and surface roughness of particles. In AM, 
it is well known that all of these characteristics play a significant role in powder performance 
including flowability and packing efficiency, and thus impact the final component properties. 
The focus of this section is to discuss the most commonly used powder characterization 
techniques used in the morphological characterization of powders in AM, and to highlight the 
research that has been performed which utilizes these methods to quantify and predict powder 
performance characteristics in powder-bed fusion processes. 

2.1 Sieve Analysis 

Size determination by sieving is one of the oldest methods to measure particle size, albeit 
it is one of the most widely used due to its simplicity and low cost. In practice, a stack of sieves 
with decreasing mesh size from top to bottom is shook or mechanically vibrated. Depending on 
the size of the particles, each mesh will retain powder comprised of particles larger than the 
mesh size. In order to extract particle size distribution data, the mass of powder on each mesh is 
measured and reported corresponding to the size range, or bin size, in which it was found [40].  

Although this method is simple requiring minimal sample preparation, it is important to 
note that there are inherent drawbacks with the overall approach. First and foremost, the 
resolution of the particle size distribution curves generated is determined by the differences 
between adjacent mesh sizes. Therefore, if it is desired to increase the accuracy of particle size 
distribution data obtained through sieving, the bin size must be decreased. This will not only 
increase the cost of the measurement process, but also the time necessary to perform the size 
analysis. Exacerbation of this problem also occurs when particle size ranges are below 50 µm 
where meshes become considerably more expensive and the propensity for particles to 
agglomerate drastically increases yielding inaccurate results [41]. The problem of agglomeration 
can cause blinding of mesh apertures where particles smaller than a given mesh size are no 
longer able to pass through due to clogging of the mesh. If this problem persists unbeknownst to  
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Table 1: Common Powder Characterization Techniques used in Additive Manufacturing 
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the operator, a large quantity of powder can be collected on a single mesh where its weight can 
potentially increase the size of the mesh openings thereby causing erroneous results [42]. 

Due to these limitations coupled with the common use of fine powder in powder-bed 
fusion processes, sieve analysis is not as commonly used as other size determination methods, 
such as microscopy and laser diffraction. However, it is more likely to be utilized in EBM and 
SLS with typical particle size ranges of 45 µm - 106 µm and 20 µm - 150 µm, respectively, 
rather than SLM (15 µm – 80 µm) since the particle size ranges are typically more coarse. 

2.2 Microscopy 

Microscopy is a powerful tool that is commonly used in AM due to its capability to 
quantitatively measure particle size. This is accomplished by the use of microscopy-based 
instruments such as optical light microscopes, scanning electron microscopes, and transmission 
electron microscopes [42] to directly observe particles. Due to this very reason, this technique is 
often treated as a reference method to other size distribution techniques when studying powder 
morphology [43].  

Typically, the images obtained are post-processed to calculate equivalent diameters of 
particles based upon the two-dimensional projected area of the particles in the collected 
micrographs (Figure 2). Although a two-dimensional approach to calculate particle size may not 
be the most accurate, it is widely accepted in the AM industry because it provides the most 
versatile approach in particle analysis. This is due to the ability to study powder particles not 
only in terms of size, but shape and surface roughness [44] both qualitatively and quantitatively. 
Due to the sizes of particles used and the reliability of the method, analyzing particles from SEM 
micrographs is a widely used method in AM to determine particle size distributions, although 
post-processing of the images can be very time consuming. SEMs equipped with automated 
feature analysis have offered the advantage of reducing the time for analyzing these micrographs. 
There is, however, a lack of agreement on the minimum number of particles needed in order for 
these results to be acceptable [43].  

Figure 2: Method of projected area for particle size determination by microscopy. The 
micrographs containing the particles under observation are converted to binary where the 
projected area for each particle is measured by the amount of black pixels present. 
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2.3 Laser Light Diffraction 

Another widely used particle size determination technique is laser diffraction, which is a 
class of non-image based instruments that analyze the diffraction pattern of laser light when 
shining through a dispersed medium of particles (Figure 3). In order to process the diffraction 
pattern, it is assumed that the scattering pattern on the detectors is comprised of the superposition 
of scattering patterns formed by each particle in the sample. Deconvolution of the obtained data 
is then performed by various algorithms including Mie Theory, Fraunhofer approximation, and 
Rayleigh scattering which are all based on the solution to Maxwell’s equations for 
electromagnetic radiation for a perfect sphere. The algorithm utilized depends on the relative size 
of the particles in the sample with respect to the wavelength of the incident light [42]. Although 
this method provides the ability to measure a large number of particles in a relatively short 
amount of time to obtain a statistically significant particle count, it’s assumption of a perfect 
sphere can be misleading in the case of highly irregular particles or those with high aspect ratios. 
However, this is rarely a problem in powder bed fusion processes since highly spherical particles 
are the most commonly used.  

Figure 3: Typical Schematic of a Laser Diffraction [42] 

2.4 Influence of Particle Size and Size Distribution on Part Properties 

In any powder-based manufacturing process, the determination of particle size and size 
distribution is essential since these powder characteristics have a large effect on the properties of 
the parts built including the mechanical strength, porosity, and surface finish. While the 
chemistry and microstructure of powder can influence part quality as well, powder morphology 
is typically the most studied in AM when initial input material characteristics are correlated to 
the manufactured component properties.  

The selection of particle size for any given powder-based manufacturing process stems 
from the desired properties of the components that are to be produced. In powder-bed fusion of 
metals, some of the most sought after part properties are a near one-hundred percent relative 
density and a smooth surface finish, both of which are directly dependent upon the size and size 
distribution of the particles used. In turn, the particle size determines the minimum layer 
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thickness and the minimal size of the part features that can be built [45]. If the layer thickness is 
greater than the maximum particle size, all of the powder particles regardless of size will be 
deposited into the build volume. Conversely, a layer thickness that is smaller than the maximum 
particle size leads to a preferential deposition of a finer distribution of particles. Therefore, the 
desired layer thickness serves as a limit to the maximum particle size that should be specified 
within a given powder [46]. Abd-Elghany et al. [47] describes this interaction between the wiper 
and powder particles and ultimately its effect on the solid density of 304L stainless steel parts 
produced by SLM. The results showed that an increasing layer thickness leads to a decrease in 
the density of manufactured parts due to a reduction in density of each powder layer as illustrated 
in Figure 4. It was also found that an increased layer thickness led to rougher surfaces on parts 
due in part to the larger particles that were located in the powder bed and were unable to be fully 
melted.  

In order to combat the issues of low density and high surface roughness, fine powders 
within the size range of 15 µm to 150 µm are often employed. In addition to there being a limit 
to the maximum particle size, constraints should be imposed on the minimum particle size as 
well. Although a decreasing particle size can have advantages in regards to increased particle 
packing [48,49] and reduced surface roughness [50,51], one of the major drawbacks of fine 
powders is its propensity to agglomerate [11,52,53]. This can prove to be detrimental in powder-
bed fusion processes since agglomerates can impede flow behavior [54,55] of powder by 
increasing interparticle friction during the recoating process. Both a decreased density and 
inhomogeneity in each of the layers can therefore result where more material may be deposited 
in one region than others. Such an effect can cause balling in regions where there is locally more 
powder leading to an increased likelihood of undesired porosity [56–59]. Since agglomerates can 
assume irregular shapes, the laser or electron beam interacts differently when compared to 
spherical particles. In fact, it was demonstrated by Olakanmi [33] that pore formation in the SLS 
of Al, Al-Mg, and Al-Si powders was increased by the appearance of irregularly shaped particles 
in the density of sintered parts in the SLS process as a result of the differences in laser-material 
interaction of irregularly shaped particles compared to spherical particles. This difference in 
laser-material interaction was also observed by Simchi [11] who found that the gradual 
decreasing of particle size does not always lead to higher densification of as-built parts, as what 

Figure 4: Image reconstructed from Abd-Elghany et al. [47], (a) Layer thickness of 30 µm 
corresponding to a high density of powder particles and (b) Layer thickness of 70 µm 

corresponding to a low density of powder particles 
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is most commonly believed; in addition to agglomeration of powder, it was apparent that the 
reflectivity of the powder bed increases with decreasing particle size causing less absorption of 
laser power.  

Although small particles can cause problems with flowability of material, they can also 
lead to higher packing efficiencies. In powder-based AM, the density of each layer should be as 
high as possible to reduce residual stresses in parts. One way to optimize powder bed density is 
through tailoring the particle size distribution of a powder so that the smaller particles can fill the 
voids between the larger particles. However, optimization of particle size distribution to yield 
superior packing characteristics [60] ex-situ of the build environment does not directly translate 
to a maximum powder bed density [48]. This is a direct result of the interaction between the 
powder and the wiper during the recoating process and is denoted as the flowability of a powder. 
Although powders with wide particle size distributions can increase the packing efficiency, it is 
known that they also have decreased flowability [61]. Therefore, when compared to conventional 
powder metallurgy processes, narrow particle size distributions are used in AM to decrease 
interparticle friction and maximize flowability while also retaining high apparent densities [62]. 

In the SLM process, Bochuan Liu et al. [51] observed the effect of particle size 
distribution on the mechanical properties of parts including the following: solid density, surface 
roughness, and ultimate tensile strength some of which were created from a narrow (15 – 60 µm) 
particle size distribution and others from a wide (1 – 60 µm) particle size distribution. It was 
found that parts made from the narrow size distribution have a higher ultimate tensile strength 
and hardness while those with the wide size distribution have higher density and less surface 
roughness. Similarly, A.B. Spierings et al. [34,50] found that the particle size distribution 
ultimately determines the density of the developed parts, and thus has a major impact on the 
mechanical properties. In particular, powders containing more fines correlated to smoother part 

Figure 5: 304L Stainless Steel Powder, (a) Micrograph of 304L Stainless Steel Powder, (b) 
Spherical Particle, and (c) Oddly Shaped Particle 
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surfaces while those with larger particles showed higher elongations during tensile testing. 
Simchi [11] also studied the effect of differing particle size distributions of iron powder on the 
properties of selectively laser sintered parts. It was found that particle size has a profound effect 
on the porosity of SLS manufactured iron parts with their being an optimum mean particle size to 
produce parts with the highest fractional density. 

Even with the information generated from the aforementioned research, specification of 
an exact particle size distribution for a given material is extremely difficult. Not only does the 
optimal size distribution of a powder depend on the machine and process parameters, but also on 
the method of size measurement as well. In fact, it is important to realize that measurements of 
particle size are highly dependent upon the measurement technique as well as the particle shape 
[53]. For instance, consider Figure 5 which shows an SEM image of a 304L stainless steel 
powder sample. Most of the particles shown are spherical (5b) with a diameter no greater than 50 
µm. The size of spherical particles is rather easy to describe since only the diameter of the 
particle is needed. However, deviation from a spherical shape (Figure 5c) immediately 
complicates the measurement procedure as no one single dimension can completely describe its 
size. To simplify the problem, irregularly shaped particles are either 1) transformed to a sphere 
typically by measuring the projected area of particles through microscopy, or 2) assumed to be 
spherical so data obtained through laser light diffraction or gravitational sedimentation 
techniques can be used to calculate equivalent diameters [42]. Therefore, particle size 
determination is subjective thereby making it imperative that the measurement procedure is 
explained whenever size information is reported. 

2.2 Effect of Particle Shape and Surface Roughness 

The size of particles is not the only morphological factor when looking to achieve high 
density parts through powder-based AM; rather, it is also a combination of the particle shape and 
surface roughness. Describing the shape of particles both qualitatively and quantitatively can be 
extremely challenging, especially if the particles are highly irregular and show no resemblance to 
primitive shapes. Nevertheless, qualitative descriptions of powder particles have been 
standardized [63] and are used as a means to describe the general shape of powder particles. On 
the other hand, quantification of particle shape still proves to be a challenge. Many researchers 
approach this problem by formulating equations that yield dimensionless ratios, more commonly 
known as shape factors. Throughout the literature there exists numerous shape factors [64], some 
of which are listed in Table 2.  

Although it is common knowledge that particle shape and surface roughness influences 
part properties, the exact effects of these initial powder characteristics on additively 
manufactured components are still not fully understood. To combat this issue, Strondl et al. [65] 
studied the effect of particle shape on the flowability of bulk powder in both the selective laser 
melting (SLM) and electron beam melting (EBM) processes. It was determined that a more 
spherical particle shape yielded less internal friction in the powder allowing it to be more easily 
deposited to obtain higher layer densities. By continuously recycling powder and tracking its  
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evolving shape characteristics after reuse, it was also found that even slight changes in the aspect 
ratio of the particles can drastically change the flow behavior and degrade the properties of the 
manufactured parts. 

Similarly, Sun et al. [31] used the circularity shape factor to study the evolving 
morphology characteristics after continual reuse of powder in the EBM process. It was found 
that the average circularity of the powder decreased due to the appearance of agglomerates after 
successive build iterations. This resulted in more interparticle friction decreasing the flowability 
of the recycled titanium powder. Additionally, an external powder deposition system was created 
to study the influence of the recycled powder on its deposition in the powder bed; virgin powder 

Name of Shape Factor Equation Reference 

Circularity 
 

[66] 

Aspect Ratio  [67] 

Elongation  [41] 

Dispersion  [41] 

Roundness  [68] 

Flatness  [68] 

Perimeter to Area Ratio  [69] 

 A – Projected area of particle 
 P – Perimeter of particle 
  l – Minor axis length perpendicular to major axis 
 L – Major axis length connecting two most distant point on the projection area A 
 a – Major axis length of Legendre ellipse of particle 
 b – Minor axis length of Legendre ellipse of particle perpendicular to a 
𝑟𝑟1 – Radius of curvature of sharpest developed edge of particle 
𝑟𝑟2 – Radius of curvature of most convex direction of particle 
 R – Mean radius of particle 

Table 2: Various Shape Factors used for Particle Shape Characterization 
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was determined to provide the most uniform layers where the recycled powder showed powder 
density irregularities in the build area. 

The results of the aforementioned studies both imply that powder-bed based AM 
processes can be very sensitive to the appearance of irregularly-shaped particles since they 
directly affect how the particles interact and flow together as a bulk solid. Therefore, highly 
spherical particles with smooth and dry surfaces [48] are desired as these are known to provide 
the least amount of interparticle friction equating to the best flowability characteristics [70,71]. 
Consequently, the circularity and aspect ratio are by far the most commonly used shape factors in 
powder-based AM since most of the powder utilized is spherical. Although, it is important to 
note that the degree of sphericity depends on the powder manufacturing process (Table 3). 

Table 3: Powder Characteristics Observed from Different Manufacturing Processes [72] 

Surprisingly, the means by which a powder supplier creates powder for its customers is 
not always initially known and may require further inquiry. Since morphological characteristics 
of powders differ between manufacturing processes, it is important for quality control purposes 
to ensure that the powder ordered with the given specifications is the powder received. 
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3 Powder Chemistry 

Powder chemistry refers to the elemental composition of the powder samples. 
Characterization of a powder particle’s chemistry is an essential property to study as it can have 
a significant effect on the properties of the final part. Powder chemistry can be broken down into 
surface chemistry and bulk chemistry. The surface chemistry is seldom the same as the bulk 
chemistry, making its accurate determination critical to comprehensive powder characterization. 
The surfaces of powder can also differ greatly from the surfaces of the same material in bulk 
form. For example, stainless steels are known to have a protective Cr2O3 oxide film of 
approximately 1-3 nm thick [73]. However, gas-atomized stainless steels have been shown to 
have some Cr2O3 on their surfaces, but mostly manganese oxides and iron oxides [74]. Bulk 
chemistry validation is necessary to accurately characterize powder chemistry. This becomes 
exceedingly important when undergoing recycling studies or using processes that can change the 
bulk chemistry of the powder. Bulk chemistry validation is needed to ensure that the recycled or 
tailored powders stay within their alloy designations or have acceptable purity. Many techniques 
are available to determine the chemistry of the surface layers as well as the bulk of the powder. 
The choice of an appropriate technique is made in regards to the required accuracy of the data as 
well as the elements that are present that need to be detected [75].   

3.1  X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for 
chemical analysis (ESCA), is a surface elemental analysis spectrographic technique. In an XPS 
analysis, a sample is bombarded with x-rays causing K level electrons to be ejected and the 
kinetic energy of these resultant photoelectrons are measured. The binding energy of the 
photoelectron is determined and it is characteristic of the element, orbital, and chemical 
environment that the photoelectron was ejected from [76]. In addition to XPS’s ability to acquire 
quantitative information about the elements that are present, it can also give quantitative 
information about the oxidation state of those elements. XPS is able to detect all elements except 
for hydrogen and helium. Due to the detection of photoelectrons, the depth of analysis is 
generally 1-3 nm [75].  

XPS has been used to determine the elemental composition and oxidation states of the 
surface layers of powder particles [38]. XPS instruments also allow for ion sputtering to a 
particular depth for analysis. A depth profile can be constructed where spectra are taken 
sequentially after set times of sputtering, yielding a graph of elemental composition versus 
sputtering time. The sputtering time can then be correlated to a depth of sputtering and the oxide 
layer thickness can be determined. Although this is complicated with the use of alloys and non-
flat surfaces, the method has still seen use with powders [77].  
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3.2 Auger Electron Spectroscopy 

Auger electron spectroscopy (AES) is another surface sensitive, quantitative technique 
that has been applied to metal samples [78].  In AES, an electron beam is used to probe the 
surface of the sample, where a series of electron transitions results in the ejection of an L level 
electron, i.e. the Auger electron. Figure 6 shows the difference between the electron that is 
analyzed in AES versus XPS. AES is primarily used to determine elemental information about 
the sample. AES offers the ability to quantitate all elements apart from hydrogen and helium 
where the analysis depths is typically less than 2 nm [75]. Traditionally, both XPS and AES can 
be used as a means to determine the thickness of the oxide layer by depth profiling and they are 
often used in conjunction [77,79].  

Figure 6: The Photoelectron Emission During (a) XPS and an (b) Auger. In XPS (a), the incident 
x-rays cause the ejection of a K level electron and the resulting photoelectron is detected. In 
Auger (b), an electron is excited (by an electron beam) to a higher energy level and the transition 
of the L level electron to the open K level position causes an Auger electron to be emitted. 

3.3 Energy Dispersive X-Ray Spectroscopy 

Energy dispersive x-ray spectroscopy (EDS or EDX) is a widely used technique as a 
semi-quantitative elemental analysis for a variety of materials and samples, including powders 
[79–82]. Commonly, EDS instruments are inside an electron microscope, meaning samples must 
be polished and etched prior to the analysis. During an EDS analysis, either an electron beam 
(electron microscope) or an x-ray beam (x-ray fluorescence) is used to excite the sample surface. 
The resulting ejected x-rays are detected that can be assigned to specific elements. EDS serves as 
a qualitative elemental analysis when using the peak locations to determine the elements present. 
Semi-quantitative information can be determined by measuring the peak heights while 
quantitative information requires the use of a standard of known chemistry. EDS offers several 
advantages including their relatively simple construction and ease of use. However, EDS is 
generally seen as an estimation tool and more rigorous techniques are required if accurate 
elemental analysis is needed. This technique also has been found to work better for flat surfaces, 
making accurate chemistry determination on powders difficult to achieve.  

1016



©2016 The Department of Energy’s Kansas City National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0002839. 

3.4  Inductively Coupled Plasma Optical Emission Spectroscopy 

Inductively coupled plasma optical emission spectroscopy (ICP-OES, ICP-AES, or ICPS) 
is a spectrographic technique that uses plasma as the excitation source. Plasma is used as it offers 
significantly better quantitative data compared to other excitation sources, such as arcs or flames. 
For an ICPS analysis, metallic samples musts be dissolved in an acid solution and fed into the 
plasma where the sample is converted into free atoms [83]. Due to the high temperature of the 
plasma, most elements can have good emission spectra under a single set of conditions, offering 
simultaneous detection of these elements. ICPS measures the intensity of the emission lines of 
the elements in the plasma and is able to produce quantitative elemental data. It can also detect 
all metal elements and because elements generally have several emission lines, specific 
emissions lines for different elements can be used to avoid overlapping of peaks. ICPS is also 
able to concurrently measure major and trace elements. Typically an internal standard is used to 
further improve the accuracy of this technique, where concentrations can be determined up to 3 
decimal places [76]. However, there are several elements that cannot be accurately detected with 
this technique (most notably C, O, N, H, and F) [75]. The ICPS is also a relatively expensive and 
complex instrument, requiring a skilled operator to run the instrument and analyze the data. 

Many researchers use ICPS to determine the bulk chemistry of their powders [84–86]. 
Typically these researchers are adding alloying elements to their material (such as bulk metallic 
glasses and high entropy alloys) and need to characterize the tailored powders prior to their use 
in a particular process. This is in contrast to most work with powders, where the manufacturer 
(or an outside testing laboratory) usually performs the bulk chemistry analysis and the consumer 
simply confirms that using a less rigorous technique such as EDS. For future recycling studies 
however, the verification of the chemistry of the powders at each recycling step will be 
necessary, where a more accurate instrument like the ICPS should be employed.  

3.5  Inert Gas Fusion 

Inert gas fusion is a quantitative technique used to measure the contents of hydrogen, 
nitrogen, and oxygen in metal samples [87].  Samples are first weighed and placed in a graphite 
crucible where they are heated to a molten state. At this point, molecular hydrogen, nitrogen, and 
oxygen are released from the sample. These released gases are separated and analyzed separately 
to yield a weight percent of each of the elements. Inert gas fusion is often used in conjunction 
with ICPS to get a comprehensive determination of the chemistry of a sample [85]. Again, the 
use of an inert gas fusion instrument is often found in studies where new powder chemistries are 
being evaluated and their chemistry has to be determined prior to processing.   

3.6 Effect of Powder Chemistry 

It is well known that different alloying elements can have advantageous or detrimental 
effects to a material under certain processes. Consider stainless steel, a steel alloy that was 
developed specifically for corrosion resistance. The main alloying elements that are added to 
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stainless steel to improve the corrosion resistance are Cr and Ni. Chromium allows for 
passivation, meaning that at certain conditions an oxide layer forms on the surface that inhibits 
further corrosion. However, at high temperatures, this chromium can migrate and react with 
carbon and have a detrimental effect on the steel, a process known as sensitization. Nickel is 
added to stainless steel, among other reasons, in order to combat the sensitization issue by 
driving the carbon out of solution.   

With any new process, chemistries specifically designed for the particular application are 
developed in order to optimize the process. Some work has been done on finding additives that 
aid the laser-based additive manufacturing process. Fe3P has been found to have 
several beneficial effects. Iron phosphide forms a eutectic with iron, so the addition results in a 
lower melting point and therefore a lower input energy is required. It has also been shown to 
improve the surface finish and density due to the fact that it lowers the surface tension of the 
melt pool [58,88,89]. In addition, Averyanova et al. [20] performed a study on 17-4 PH steel 
with powder of slightly different chemistry. They showed that this change in chemistry had a 
significant difference on the final part's microstructure and therefore their mechanical properties 
as well [90].  

Another study involving 17-4 PH steel was by Slotwinski et al. [38] who used XPS to 
reveal high oxidation on the stainless steel particles being used in various additive manufacturing 
processes, although the effects of such were not investigated. In regards to metal powder-based 
AM, oxidation is viewed as a contaminant and should be avoided due to its ability to increase 
part porosity. Simchi [11] observed this phenomenon by correlating the initial oxygen 
concentration in the form of oxides on the powder to the parts that were built. The results 
indicated that an increase in the inital oxygen content in the powder led to higher porosity in the 
SLS manufactured components. Tang et al. [91] also observed that an increase in the oxygen 
content of Ti-6Al-4V in the EBM due to powder reuse can force the material to accrue oxygen to 
the point of exceeding the maximum specifications for oxygen content of the material. Due to 
this reason, it was found that the increasing oxygen contaminant creates a situation where the 
powder cannot be used more than four times. 

Ardila et al. [29] used EDS technique to track the evolving chemistry of IN718 powder as 
it was recycled in the SLM process. It was concluded that the chemistry of the powder does 
change with continual reuse, although only slightly. In the end, no significant change was 
observed in the measured fracture toughness of the parts manufactured. However, it is important 
to note that care must be taken when using EDS solely to characterize chemical composition of a 
material, especially a powder. This technique is often thought to produce quantitative results; yet, 
as previously mentioned, it is primarily a qualitative method unless a sample with known 
chemistry is used for calibration purposes. This information coupled with only the slight 
variation in chemical composition observed points to the fact that the sole use of EDS is not able 
to completely detect any minute differences between the virgin and recycled powder. Therefore, 
the chemical results produced by Ardila leave the reader without a definitive look at the change 
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in chemical composition as a result of reuse simply because a lack of characterization was 
performed. 

It is important to note that the chemical composition of metals often includes upper and 
lower limits for the amounts of each element that can be present within the bulk material. 
Therefore, in order to reduce variability in part properties, powder chemistries must be tailored 
specifically for the application. Work in this area is still in its infancy in powder-based AM. It 
has been suggested that due to the similarities of AM and welding (intense power source and 
high cooling rate) that materials that work well with welding or weld wire chemistries may be a 
good place to begin the testing for AM alloys. More studies are necessary to pinpoint these 
materials. 

4 Powder Microstructure 

Powder microstructure corresponds to the phases present in the powder samples and 
inevitably effects part characteristics. Since porosity influences crystal structure, it is often 
studied in conjunction with microstructure. In AM, porosity in parts is often quantified and 
related back to process parameters. However, porosity can also arise as a result of voids within 
powder particles. Therefore, it is important to identify if internal particle porosity exists in AM-
ready powder in addition to potential microstructure effects the powder has on the final 
component properties. This section highlights various methods that are commonly used to study 
the microstructure of powder, and how these techniques have been used in AM for 
characterization of input material properties. 

4.1  Metallography 

Studying the internal microstructure of powder particles can be accomplished using 
traditional metallographic techniques, however some adjustments have to be made due to the 
small size and circularity of AM powders [62]. A powder sample can be mounted in bakelite or, 
preferably, epoxy and subjected to a polishing procedure. The procedure for polishing the 
mounted powder particles differs from that for bulk material. In the grinding steps, only 600-
1200 grit SiC paper should be used, as any smaller grits will result in removing the particles from 
the mount with little grinding of the actual particles occurring. Fine polishing often results in 
edge rounding leading to loss of surface details. This problem can be avoided by using vibratory 
polishing. Once a satisfactory polish is achieved, etching of the surface is carried out to reveal 
microstructure and potentially enlarge internal pores. Detailed information on the selection of 
etchants is provided in reference [92]. It is necessary to use a swab/immersion etchant for the 
etching of the mounted powder particles, as electrolytic etching has inherent problems given the 
separation of the particles and the conductivity of the mounting material. The cross-sections 
obtained by polishing the mounted particles also offers a means to determine the morphology of 
the particles as previously described, as you already have a two-dimensional image of the 
powder.  
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4.2  X-ray diffraction 

X-ray diffraction (XRD) is another x-ray spectrographic technique primarily used in 
identification of crystal structures. During an XRD analysis, a sample is bombarded with x-rays 
and the intensity of the diffracted x-rays are measured. Constructive interference of the diffracted 
x-rays is needed in order to have a distinguishable peak. Constructive interference occurs when 
the distance between points A and B in Figure 7 is equal to the distance between B and C. 
Trigonometry yields Bragg’s law as the condition for constructive interference: 

𝑛𝑛 𝜆𝜆 = 2 𝑑𝑑 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 

where n is an integer, λ is the wavelength of the incident radiation, d is the d-spacing of the 
crystal, and θ is the degree between the incident x-rays and the sample surface [76], [93]. All 
seven crystallographic systems have expressions for their d-spacings. With this information and 
the knowledge of allowed reflections for specific Bravais lattices, the crystal structure can be 
determined by indexing the peak positions. XRD can also be used as a means to characterize the 
powder chemistry, but only if known diffraction patterns of that same chemistry are in the 
powder diffraction library.  

XRD has been extensively used as a characterization method for metal powders [22,94–
97]. Many powder diffraction standards are available that generally enable the use of XRD for 
chemical verification. However, advanced materials sometimes have intermetallic compounds 
with complex spectra that are not necessarily well known. In these cases, XRD can only be used 
as a means to determine the crystal structure of the elements present. XRD has also shown use in 
the characterization of amorphous materials where it can be used to semi-quantitatively and 
quantitatively determine the amount of crystallinity of materials.  

Figure 7: Principle of X-Ray Diffraction. The black dots indicate atoms in their lattice 
positions, red lines are the x-ray path, and the angle, θ, is shown. In order for constructive 

interference, nλ must equal AB + BC, or 2AB. Observing the triangle ABZ shows that AB is 
equal to sin(θ)d. Substitution yields Bragg’s Law of nλ=2dsin(θ).  

1020



©2016 The Department of Energy’s Kansas City National Security Campus is operated and managed by Honeywell 
Federal Manufacturing Technologies, LLC under contract number DE-NA0002839. 

4.3  Thermal Analysis Methods 

Thermal analysis techniques are primarily described as tracking chemical properties as a 
function of temperature. Rather than offer a direct observation of the microstructure, this class of 
methods yields information about the exothermic and endothermic events that are occurring in 
the sample. This offers the ability to determine events such as glass transition and crystallization 
temperatures, therefore giving information about the microstructure. In general, there are three 
main techniques that are used: thermogravimetric analysis (TGA), differential thermal analysis 
(DTA), and differential scanning calorimetry (DSC).  

TGA measures the mass of a sample as a function of temperature. Since it is often a 
question of how a material behaves under elevated temperatures, this approach allows insight 
into loss of volatiles and oxide formation. In many powder-bed fusion processes, the temperature 
of the powder bed is often raised. Thus, this technique allows ex-situ analysis of how the powder 
responds when subjected to increased temperatures. Differential thermal analysis (DTA) is a 
qualitative technique that measures the temperature difference between a sample and a reference 
material as a function of temperature. This temperature difference is plotted against time and can 
be used to study transitions to different phases. Often, TGA and DTA are often coupled for 
simultaneous analysis. DSC is a quantitative technique that measures the difference in energy 
between a sample and a reference material as a function of temperature. DSC is a popular 
technique in the characterization of metallic glasses [98,99].  

4.5  Effect of Powder Microstructure 

In powder metallurgy, it is well known that the initial microstructure of powder plays a 
key role in the properties of manufactured components. For instance, consider the sintering of a 
pressed compact. Not only does internal porosity and the size of the initial grains in the powder 
determine the sintering activity of the compact, but also the formation of pores in the final 
product. Although the manufacturing processes in press-and-sinter powder metallurgy are 
considerably different than those found in AM, the potential impacts of particle microstructure 
need to be studied especially since the current AM literature contains very little research in this 
particular area.   

As mentioned previously, the method of powder manufacture will often determine the 
morphological characteristics of particles. However, it is also important to note that the powder 
manufacturing process also has a significant impact on the developed particle microstructure 
[37]. Starr et al. [100] proved this dependence by performing XRD on two gas-atomized 17-4 PH 
powders where one was atomized in a nitrogen atmosphere and the other being argon. It was 
shown that the nitrogen-atomized powder contained primarily an austenitic microstructure, while 
the other being manufactured under argon contained mostly martensite. In order to observe the 
effect of different powder microstructure and build atmosphere on the phase composition of as-
built materials, both powders were used to build tensile specimens where XRD was performed 
before tensile testing. The XRD results for the as-built parts showed that the argon-atomized 
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powder produced fully martensitic products regardless of the gas used during the build process. 
However, the nitrogen-atomized powder showed a different behavior where the parts built under 
a nitrogen atmosphere retained more austenite than those produced in the presence of argon.  

Similarly, Murr et al. [22] used XRD to determine a possible dependence of 17-4 PH 
powder microstructure on the phases present in parts in both argon and nitrogen atmospheres. In 
the end, it was determined that building under an argon atmosphere produces martensitic 
products, whereas using nitrogen for gas in the build chamber produced a phase in parts identical 
to the precursor powder phase. This major difference was attributed to the large difference in 
thermal conductivity of the gas used during the build process. 

Internal particle porosity can also have a major effect on the microstructure of powder in 
addition to the density achieved by the final part. Therefore, it is necessary to quantify this 
powder characteristic as well for quality control purposes. However, this is often not practiced in 
many studies warranting further characterization of AM-ready powder to be done in this 
particular area. 

5. Conclusion

As additive manufacturing reaches a stage of maturity, the realization of these processes
for potential production becomes ever more so apparent. A significant amount of research has 
focused on the development of process parameters to manufacture parts having strength 
comparable to wrought materials, low surface roughness, and minimal porosity. However, both 
intra-build and inter-build part variability are often noticed forcing researchers to now look at the 
input material properties and their effects on the build process. This has led to the use of different 
powder characterization techniques to quantify and predict the behavior of AM-ready powder.  

When characterizing a powder, it is important that the following three main areas are 
researched: particle morphology, chemistry, and microstructure. In AM powder-bed fusion 
processes, research is primarily focused on the morphological characterization of powders and 
their effect on part properties. Techniques that are typically used to perform morphological 
characterization of AM powders include microscopy and laser diffraction, although sieve 
analysis is occasionally employed as well. Microscopy not only allows the characterization of 
particle size and size distribution through micrographs, but also shape and surface roughness. 
Therefore, it is an extremely versatile tool making it attractive in powder-based AM. 
Unfortunately, the analysis times are long and the amount of particles needed in order to obtain 
statistically significant results is still currently under debate warranting further investigation. 
Conversely, laser light diffraction is able to measure the size of a very large amount of particles 
in a short amount of time. Due to the large particle count and automation of the entire procedure, 
particle size distributions are highly repeatable. Yet, particles that deviate from a spherical shape 
can give erroneous results. 
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As a whole, the effect of particle size and size distribution is the most studied when input 
material properties are correlated to part quality. From these findings, it is clear that the particle 
size and size distribution affect the flowability of the powder thus influencing layer 
homogeneity. Moreover, the porosity of as-built parts is also influenced where the use of large 
particles and agglomerates can produce undesired voids due to a decreased packing density in the 
powder bed. Some of the same phenomena have been noticed when irregular particles are used 
as these tend to produce more interparticle friction and impact layer uniformity and density. In 
order to maximize flowability while also increase the powder bed density, narrow particle size 
distributions that contain spherical particles with little surface deformities are often employed.  

Characterization methods to determine the chemical composition of powders fall under 
two categories: surface analysis and bulk analysis. XPS is a quantitative surface sensitive 
technique that takes advantage of the photoelectron effect to identify percentages of elements 
that are present. High-resolution spectra can even be obtained to determine binding information 
for each element in a sample. As for bulk chemistry, EDS is commonly utilized; however, it is 
important to note that this is only a semi-quantitative technique meaning that the results should 
not be interpreted as absolute unless appropriate reference standards are used for machine 
calibration. Unfortunately, many studies only use EDS for chemical characterization of powder 
and treat it as a quantitative method. ICPS is a much more accurate technique that can be used to 
determine the bulk chemistry of a sample. This technique paired with inert gas fusion can give 
the concentrations of all metallic elements as well as the oxygen content. 

A significant amount of research will need to be performed in order to determine the 
effect of chemistry on part properties. A number of studies in this particular area focuses on 
powder contaminants, namely, oxides. Few studies discuss the potential of optimizing powder 
chemistries to yield desired part properties. This research will inevitably need to be strengthened 
in the future as the AM industry grows. 

The most widely used methods to characterize a powder particle’s microstructure are 
using XRD and thermal analysis. As seen with particle chemistry, a lack of research is also 
noticed in terms of particle microstructure. Currently, most of the work aimed at characterizing 
the microstructure of powders uses XRD with cross-sectioned and polished samples. Although 
this is a great first step, the exact influence of particle microstructure on as-built parts is 
unknown. A few aforementioned cases not only stated the importance of crystal structure, but 
also its dependence on the type of gas flow during the build process and its relevance in the 
microstructure of parts. 

Overall, much research work is still needed in order to fully understand the influences of 
powder in AM powder-bed fusion processes. The current approximate knowledge of necessary 
morphological powder characteristics coupled with an insufficient understanding of particle 
chemistry and microstructure on the manufacturing processes necessitates a significant need 
towards a more complete characterization of AM-ready powders. Therefore, the primary focus of 
research should be not only on optimizing process parameters, but also on the interplay between 
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these variables and the powder properties. This will result in reducing variability between builds 
and parts, and allowing the process to be more controllable. Only then will AM processes be able 
to rival traditional manufacturing methods in terms of being recognized as a viable means for the 
creation of reliable components. 
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