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Abstract 
 
Mechanical properties of parts produced with the Fused Filament Fabrication (FFF) process are 
known to be dependent on the printed bead direction, especially when short carbon fiber 
reinforcement is added to the filament. Given that many FFF filament suppliers now offer 
carbon-fiber filled products, a unique opportunity emerges in the design of polymer composite 
FFF parts since bead and fiber direction can potentially be prescribed to give the best structural 
performance. As FFF moves from a technology for rapid prototyping and the hobbyist to a viable 
additive manufacturing method, it is important to also have a design tool that takes advantage of 
the opportunities that present themselves when polymer composites are employed. This paper 
presents a topology optimization method for continuous fiber angle optimization approach 
(CFAO), which computes optimal material distribution (as in the well known SIMP method) in 
addition to a preferred fiber angle direction by minimizing compliance of statically loaded 
structures.  Our computed results show the effects of variable orientation angle on fiber 
reinforced microstructure for the topology of two-dimensional FFF parts.  Optimal fiber 
orientations are shown to align with the axis of structural members that form within the structure 
as expected. Example design problems are solved and then printed on desktop 3D FFF printers 
using the material distribution results and a simple infill method which approximates the optimal 
fiber angle results by a contour-parallel deposition strategy.  Mechanical stiffness testing of the 
printed parts show improved results as compared to structures designed without accounting for 
the direction of the composite structure. Future work includes extension of the method to three 
dimensional structures for further application. 
 

Introduction 
 

 The use of Fused Filament Fabrication (FFF) has expanded greatly over the past two 
decades due in part to its low cost and selection of materials. Unfortunately, the reduced 
mechanical properties of a typical FFF layered structure must be addressed for this technology to 
reach its full potential in producing engineering products. The method of extrusion during part 
processing has been shown to give the final FFF product non-isotropic properties with increased 
stiffness in the deposition direction [1].  The stiffness and strength of ABS polymer structures 
produced with FFF has also been shown to improve with the added reinforcement of single-
walled carbon nanotubes and short glass fibers [2], [3].  Recently, the effects of carbon fiber 
content and fiber length have been found to increase the Young’s modulus of FFF parts to 
varying degrees [4], increasing the modulus of elasticity by as much as 4X in the print direction. 

 
Topology optimization has been shown to be an effective tool for the design of structures 

produced with additive manufacturing where an optimal material distribution in a design domain 
is determined for a given material volume [5], [6]. Topology optimization is commonly 
performed to maximize the stiffness of a part while retaining a given fraction of material volume 
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in the design domain.  The Homogenization Method was developed to determine an optimal 
material distribution and orthotropic material orientation distribution within a structure [7]. 
Unfortunately, the homogenization method, as well as SIMP methods that have been extended to 
include pointwise material orientation as part of the design problem [8], is impractical to 
implement in FFF, as it is not possible to produce a part where each point within the structure 
has a unique material direction and/or continuously varying density.  An alternative approach, 
the SIMP (Solid Isotropic Material with Penalization) method [9], or density method [10], 
computes material distributions for isotropic materials. The SIMP method has seen extensive use 
in additive manufacturing where unique three dimensional microstructures designed for a 
prescribed mechanical response are printed with additive manufacturing methods (see e.g., 
Hollister, et al. [11]). More recently, the distribution of varying microstructure has been 
computed with a modified SIMP method where the printed optimal design includes the details of 
optimal unit cell geometries (see e.g., Sundararajan (2010) and Zhang, et al. [12]), [13]. This 
later research computes the effective orthotropic material matrix for a unit cell having varying 
density which serves as the design variable in the topology optimization. Alamo and da Silva 
extended the SIMP method to compute a material distribution for a fixed orthotropic material 
distribution in a biomechanics structure [14].  

 
Unfortunately, none of these methods have addressed the need for having discrete 

material distributions (such as those computed with SIMP methods (see e.g., [15,16,18]) and also 
a preferred fiber direction that are suitable for parts produced with the FFF process. This paper 
builds on our earlier work of topology optimization with a fixed fiber angle [20,21]. Here we 
consider a modified SIMP approach which we call the Continuous Fiber Angle Optimization 
(CFAO) method that determines the optimal distribution of an orthotropic material and its 
orthotropic material orientation to design fiber-reinforced FFF parts. This paper also includes a 
methodology for printing FFF parts that have the optimal topology and fiber angle, and provides 
experimental results to verify the usefulness of our CFAO approach. 

 
Two-Dimensional Continuous Fiber Angle Optimization 

 
A Continuous Fiber Angle Optimization (CFAO) method is introduced here that is used 

to compute the optimal topology and fiber angle of planar FFF structures that are produced with 
an orthotropic microstructure. In the topology optimization problem, each element is assigned an 
independent elemental density ߩ and element fiber angle ߠ, which collectively compose the 
design variable vector in the optimization problem.  Our finite element-based approach is derived 
from the density or SIMP method [9] where each elemental density ߩ(assembled in a density 
array ࣋) is used to scale its respective element stiffness matrix ke within the design domain of the 
finite element model. In CFAO, the element fiber angle ߠ (assembled in a fiber angle array ࣂ) is 
introduced to define the direction of orthotropy. The topology optimization problem that 
minimizes the compliance c subject to a constraint on volume fraction f  is stated in the usual 
manner as [9,15] 

 
Minimize: 	 ܿሺ࣋, ሻࣂ ൌ 	ࡲࢀࢁ		 ൌ ࢀࢁ		 ࢁࡷ ൌ 	∑ ሺߩሻ்࢛

ே
ୀଵ	   (1)࢛ሻߠሺࢋ

 
Subject	to: 			 

ሺ࣋ሻ

బ
 ݂, ࢁࡷ ൌ ,ࡲ ߩ  ࢋߩ  1, െ2ߨ  ߠ   (2)    ߨ2
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where the volume ܸሺ࣋ሻ of material in the optimal design is limited to f V0 where V0 is the total 
volume of the design space as is typical in topology optimization. The equilibrium equations for 
the structure are solved with the finite element method as KU = F where K, U, and F are the 
global stiffness matrix, displacement vector, and applied load vector, respectively. In the above, 
the compliance is defined as the product U and F, and may be computed at the element level in 
terms of the element density ߩ, displacement vector ue and stiffness matrix ke as shown. 
 

Note that each ke is multiplied by its element density ߩ which is raised to the power p 
which is identified as the penalization parameter [9]. The penalization parameter p is fixed with 
respect to design and causes each ߩ to move toward either its lower or upper bound, i.e., ߩ or 
1, respectively, in the optimization. The element fiber angle array ࣂ (with each element fiber 
angle ߠ being constrained between േ2ߨ in Equ. 2) enters the topology optimization problem 
through the element stiffness matrices given as 

 
ሻߠሺࢋ  ൌ ∬ dΩஐ		ሻߠᇱሺࢀ	݄

 (3) 
 

where 2D integration is performed over each element domain Ω and h is the element thickness 
normal to the plane of the structure. The finite element strain-displacement matrix B is defined in 
the usual manner in terms of the element shape functions. Note that we use an isoparametric 
mapping and Gauss quadrature (not shown) to numerically compute the element stiffness 
matrices as is typical in finite element analyses. The fiber angle design variables ߠ enter the 
optimization problem through the rotated elastic constitutive matrix ᇱሺߠሻ defined as 
 

ሻߠᇱሺ  ൌ  (4) ࢀሻିߠሺࢀሻିଵߠሺࢀ
 

where  

ሻߠଵሺିࢀ  ൌ ൦
ߠଶݏܿ ߠଶ݊݅ݏ െ2	ܿߠݏߠ݊݅ݏ
ߠଶ݊݅ݏ ߠଶݏܿ ߠ݊݅ݏߠݏܿ	2

ߠ݊݅ݏߠݏܿ	 െܿߠݏߠ݊݅ݏ ߠଶݏܿ െ ߠଶ݊݅ݏ

൪ (5) 

 
is the inverse of the transformation matrix T used to rotate the elastic two-dimensional 
orthotropic constitutive matrix C given as 

 

  ൌ 	

ۏ
ێ
ێ
ۍ

ாభ
ଵିఔభమఔమభ

ఔమభாభ
ଵିఔభమఔమభ

0
ఔమభாభ

ଵିఔభమఔమభ

ாమ
ଵିఔభమఔమభ

0

0 0 ےଵଶܩ
ۑ
ۑ
ې
 (6) 

 
The constitutive matrix C is defined in Equ. 6 in terms of the principal moduli of elasticity E1 
and E2, and Poisson’s ratios ߥଵଶ and ߥଶଵ, which are related through 

 ாభ
ఔమభ

ൌ 	 ாమ
ఔభమ

 (7) 
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In the optimization examples below, we define E1 =  E2, where 1  ߙ  10 is employed. It 
follows that ߥଶଵ ൌ  ଵଶ. The influence of  on shear modulus is approximated in our workߥߙ
though ܩଵଶ ൌ

ாభ
ଶሺଵାఔభమሻ

. 
 

Due to the large number of design variables, the CFAO approach employs the Adjoint 
Variable Method (see e.g., [10]) to compute the design sensitivities of the compliance with 
respect to the density and fiber angle design variables. It is easy to show that for compliance, the 
adjoint variable vector is the displacement vector U, making it possible to write components of 
the compliance gradient in terms of element density ߩ as 

 
 డ

డఘ
ൌ െ	ߩ

ିଵ
 (8) ࢋ࢛ࢋࢀ࢛

 
which is obtained by taking the derivative of c in Equ. 1 with respect to density ߩ. In addition, 
derivatives of c with respect to fiber angle ߠ are obtained from Equs. 1, 3-5 as 
 

 డ

డఏ
ൌ െ	ߩ


ࢀࢋ࢛ ቄ∬ ݄ ቀࢀ డࢀ

షభ

డఏ
ࢀିࢀ	  ଵିࢀࢀ డࢀషࢀ

ఏ
ቁ݀Ωஐ

ቅ  (9) ࢋ࢛
 

Derivatives of T-1 in Equ. 5 with respect to ߠ follow in the usual manner. Note that since each 
element density design variable ߩ and each element fiber angle ߠ are associated with a single 
element, the derivatives in Equs. 8 and 9 yield only the single term from the element sum in Equ. 
1 as shown.  
 

To eliminate checkerboarding, we employ the mesh independent sensitivity filter used in 
Sigmund [14,16] given as 

 డ

డఘ

෪
ൌ

∑ ௪ሺ௫ሻఘ
ಿ
సభ

ఘ ∑ ௪ሺ௫ሻ
ಿ
సభ

డ

డఘ
 (10) 

 
where w(xi) is a weighting function that places more emphasis on elements that are close to the 
element of interest based on the radial distance xi. Our results have shown that this filter alone 
eliminates checkboarding without the need for also including a filter on either the ߩ or ߠ. 
 

Our CFAO method is implemented using a custom 2D plane stress finite element 
program and the fmincon function of Matlab (The Mathworks, Inc., Natick, MA). 
Isoparametric finite elements are used and the program also computes the design sensitivities 
from Equs. 8-10 once the finite element solution U is known. The user defined gradient option of 
fmincon is employed for the compliance objective function, and the volume constraint is 
implement using the linear inequality constraint feature. The interior-point optimization 
algorithm in fmincon was used since it accepts gradients and was found to work well with our 
large scale optimizations. In the following examples, f = 0.5, and p = 3, and the initial design was 
specified as ߩ ൌ 0 for all density variables and ߠ ൌ 0 for all fiber angle design variables. The 
accuracy of the design sensitivities computed with Equs. 8 and 9 was verified with finite 
difference derivative computations using the forward finite difference method prior to running 
the topology optimizations that appear below. 
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CFAO Computational Results 

In order to illustrate the applicability of the orthotropic model to polymer composite FFF 
part design, several topology optimization of a 2D model are considered based on the 
Messerschimitt-Bölkow-Blohm (MBB) beam [17].  The MBB beam is a truss-like structure 
popularized in many topology optimization studies.  Here we first consider the topology 
optimization of a half-symmetry model of the MBB beam appearing in Figure 1, and then solve 
the optimization problem for the complete domain in Figure 3. In all cases, the lesser Young’s 
modulus is set to 1 while the modulus ratio a ranges from 1 to 10. Poisson’s ratio of the major 
direction (greater Young’s modulus) is defined to be 0.36, an approximate ratio for polylactic 
acid (PLA) polymer-printed structures, and p = 3.  The topology optimization scheme iterates 
until the greatest change in elemental density is less than 1%. In the following, all elements 
contain a density and fiber angle design variable which produces a topology optimization 
problem from Equs. 1 and 2 where the number of design variables equates to two times the 
number of elements. The thickness of the model into the plane is h = 1. 

 
We first consider the simple cantilever beam design shown in Fig. 1 to illustrate our 

CFAO topology optimization process. The beam finite element model has 30 elements in the 
horizontal direction and 10 elements in the vertical direction. The elastic constants are  E1 = 5 
and E2 = 1, and 12 = 0.3, making  = 5. The applied load is 1 and acts downward on the right 
lower edge of the design domain. 

 
Figure 1: Cantilever beam example showing loading and boundary conditions. 

 
Selected designs taken from iterations of the CFAO topology optimization appear in Fig. 

2. Elements in the figure appear dark as ߩ approaches unity (i.e., element full of material), and 
white as ߩ approaches zero (i.e., no material). Also shown in each element is an arrow 
indicating the fiber angle direction. Note that all ߠ are zero for the initial design and quickly 
change to become parallel to the direction of the dominant structure in the truss-like members. 
The topology of the structure emerges after just 25 iterations, however, the edge of the truss-like 
becomes more distinct as the optimization concludes. We found that the minimum compliance 
indicated a much stiffer structure when compared to our earlier results that only considered a 
variable element density while fixing the fiber angle in either the 1- or 2-direction. 

 
We next consider the MBB beam design space appearing in Fig. 3. The design domain 

has a base width of 120 and a height of 20, yielding 2400 elements and 4800 design variables in 
the CFAO optimizations. Material properties and optimization initial conditions are the same as 
those given above for the cantilever beam. The load is 1 unit in the negative x2 direction applied 
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at the midpoint of the top of the beam. Optimal topologies for varies values of ߙ ranging from 
1.33 to 10 appear in Fig. 4. Notice that little change in topology is seen for 1.33 < ߙ indicating 
that the modulus ratio has little effect on topology when fiber angle is included as a design 
variable in the optimization.  

 
Figure 2: CFAO results for a cantilever beam after a) 0 iterations (i.e., initial design), b) 5 

iterations, c) 25 iterations, and d) final iteration 48. 
 

 
Figure 3: MBB beam design space with boundary conditions and applied load. 
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Figure 4: CFAO optimization results for the MBB beam with varying ߙ. a) 1.33 = ߙ, b) ߙ 

= 1.5, c) 2 = ߙ, d) 5 = ߙ, and e) 10 = ߙ. 
 
Values of optimal compliance, CPU time, and number of optimization iteration are given 

in Table 1. It is shown that the optimal compliance decreases considerable, however, this value 
alone is not a good comparative measure between these designs since the overall stiffness of the 
material increases with ߙ since E2 = 1 for all optimizations. It is interesting that as ߙ increases, 
the number of optimization iterations do so also, as does the CPU time (CPU time reported for an 
Intel i7-4930K CPU at 3.4 GHz and 64 GB RAM). CPU times for the CFAO optimizations 
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where found to be significantly higher than our earlier fixed fiber angle optimizations as 
described in Hoglund [21]. This is due, in part, to the use of different optimization algorithms for 
the CFAO and fixed angle optimizations which employed the optimality criteria method given in 
Sigmund [15]. 

 
Upon comparing these results to our earlier work with fixed horizontal fiber angle (i.e., 

all ߠ ൌ 0) [20,21], we find that a lower minimum compliance is obtained for all ߙ  2 using the 
CFAO method. Optimization problems are inherently nonlinear, which can result in convergence 
to various local minimum points. Our results tended to converge to topologies typical of earlier 
MBB beam optimization, mitigating our concern that local minimum is an issue. Future work 
should include additional computations to ensure that solutions obtained here are indeed the 
global minimum. 

 

Modulus ratio ߙ Number of 
Iterations CPU Time (sec) Minimum 

Compliance
1.33 44 586 86.21 
1.5 62 911 70.39 
2 72 994 53.59 
5 180 2379 22.54 
10 169 2224 12.06 

 
Table 1: CFAO MBB optimization results for various modulus ratio ߙ. 

 
Fabrication and Testing of Optimal CFAO Designs 

 
 In order to further demonstrate the usefulness of the CFAO method, optimized MBB 
beams are printed with varying orientations using carbon fiber-reinforced PLA sold as 3DXMax 
CFR-PLA by 3DxTECH (3DXTECH, Byron Center, MI). The filament contains approximately 
15% carbon fibers by weight in a 1.77 mm diameter filament and has a published tensile strength 
of 47.9 MPa and a tensile modulus of 4.791 GPa.  For FFF processing, our MBB structures are 
printed with a MakerBot Replicator 2.0 3D FFF printer with a hardened steel 0.6 mm diameter 
nozzle.  The geometry of the printed MBB beams was taken from the optimized result for  = 10 
that appears in Fig. 4f. Our FFF structures are printed with 100% infill to reduce interbead voids 
within the material, and are printed with a thickness of 5.5 mm and a layer thickness of 0.2 mm. 
The CFAO MBB beam selected for printing is shown in Fig. 5a which was computed with 180 
elements in the horizontal direction and 30 elements in the vertical direction (resulting in 5400 
elements and 10,800 design variables). 
 
 To produce a printable format of the topology optimizations, the code Top3dSTL_v3.m 
was used to convert the physical array of elemental densities to .stl file format [19].  We use 
Top3dSTL_v3.m to translate the optimal density distributions to an STL where each element 
represents a unit cube. The 2-dimensional information for the planar MBB beams is retained 
while the thickness out-of-plane is modified to adjust for scaling of the part dimensions in the 
plane. Autodesk MeshMixer (AutoDesk, San Rafael, CA) is used to smooth the edges of the 
CFAO structures prior to printing. This smoothing helps to facilitate a printed part that has beads 
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with a primary orientation that is parallel to the edge of the truss-like members that result from 
the CFAO optimizations. To realize print paths that remain mostly parallel to the edge of the 
structure, a contour-parallel deposition strategy is employed. In this case, the strategy is 
implemented by specifying a high number of shell layers in the MakerBot Desktop software to 
ensure so that all printed beads approximately align with the edges, particularly within the 
structural members that form. Fig. 5 shows the model data (left half of beam only) at various 
stages during the processing of data for printing which includes the CFAO optimized topology 
and fiber angle, the smoothed image obtained with Autodesk MeshMixer, and the bead pattern 
print path as specified by the MakerBot Desktop. The resulting printed beam appears in Fig. 6. 
 
 

a)  

b)  

c)  
Figure 5: CFAO optimized MBB print data (left half only) of a) optimized density and fiber 

angle distribution (5400 element model), b) MeshMixer smoothed STL file data, and c) 
MakerBot Desktop print bead pattern. 
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Figure 6: Printed CFAO optimized MBB beam. 

 
Printed CFAO optimized MBB beams were tested in 3-point bending as shown in Fig. 7 

using an Instron (Instron, Norwood, MA) tensile test machine with a 2kN load cell. The load is 
applied to the top center of the printed beam in the same manner as that used in the CFAO 
optimization. The structural stiffness was computed from force and displacement data that was 
collected using the Bluehill 3 (Instron, Norwood, MA) software. Loading was performed in the 
linear force-displacement range for the sample and testing was ended prior to sample failure.  

 
Three samples were printed and tested to obtain the stiffness results given in Table 2. 

Also shown in Table 2 are results from similar tests (3 samples each) where optimal topologies 
were computed assuming a fixed horizontal bead path (i.e., ߠ ൌ 0)  and a fixed vertical bead 
path (i.e., ߠ = 90o) as described in [20,21]. Note that in these structures with a fixed fiber angle, 
each element has a single density design variable, which simplify the calculations and the 
process for creating the print file. The fixed angle optimizations provide a point of comparison to 
illustrate the effectiveness of the CFAO method. As shown in Table 2, samples optimized and 
printed with a horizontal bead are 15.5% stiffer than samples optimized and printed with a 
predominant vertical bead. This result is to be expected since horizontal stiffening is more 
efficient than vertical stiffening under the given bending load. Table 2 also shows that CFAO 
optimized MBB beams perform better than either horizontal or vertical optimized and printed 
beams. It is seen that the CFAO beam is 29.9% stiffer than the vertical optimized and printed 
structure and 12.4% stiffer than the horizontal optimized and printed structure. 

 

 
Figure 7: Mechanical test set up for CFAO optimized MBB beam. 

 
More information on details of the optimization and testing may be found in Hoglund 

[20,21] which also includes the CFAO optimization and testing of the Mitchell truss [17]. 
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Conclusions and Future Work 
 
 The CFAO method for topology optimization of 2D anisotropic structures has been 
developed which includes both material distribution and angle of preferred modulus, where 
special consideration is given to carbon fiber-reinforced Fused Filament Fabrication products.  
The stiffness of the structures are maximized for a given volume fraction by determining the 
optimal element densities and fiber angle with a gradient-based optimization algorithm. Adjoint 
design sensitivities are used to efficiently compute the design gradients. Various topology 
optimizations are performed using the MBB beam to illustrate our computational approach. 
Results show that once the modulus ratio exceeds about two, little difference is seen in the 
optimal topologies of the beam structure, and that the minimum compliance decreases with 
increase modulus ratio, as expected. The results also indicate that the optimal fiber angle 
generally aligns with the axis of truss members that form which has been seen by other 
researchers. A method is also presented for obtaining print path information from CFAO results. 
The resulting design are printed and tested and show that printed CFAO structures exhibit a 
higher stiffness than structures optimized for density alone. In summary, the CFAO method 
presented here is shown to provide optimal topologies and fiber angle for planar structures 
produced with carbon fiber-reinforced FFF structures.  

Future work will extend the method given here to included structures with multiple 
loading conditions and three-dimensional design domains. The results appearing in this paper 
that include planar structures having a single load set is shown to produce fiber angles that 
mostly align with truss-like members that form during the topology optimization. Multiple load 
sets would likely yield quite different results, and may require that special attention be given to 
the element fiber angle, and how each element’s angle varies with respect to its neighbor. It will 
be interesting to see if a fiber angle filtering method is required to obtain a printable solution. 
The extension of this approach to three-dimensions is also of interest where the added 
complexity will result from having non-planar design domains. Again, the continuity of fiber 
angle will be important here as well. The successful extension of this methodology to three 
dimensions is expected to make it possible to significantly impact FFF structural design. 

 
MBB Sample Average (N/m) Standard Deviation (N/m)  Coefficient of Variation 

horizontal bead 

[20,21] 2.90x10
5
 0.12x10

5
  0.042 

vertical bead 

[20,21] 2.51x10
5
 0.052x10

5
  0.021 

CFAO 3.26*10
5
 0.015x10

5
  0.0047 

Table 2: Measured stiffness (average of 3 samples each) of printed CFAO optimized beams with 
other horizontal (ߠ ൌ 0) and vertical (ߠ = 90o) beams (cf. [20,21]) included for comparison 
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