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Abstract 
In smart connected factories, manufacturing machines are capable of generating vast amounts of 
process data generated internally from within its control systems or from sensors coupled with the 
process. This streaming data must be stored and queried to perform data analytics or closed loop 
control to improve manufacturing processes. Currently, structured data schemas are ineffective in 
handling image and time-series data generated from additive manufacturing machines. In this 
paper, we propose an unstructured data schema through NoSQL document oriented database 
systems as an effective and scalable approach to capturing and storing real-time streaming data for 
process monitoring. In addition, we present an approach to linking in real-time, slice layer 
information and tag it with process related sensor data for performing fast, scalable queries either 
in real-time or post-fabrication. We have demonstrated our approach with two classes of additive 
manufacturing machines – Fused Deposition Modeling and Electron Beam Melting Systems from 
Makerbot and ARCAM respectively. 

Keywords: Cybermanufacturing, Process Monitoring, NoSQL Databases, Networked Additive 
Manufacturing. MongoDB 

--------------------------------------------------------------------------------------------------------------------- 

Introduction and Motivation 

Process monitoring of additive manufacturing processes, particularly those that produce high value 
added items, is a key critical step to ensure high quality parts. Given that there are a large number 
of parameters that can affect the final part geometry and properties, several approaches are taken 
to conduct process monitoring. Among the strategies are 1) Adding internal sensors that monitor 
the various motors and actuators of the machine; 2) Monitoring defects in a single layer, whether 
it be a powder bed, polymerized resin surface or a layer of extruded filaments; 3) Direct in-situ 
monitoring of the energy and material interaction zone. This zone can be the melt pool, filament 
extrusion and photopolymerization zone for each of the major classes of additive manufacturing 
machines. Any combination of these strategies will undoubtedly generate a lot of process data in 
raw numeric values or image based data. For example, a single build of the NIST additive 
manufacturing test artifact part on an ARCAM S10 generates above 300MB of raw numeric data 
without any additional sensors attached to the process. This time-series based data is stored as flat 
files on the local computer controlling the machine and accessible through machine specific 
proprietary software interfaces which allow users to analyze the log data generated during the build 
process. It is easily conceivable that managing the data generated from the process, specifically 
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related to the storage, retrieval and cross-referencing of data among similar parts or multiple parts 
will be critical to downstream verification and validation exercises. Real-time streaming of process 
data also becomes critical for implementing close-loop control strategies to ensure a quality build.  

With the networking of additive manufacturing machines and the addition of sensors to monitor 
the process becoming more prevalent, we argue that simply storing all of the data generated during 
the process in the form of flat log files or rudimentary databases will make the retrieval of this data 
limited to single part files. If further production scale analysis is desired, then custom software will 
have to be written to parse through multiple log files to extract needed information for statistical 
analysis or part validation exercises. More importantly, to assess the health of the additive 
machine, custom software will be required to analyze all of the process data locked into the 
multiple log files generated between scheduled maintenance interval times. The data to be 
analyzed will easily be in the multiple terabyte or more data block sizes, requiring production 
facilities to manage computing hardware to crunch and analyze through the data. In some 
instances, production scale AM machines archive the data or portions of it are deleted after a 
production run is completed. For example, on the latest generation of the ARCAM machines, x-
ray images taken to interrogate layer build-up process is deleted after internal control systems 
determine there is nothing of value in the image. 

With advancements made in sensor technology, particularly in metal based AM machines, we see 
a couple of challenges related to large data management and how this data is made useful for part 
verification or machine health status monitoring. In production scale settings, all of the process 
data, potentially with ‘Big Data’ type characteristics must be efficiently stored and retrieved. With 
advancements in distributed computing and storage, this challenge can be solved but must be 
architected in a manner suited for additive manufacturing machines. There are currently limited 
ways to relate sensor generated data and tag it to individual critical features on a product definition 
file. The potential benefit of tagging each feature on an AM part with associated sensor data 
generated during the fabrication of a particular part, allows a much more automated and robust 
verification/validation process.  

This paper presents an approach on how the above challenges can be met. For the first challenge 
in efficiently storing time-series data, we present an approach to storing streaming sensor data in 
document based NoSQL database systems. This is in contrast to using relational type database 
systems such as those offered by MySQL, Oracle or Access, which are not suited to real-time 
streaming time-series based data. We have demonstrated this ability with simple Makerbot type 
additive fabrication machine. In another case study, we also show how log files generated during 
the fabrication of two different builds of the same part on an ARCAM machine is stored in a 
document based database system. To address the second challenge, we have shown an approach 
to relating the slice layer information associated with AM parts to sensor data generated during 
the fabrication of each layer of the part. Again this is shown for both FDM and Electron Beam 
Melting machines. At the end of the paper, we have identified challenges and future opportunities 
that can be pursued in relation to how data is stored, retrieved and cross-referenced in future 
cybermanufacturing type applications. 
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Related Background  
Manufacturing intelligence driven by cross-connecting streaming data from physical machines can 
be a key driver to breaking down silos between manufacturing shop-floors, design teams, quality 
control and the several disciplinary teams that interface during a product lifecycle. As additive 
manufacturing machines are integrated into smarter manufacturing facilities and consequently 
with traditional manufacturing systems, it is critical that necessary software architectures are 
developed to interface with various hardware modalities on a shop floor. 

a) Cybermanufacturing(CM) in Additive Manufacturing 
The US National Science Foundation recent initiative in Cybermanufacturing illustrates why we 
need a data centric approach for additive manufacturing. The NSF defines - Cybermanufacturing 
“to be at the nexus of research advances from the engineering and computer/information science 
domains”. One aspect of cybermanufacturing as illustrated by Lee et. al [1] and others is the role 
that streaming data can play in robust predictive and prescriptive analytics for machine state health 
monitoring. In another role of cybermanufacturing is how freeform designs made via ubiquitous 
design tools are easily transferred to conventional manufacturing or additive type machines. 
Another feature of CM is the enablement of technologies that make information systems to be 
fault-tolerant, scalable and enable the easy development of hardware agnostic software 
applications. To facilitate all of these CM features, there must be a robust mechanism for 
generation, transmission, storage, archival and retrieval of data. Additive manufacturing can play 
an important role in Cybermanufacturing due to the ability to readily transfer digital design files 
to print files with limited manual intervention. However, there is still more work to be done to 
allow AM machines to interface with other manufacturing machines or communicate with the 
‘digital thread’ as promulgated by the digital manufacturing community. 

b) Process Monitoring of Additive Manufacturing Machines 
Process monitoring for AM machines is being actively researched to help improve part quality 
through closed loop feedback control. A common approach is through outfitting machines with 
external sensors and indirect offline measurements. For example, Dinwiddie et al [2], 
demonstrated the use of an extended range IR camera for quantification of temperature variation 
in 3D printed parts in FDM machines. Their aim was to understand how the variations in 
temperature affect the part strength. Faes et al [3] used a 2D laser triangulation for measurement 
of the thickness and the width of the extruded material.  Li and Bian proposed [4] using a RGB 
camera for monitoring the AM process for printing hydrogels and studying the cross linking of the 
fibers. However, none of these methods store the data generated or propose any framework for 
feedback control of the AM machines. Work by Kim et al. [5] proposes “the development of a 
federated, information systems architecture for additive manufacturing”. Their paper rightly points 
towards the need for a digital architecture for AM machines and needing access to the information 
generated at each point of the product development. Large companies like General Electric(GE) 
[6] are also working towards development of open architecture controllers for powder bed fusion 
machines which will enable third party developers to collect, analyze and use the data generated 
for monitor and control applications for these machines. Materialise [7] has a product called 
‘Streamics’ which essentially streams build information from the AM machines to a centralized 
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storage facility. With the software strength in process plan development, directly interfacing 
external sensor data to process layer information is yet to be shown. 

Our proposed architecture differs from other methods in the fact that we are enabling development 
of third party applications on top of a NoSQL type database which allows for easy development 
of custom applications on this middleware type architecture. We use MongoDB as the choice for 
a NoSQL database due to its high scalability and ability to handle time series data efficiently. 
Another feature of our architecture is the ability to expand the data collection abilities from not 
just the machine, but also external sensors and databases.  

c) Document based Database Systems for Storing Real-time Streaming Sensor Data 
MongoDB is an example of a NoSQL database which 
allows for efficient storage and retrieval of time series 
data. Developed by MongoDB Inc., MongoDB uses a 
Javascript Object Notation (JSON) like document for 
data storage instead of a conventional table based 
approach used in SQL systems. Information within 
MongoDB [8] is stored in the following format (Figure 
1). At the core of the MongoDB structure are 
documents, which are the most basic units of the 
database. Documents contain a JSON-like 
representation of the information stored in the database. 
Documents are analogous to rows in an SQL table. A 
bunch of documents form a collection. A collection is similar to a table in SQL, except no schema 
is enforced on the data stored within a collection. Above the collection exists the database system 
which is the container to hold single or multiple collections. The problem we face involves 
generation of vast amounts of unstructured machine data and sensor data, which needs to be 
collected, analyzed and stored. Since we are looking at scalability and ease of use, we decided to 
opt for the MongoDB. We collect the machine data and sensor data at a set polling frequency. The 
data collected is assigned a timestamp. At any given instance of time, a single or multiple data 
points may be stored. Therefore, the schema-less storage and the ability to create documents 
without a predefined structure of MongoDB is useful.  

Methods  
Information System Architecture for Networking of Additive Machines 

We designed our information system architecture for the purposes of networking additive 
manufacturing to have the three main properties:  

1. Scalability: The architecture should be easily expandable and scaled easily across multiple 
machines. 

2. Low cost: There are numerous solutions which are often tied together with the machine 
hardware. This increases cost in terms of creating necessary adaptors to allow physical 
machines to communicate with each other. Our architecture has to abstract out hardware 
level dependencies to enable ease of software development by third party.  

 
Figure 1 General Structure of MongoDB 
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3. Ease of development: We realized that for taking the full advantage of the information 
technology, the machines should be able to provide a platform for easy development of 
applications for monitoring and control for third-party developers.  

One of the key outcomes which may be expected with the increasing interest in 
cybermanufacturing would be a future in which a manufacturing facility is transformed to one that 
involves a deeper integration of the digital realm with the physical world of machines, products, 
and manufacturing processes. This would in turn have the potential for improved quality control 
methodologies and reduction in costs associated with the same.  

The purpose of our research is to include AM in the fast changing field of cybermanufacturing and 
develop an architecture for the same utilizing the APIs made available by the machine 
manufacturers and/or availability of open-source controllers in the machines themselves. The 
architecture is built on top of existing open-source technologies and is scalable to any number of 
machines. We are proposing a middleware architecture which would enable third party developers 
to do sophisticated monitoring and control applications without knowing the details of the lower 
level hardware, much similar to an Android [9] or an iOS for smartphones. Using this architecture 
we are proposing a method for associating product data (in the case of AM, the layer information) 
with process data from the AM machine and external sensors. The idea behind this is to 
demonstrate that with the availability of process information for each layer, we can enable 
monitoring, control and predictive analytics on AM machines.  

The inspiration 
for our 
architecture 
comes from the 
ubiquitous 
smartphones. In 
almost all 
smartphones, the 
end application 
developer does 
not need to know 
how the 
electronics 
inside the 
smartphones are connected, what pins are to be set high/low to trigger a particular action of the 
phone etc. All of this is standardized by the operating system (OS) of the phone. All the developer 
needs to do is make specific function calls responsible for a particular task and the embedded 
libraries within the OS take care of the rest. Similarly, our architecture provides an abstraction 
over the machine and allows storage, retrieval and manipulation of the enormous amounts of data 
generated by machines in an efficient manner along with control of machines, given the controller 
allows external commands in a programmatic fashion (see Figure 2).  

The proposed architecture is composed of 3 parts:  Driver, Database and a Generic Machine Access 
Library. Each of these components is described below:  

 
Figure 2: Overall High Level Architecture for Product and Process Data Association 
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1. The Driver is a piece of python code written specifically for each machine. The driver’s purpose 
is to access the machine controller and any attached external sensors to the machine, combine 
that information with the digital/process file of the part being manufactured and push this 
information into a database. The driver codes will have functions to collect appropriate sensor 
data, identify the product feature under processing within the machine, collect sensor state and 
push all of it into a user defined object. The driver is capable of doing this repeatedly at a set 
polling frequency as per requirement of the end user. This object is then pushed into the 
database.  
 

2. The Database implemented in the proposed architecture is a NoSQL type database. NoSQL 
databases give a high level of ease and are ideally suited for storing time-series based data. We 
have implemented a MongoDB NoSQL system since it provides features such as auto-sharding, 
easy scalability and high frequency of reading and writing data [10]. MongoDB is completely 
open-source and an easy to setup database system with numerous APIs for accessing the 
database in multiple languages such as C, C++, Python, Java etc. Therefore, the drivers may be 
written in any of the most popular languages and MongoDB will still be able to ingest and serve 
data as required. The database is further divided into 3 layers: 

 
a. A Raw Data Layer: As the 

name suggests, this layer 
contains all the raw data that is 
generated during the 
manufacturing of a part in the 
machine. The drivers 
continuously collect 
information from the machine 
and store it in the form of 
documents. Each document in 
the raw data layer follows a 
specific schema as shown in 
Figure 3:  
 

b. An Information Layer: The 
information layer contains 
relevant information about the 
machine from which the data 
is being pulled by the drivers. 
This layer is populated only 
once when the first time a 
machine in installed. The 
information layer contains 
information about the machine name, version number, technology used, power consumption 
ratings, materials used etc.  

 
Figure 3: Document Structure Inside Each Collection 
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c. Summary Layer: The summary layer contains a summary of all the parameters captured by 
the raw layer, relevant statistics pertaining to them (mean, mode, kurtosis etc.) and parts 
created using the machine. 

 
These three layers are accessible to the application developer. The developer can access these 
layers using the generic machine access library as described below. 
 

3.  The Generic Machine 
Access Library: We have 
built a generic access library 
in Python which allows end 
users (in our case 
developers) to build their 
own applications for the 
machine. The library takes 
care of several aspects of 
data pulling and command 
issuance so that the user does 
not have to deal with 
machine specific commands. 
The library also offers an 
object oriented approach to 
programming. As a result, 
the application developers simply have to initialize an object referring to the machine and they 
can directly monitor and control the machines. It offers several functions such as 
getMachineData(layer) [for pulling specific layer data] or sendCommand(command) [for 
sending commands to the machine]. The generic access libraries give us the ability to analyze 
and retrieve information intelligently. It allows us to connect to the databases and pull relevant 
data, along with some basic in-built algorithms. The system can also utilize external libraries or 
user defined functions. As such, the developer needs to know only one language (Python, for 
example) and they can develop programs for any hardware without knowing internal details for 
the hardware. Together this structure can be shown diagrammatically in Figure 4.  

 
The machine’s driver and the database are specific to 
a machine. Therefore, if we have N machines on a 
shop-floor, we will have N such frameworks. 
However, the library on top of them can be used for 
all the machines. Therefore, a single app can be used 
for accessing and analyzing the process information 
from multiple machines We can also have multiple 
machines being monitored/controlled using a generic 
architecture as shown in Figure 5. Multiple machines 
will be reporting its data to the database associated 

 
Figure 4: Overall Architecture for Third Party App Ecosystem development 

 
Figure 5: Architecture for multiple machines 
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with each machine. It is conceivable that a database of databases can be designed to direct the 
control of client requests to multiple machines.  
 
Results  

Application in FDM and EBM machine:  

We chose 2 very different AM machines to demonstrate a proof of concept of our architecture. 
The first machine we chose was a Makerbot FDM machine and the 2nd is an ARCAM EBM 
(Electron Beam Melting) Machine. The Makerbot has a relatively open architecture compared to 
the EBM machine. We were able to get access to the Makerbot controller via the s3g protocol [11] 
(a custom communication protocol built on top of pySerial by Makerbot for communicating with 
Makerbots programmatically). Python based drivers for the Makerbot collects the following 
information from the Makerbot controller: Extruder(s) in use, extruder temperature, extruder 
status, platform temperature, motherboard status, axis positions, file being printed, time stamp 
and layer number. The driver collects this information and pushes it into a dictionary object in 
Python. This dictionary is then sent to MongoDB.  

The EBM machine is a closed architecture system with no direct access to the controller. However, 
the machine generates very descriptive machine logs during the print operation. Scripts were 
written to read these log files, parses them and generates a dictionary. The ARCAM machine can 
keep a track of more than 15000 parameters for a single build. The number of parameters which 
actually vary during the build fluctuate from part to part. We examined several parts where the 
number of parameters vary from 700-900. Amongst the various parameters collected by the 
machine, some of the significant ones collected are as follows: Build height, layer number, 
temperatures, timestamp, alarm status, current, power consumption etc. This data is pushed into 
the raw layer of the machine as per their incidence in the log files. Once a build is completed, the 
machines summary and information layers are also updated automatically by the driver.  

Case Study 1: With Makerbot FDM 

This particular app written for the Markerbot is 
designed to capture machine axis movements 
and rebuild the part digitally by collecting data 
from the controller via driver codes, the part file 
and any associated sensor data. We will be 
using this raw data to identify the parts that parts 
were printed on the Makerbot, associate and 
visualize sensor readings with the slices of the 
part. This can be especially useful when there 
are fleets of FDM printers and the need for 
traceability on part validation and verification, 
particularly when process monitoring data is Figure 6: Actual part made on Makerbot 
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gathered. Moreover, by associating process information with product information, it becomes 
possible to identify differences at a slice level between products.  

Here we have a part that was printed 
under a 0.1 mm resolution on a Makerbot 
printer. The machine was enabled to 
transfer the movement, temperature and 
sensor information to a database. We 
wrote a Python app to pull this 
information and plot the machine 
movement in a 3D scatter plot using the 
generic access library and the matplotlib 
library in Python (for plotting).  For 
clarity, we have reduced the point size of 
the scatter plot. A sample document 
stored in the database is shown in Figure 
7. As seen, external application can easily retrieve file names, information about the motherboard 
status, build state, platform and tool temperatures along with the associated sensor values, all 
synchronized by a timestamp. This information is collected 10 times every second as the printing 
process runs. Using the app, we can see in Figure 8, the part was built with a hexagonal infill. The 
side view and the iso views of the part are shown in Figure 8:  

 
Figure 8: ISO and TOP Views of Digitally Reconstructed Parts from Machine Axis Data 

The summary layer of the machine contains statistics for various parts including the mean, 
minimum and maximum values for the sensors. We can plot all the layers which have a sensor 
value more than the average of the values in the summary layer. We see the following plot, the 
sensor readings were more than the average for around half the part (slices exceeding sensor 
reading averages are represented in red and the part in green). 

Such an analysis can be used for enhanced study of FDM printed parts and may also be used as a 
“playback” system for the machine. With the attachment of sensors such as rotary encoders, it will 
be possible to identify the actual movement of the motors vs the commanded motor movements 

 
Figure 7: Sample document in MongoDB 
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for the FDM printer. By storing the values of the encoders, it will be possible to make an app which 
can compare the commanded movements with the actual movement of the axes. Such a system 
can be used for complete quality control of 3D printed products for every single part produced. It 
can also be useful when security implications are considered. Advanced pattern recognition apps 
can be written to identify deviations of part fabrication from the norm to warn users of errors and 
potential malfunction. 

 
Figure 9: Side(A) and Front Views(B) of Reconstructed Parts with Sensor Values Overlaid (B) shows retrieval of reconstructed 

layers that have exceeded a certain value. This allow enabling qualification and verification processes. 

Case Study 2: With ARCAM EBM 

The Electron Beam Melting 
machines are far more 
complex and are a topic of 
intense research both by 
statisticians and material 
scientists. We demonstrate the 
use of our architecture for 
development of an app which 
can be used to facilitate 
research into development of 
analytical models and data 
visualization. In this app, we 
demonstrate the use of the 
generic access libraries along 
with the matplotlib and numpy 
packages in Python to develop 
regression models and data 
visualization tools for the 
ARCAM machines. This is 
unique such that it allows researchers to go above and beyond the basic visualization tools offered 
by ARCAM in their Log Studio software.  

Figure 10: Sample Log Studio Interface from ARCAM Software 
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Log Studio Software package is developed by ARCAM to the customers of their machines for 
analysis of the log files of the parts being built using the EBM machines. The software is meant 
for analyzing the build statistics for a particular build in the machine. A major limitation of the 
Log Studio is the inability to analyze multiple parts at the same time. As such, it becomes very 
difficult to compare multiple parts and multiple process features simultaneously without writing 
excessive code to compare data across multiple log files. We will demonstrate a simple app using 
our architecture to compare more than one part at a given time.  

The app’s algorithm framework 
is shown in Figure 11. We built 
two apps for the EBM. One is 
an app which requires a user to 
select a parameter and the app 
fits a curve to the data for 
modeling. As an example, we 
modeled the time for melting of 
a particular layer as the build 
proceeds for the fabrication of 
the NCSU football. We 
demonstrate our result in the 
following graph (generated via 
the app) in Figure 13. As can be 
seen, the time taken for melting the powder for each layer (contour) is low at the beginning and at 
the end of the build. But it increases as we move to the middle of the part. Just by interfacing with 
the log data generated, it is possible to identify the general contour shape of the part.  

 
Figure 12: Porous Mesh Football built on the 

ARCAM EBM machine 
 

Figure 13: Contour Time vs Build Time. Due to the shape of the football, 
it is expected that melting time to create a contour is high in the center. 

Two such footballs were printed with varying properties. Since the machine generates a huge 
amount of data (more than 900 parameters are recorded and measured during the build process), 

 
Figure 11 App Algorithm Framework 
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we decided to demonstrate the use of our method to compare parameters for both footballs that 
was only different in its orientation during the build process. Regression model for the curve: Time 
for a contour at any given point of time since the start of the build   

y= t2 * (-0.0013) + t*(0.0608) + 0.3679 

where t is the time elapsed since the build started.  

The second client app 
reads the database for 
both the parts and plots a 
movement of the part 
table in the Z direction 
(which can be correlated 
with the height of the 
part), the temperature 
measurement at the 
bottom of the table and the 
time of the build (i.e. 
when the time data 
recording was started). 
Figure 14 represents the 
data we have plotted in a 
single chart for 
comparison of two part builds (same football model) with different orientations in the EBM 
machine. The bold dark marker (file 1) represents version 1 of the football and the thin line marker 
represents version 2 of the football. We notice that while the bottom temperatures (indicated using 
red color) of the two builds are similar, they are not identical. We notice there are differences after 
the peak in both plots. An interesting feature we can notice from the data is that for the football 
version 2, the build time is 46 hours but the height of the table goes down at first and then increases. 
This is explained using the bottom temperatures. The temperature is constant for the first 15 hours 
till which point the height reduces. This indicates that machine table position was simply moving 
with no actual printing taking place. This is not the case with the version 1 of the football. While 
we cannot ascertain the reason for this difference, it is apparent now that through the app, 
automated algorithms can be built to crunch through all of the log files to find anomalies. This can 
assist in process monitoring and qualification. Another point we can readily note is the difference 
in the height of the two versions. This difference can be due to several reasons such as orientation 
of footballs during the printing process. The importance to note is that such comparisons can be 
scaled to any number of parts. Models surrounding the data streamed from the electron beam 
melting machines enables better data analytics. The middleware architecture also enables any third 
party to build apps to extend the functionality of the machines. 

 
Figure 14: Build Height and Temperatures plotted against time for 2 machine log files 

created from the same model part. 
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Discussion 

As we have shown in both the case studies, our library and architecture provides a layer of 
abstraction for both 3rd party developers and researchers which can be used for academic or 
industry related development. We have demonstrated the use of our architecture for development 
of data analytics tools for additive manufacturing machines. The results can be graphical as well 
as analytical. The project benefits from the use of a NoSQL database which allows storage of 
information in a schema-less format, freeing the driver developer to focus on collection of 
information and not in devising the schema. Also the inherent advantages of storing information 
in a document based structure since we store incoming data in the form of a time series data 
structure. As a result, it becomes possible for us to associate every reading with a time stamp. The 
results we have seen are dependent on the requirement of the application developer. Since the data 
is readily available, the app developer only needs to import the generic access library and use 
existing Python frameworks for making their task of app development faster.  

There are numerous challenges and improvements to this work. The generic access library needs 
to be expanded to incorporate advanced numerical analysis. The graphing functions are currently 
implemented at the application level, which requires the app developer to have significant 
understanding of the libraries they are using (e.g. matplotlib and numpy). This can be incorporated 
in the library to unburden the developers from worrying about the graphs. 

It is also possible for us to develop the generic access library for popular languages such as C, 
C++, Java, R etc. to suit the need of different academicians/industry. In fact this might be a 
necessity as Python is not the fastest of the languages in terms of execution. One major challenge 
here is that the libraries depend on the public availability of drivers for the language to interact 
with MongoDB. While they are available for most popular languages, some of the more 
exotic/proprietary languages will lack such drivers. As such, there will be a need to develop 
suitable workarounds.  

More work needs to be done on better understanding the data from the additive manufacturing 
machines for identification of parameters which affect the printing process. For example, there are 
over 15000 parameters which can be tracked by the EBM machine. We are only able to track a 
few. Since we have all the information generated by the machine, it should be possible to 
implement advanced statistical and/or deep learning techniques to predict properties of the parts 
which are being printed in the EBM machine.  

Another area of improvement could be development of a big data framework on top of MongoDB 
in order to speed up queries. While MongoDB is quite stable and scalable for large datasets, 
reduction of query times will result in faster code runs and might enable us to have real time control 
of AM machines based on sophisticated deep-learning algorithms running in real time.  

 

1173



 

 

Conclusion  

We demonstrated the use of a completely open-source system for real-time monitoring and storage 
of manufacturing data for additive manufacturing machines. The system was built using custom 
driver software for each AM machine using Python which stores the data generated along with the 
slice information in a NoSQL database providing a scalable and easy way for associating 
production data with design information. We also developed a generic access library which 
provides APIs for extraction and analysis of this data from the database along with option control 
commands where available (in this case, Makerbot printers). We demonstrated the use of our 
architecture for 2 machines, Makerbot and ARCAM EBM machine. For the Makerbot case study, 
we demonstrated the ability to use the data generated for replaying what was developed in the 
machine and identifying the sensor reading values at different layers in the part manufactured. The 
EBM data was used to demonstrate the ability to perform regression analysis and to perform simple 
visual analytics on the build process.  
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