
Scalable Linking of Slice Layer Information with Process
Monitoring Data in Additive Manufacturing Machines

1*A. Angrish, 1S. Singh, 2X. Shen, 1,3Y.S. Lee, 1,3P. Cohen, 1,3B. Starly*
1Edward P. Fitts Department of Industrial and Systems Engineering, 2Department of Computer Science
3Center for Additive Manufacturing and Logistics, North Carolina State University, Raleigh, NC 27695

*Contact authors: bstarly@ncsu.edu; aangrish@ncsu.edu

Abstract
In smart connected factories, manufacturing machines are capable of generating vast amounts of
process data generated internally from within its control systems or from sensors coupled with the
process. This streaming data must be stored and queried to perform data analytics or closed loop
control to improve manufacturing processes. Currently, structured data schemas are ineffective in
handling image and time-series data generated from additive manufacturing machines. In this
paper, we propose an unstructured data schema through NoSQL document oriented database
systems as an effective and scalable approach to capturing and storing real-time streaming data for
process monitoring. In addition, we present an approach to linking in real-time, slice layer
information and tag it with process related sensor data for performing fast, scalable queries either
in real-time or post-fabrication. We have demonstrated our approach with two classes of additive
manufacturing machines – Fused Deposition Modeling and Electron Beam Melting Systems from
Makerbot and ARCAM respectively.

Keywords: Cybermanufacturing, Process Monitoring, NoSQL Databases, Networked Additive
Manufacturing. MongoDB

Introduction and Motivation

Process monitoring of additive manufacturing processes, particularly those that produce high value
added items, is a key critical step to ensure high quality parts. Given that there are a large number
of parameters that can affect the final part geometry and properties, several approaches are taken
to conduct process monitoring. Among the strategies are 1) Adding internal sensors that monitor
the various motors and actuators of the machine; 2) Monitoring defects in a single layer, whether
it be a powder bed, polymerized resin surface or a layer of extruded filaments; 3) Direct in-situ
monitoring of the energy and material interaction zone. This zone can be the melt pool, filament
extrusion and photopolymerization zone for each of the major classes of additive manufacturing
machines. Any combination of these strategies will undoubtedly generate a lot of process data in
raw numeric values or image based data. For example, a single build of the NIST additive
manufacturing test artifact part on an ARCAM S10 generates above 300MB of raw numeric data
without any additional sensors attached to the process. This time-series based data is stored as flat
files on the local computer controlling the machine and accessible through machine specific
proprietary software interfaces which allow users to analyze the log data generated during the build
process. It is easily conceivable that managing the data generated from the process, specifically

1161

Solid Freeform Fabrication 2016: Proceedings of the 26th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper

Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International

mailto:bstarly@ncsu.edu
mailto:aangrish@ncsu.edu

related to the storage, retrieval and cross-referencing of data among similar parts or multiple parts
will be critical to downstream verification and validation exercises. Real-time streaming of process
data also becomes critical for implementing close-loop control strategies to ensure a quality build.

With the networking of additive manufacturing machines and the addition of sensors to monitor
the process becoming more prevalent, we argue that simply storing all of the data generated during
the process in the form of flat log files or rudimentary databases will make the retrieval of this data
limited to single part files. If further production scale analysis is desired, then custom software will
have to be written to parse through multiple log files to extract needed information for statistical
analysis or part validation exercises. More importantly, to assess the health of the additive
machine, custom software will be required to analyze all of the process data locked into the
multiple log files generated between scheduled maintenance interval times. The data to be
analyzed will easily be in the multiple terabyte or more data block sizes, requiring production
facilities to manage computing hardware to crunch and analyze through the data. In some
instances, production scale AM machines archive the data or portions of it are deleted after a
production run is completed. For example, on the latest generation of the ARCAM machines, x-
ray images taken to interrogate layer build-up process is deleted after internal control systems
determine there is nothing of value in the image.

With advancements made in sensor technology, particularly in metal based AM machines, we see
a couple of challenges related to large data management and how this data is made useful for part
verification or machine health status monitoring. In production scale settings, all of the process
data, potentially with ‘Big Data’ type characteristics must be efficiently stored and retrieved. With
advancements in distributed computing and storage, this challenge can be solved but must be
architected in a manner suited for additive manufacturing machines. There are currently limited
ways to relate sensor generated data and tag it to individual critical features on a product definition
file. The potential benefit of tagging each feature on an AM part with associated sensor data
generated during the fabrication of a particular part, allows a much more automated and robust
verification/validation process.

This paper presents an approach on how the above challenges can be met. For the first challenge
in efficiently storing time-series data, we present an approach to storing streaming sensor data in
document based NoSQL database systems. This is in contrast to using relational type database
systems such as those offered by MySQL, Oracle or Access, which are not suited to real-time
streaming time-series based data. We have demonstrated this ability with simple Makerbot type
additive fabrication machine. In another case study, we also show how log files generated during
the fabrication of two different builds of the same part on an ARCAM machine is stored in a
document based database system. To address the second challenge, we have shown an approach
to relating the slice layer information associated with AM parts to sensor data generated during
the fabrication of each layer of the part. Again this is shown for both FDM and Electron Beam
Melting machines. At the end of the paper, we have identified challenges and future opportunities
that can be pursued in relation to how data is stored, retrieved and cross-referenced in future
cybermanufacturing type applications.

1162

Related Background
Manufacturing intelligence driven by cross-connecting streaming data from physical machines can
be a key driver to breaking down silos between manufacturing shop-floors, design teams, quality
control and the several disciplinary teams that interface during a product lifecycle. As additive
manufacturing machines are integrated into smarter manufacturing facilities and consequently
with traditional manufacturing systems, it is critical that necessary software architectures are
developed to interface with various hardware modalities on a shop floor.

a) Cybermanufacturing(CM) in Additive Manufacturing
The US National Science Foundation recent initiative in Cybermanufacturing illustrates why we
need a data centric approach for additive manufacturing. The NSF defines - Cybermanufacturing
“to be at the nexus of research advances from the engineering and computer/information science
domains”. One aspect of cybermanufacturing as illustrated by Lee et. al [1] and others is the role
that streaming data can play in robust predictive and prescriptive analytics for machine state health
monitoring. In another role of cybermanufacturing is how freeform designs made via ubiquitous
design tools are easily transferred to conventional manufacturing or additive type machines.
Another feature of CM is the enablement of technologies that make information systems to be
fault-tolerant, scalable and enable the easy development of hardware agnostic software
applications. To facilitate all of these CM features, there must be a robust mechanism for
generation, transmission, storage, archival and retrieval of data. Additive manufacturing can play
an important role in Cybermanufacturing due to the ability to readily transfer digital design files
to print files with limited manual intervention. However, there is still more work to be done to
allow AM machines to interface with other manufacturing machines or communicate with the
‘digital thread’ as promulgated by the digital manufacturing community.

b) Process Monitoring of Additive Manufacturing Machines
Process monitoring for AM machines is being actively researched to help improve part quality
through closed loop feedback control. A common approach is through outfitting machines with
external sensors and indirect offline measurements. For example, Dinwiddie et al [2],
demonstrated the use of an extended range IR camera for quantification of temperature variation
in 3D printed parts in FDM machines. Their aim was to understand how the variations in
temperature affect the part strength. Faes et al [3] used a 2D laser triangulation for measurement
of the thickness and the width of the extruded material. Li and Bian proposed [4] using a RGB
camera for monitoring the AM process for printing hydrogels and studying the cross linking of the
fibers. However, none of these methods store the data generated or propose any framework for
feedback control of the AM machines. Work by Kim et al. [5] proposes “the development of a
federated, information systems architecture for additive manufacturing”. Their paper rightly points
towards the need for a digital architecture for AM machines and needing access to the information
generated at each point of the product development. Large companies like General Electric(GE)
[6] are also working towards development of open architecture controllers for powder bed fusion
machines which will enable third party developers to collect, analyze and use the data generated
for monitor and control applications for these machines. Materialise [7] has a product called
‘Streamics’ which essentially streams build information from the AM machines to a centralized

1163

http://www.sciencedirect.com/science/article/pii/S2213846316300049
http://connection.ebscohost.com/c/articles/99417094/strategy-on-line-monitoring-crosslinking-degree-3d-printing-hydrogel-fiber-based-dual-threshold-enhancement-method
http://ac.els-cdn.com.prox.lib.ncsu.edu/S2214860414000189/1-s2.0-S2214860414000189-main.pdf?_tid=65b8fe3c-4876-11e6-829c-00000aab0f02&acdnat=1468358583_35f78b5e5ec2721eddca34161b147e8e

storage facility. With the software strength in process plan development, directly interfacing
external sensor data to process layer information is yet to be shown.

Our proposed architecture differs from other methods in the fact that we are enabling development
of third party applications on top of a NoSQL type database which allows for easy development
of custom applications on this middleware type architecture. We use MongoDB as the choice for
a NoSQL database due to its high scalability and ability to handle time series data efficiently.
Another feature of our architecture is the ability to expand the data collection abilities from not
just the machine, but also external sensors and databases.

c) Document based Database Systems for Storing Real-time Streaming Sensor Data
MongoDB is an example of a NoSQL database which
allows for efficient storage and retrieval of time series
data. Developed by MongoDB Inc., MongoDB uses a
Javascript Object Notation (JSON) like document for
data storage instead of a conventional table based
approach used in SQL systems. Information within
MongoDB [8] is stored in the following format (Figure
1). At the core of the MongoDB structure are
documents, which are the most basic units of the
database. Documents contain a JSON-like
representation of the information stored in the database.
Documents are analogous to rows in an SQL table. A
bunch of documents form a collection. A collection is similar to a table in SQL, except no schema
is enforced on the data stored within a collection. Above the collection exists the database system
which is the container to hold single or multiple collections. The problem we face involves
generation of vast amounts of unstructured machine data and sensor data, which needs to be
collected, analyzed and stored. Since we are looking at scalability and ease of use, we decided to
opt for the MongoDB. We collect the machine data and sensor data at a set polling frequency. The
data collected is assigned a timestamp. At any given instance of time, a single or multiple data
points may be stored. Therefore, the schema-less storage and the ability to create documents
without a predefined structure of MongoDB is useful.

Methods
Information System Architecture for Networking of Additive Machines

We designed our information system architecture for the purposes of networking additive
manufacturing to have the three main properties:

1. Scalability: The architecture should be easily expandable and scaled easily across multiple
machines.

2. Low cost: There are numerous solutions which are often tied together with the machine
hardware. This increases cost in terms of creating necessary adaptors to allow physical
machines to communicate with each other. Our architecture has to abstract out hardware
level dependencies to enable ease of software development by third party.

Figure 1 General Structure of MongoDB

1164

3. Ease of development: We realized that for taking the full advantage of the information
technology, the machines should be able to provide a platform for easy development of
applications for monitoring and control for third-party developers.

One of the key outcomes which may be expected with the increasing interest in
cybermanufacturing would be a future in which a manufacturing facility is transformed to one that
involves a deeper integration of the digital realm with the physical world of machines, products,
and manufacturing processes. This would in turn have the potential for improved quality control
methodologies and reduction in costs associated with the same.

The purpose of our research is to include AM in the fast changing field of cybermanufacturing and
develop an architecture for the same utilizing the APIs made available by the machine
manufacturers and/or availability of open-source controllers in the machines themselves. The
architecture is built on top of existing open-source technologies and is scalable to any number of
machines. We are proposing a middleware architecture which would enable third party developers
to do sophisticated monitoring and control applications without knowing the details of the lower
level hardware, much similar to an Android [9] or an iOS for smartphones. Using this architecture
we are proposing a method for associating product data (in the case of AM, the layer information)
with process data from the AM machine and external sensors. The idea behind this is to
demonstrate that with the availability of process information for each layer, we can enable
monitoring, control and predictive analytics on AM machines.

The inspiration
for our
architecture
comes from the
ubiquitous
smartphones. In
almost all
smartphones, the
end application
developer does
not need to know
how the
electronics
inside the
smartphones are connected, what pins are to be set high/low to trigger a particular action of the
phone etc. All of this is standardized by the operating system (OS) of the phone. All the developer
needs to do is make specific function calls responsible for a particular task and the embedded
libraries within the OS take care of the rest. Similarly, our architecture provides an abstraction
over the machine and allows storage, retrieval and manipulation of the enormous amounts of data
generated by machines in an efficient manner along with control of machines, given the controller
allows external commands in a programmatic fashion (see Figure 2).

The proposed architecture is composed of 3 parts: Driver, Database and a Generic Machine Access
Library. Each of these components is described below:

Figure 2: Overall High Level Architecture for Product and Process Data Association

1165

1. The Driver is a piece of python code written specifically for each machine. The driver’s purpose
is to access the machine controller and any attached external sensors to the machine, combine
that information with the digital/process file of the part being manufactured and push this
information into a database. The driver codes will have functions to collect appropriate sensor
data, identify the product feature under processing within the machine, collect sensor state and
push all of it into a user defined object. The driver is capable of doing this repeatedly at a set
polling frequency as per requirement of the end user. This object is then pushed into the
database.

2. The Database implemented in the proposed architecture is a NoSQL type database. NoSQL
databases give a high level of ease and are ideally suited for storing time-series based data. We
have implemented a MongoDB NoSQL system since it provides features such as auto-sharding,
easy scalability and high frequency of reading and writing data [10]. MongoDB is completely
open-source and an easy to setup database system with numerous APIs for accessing the
database in multiple languages such as C, C++, Python, Java etc. Therefore, the drivers may be
written in any of the most popular languages and MongoDB will still be able to ingest and serve
data as required. The database is further divided into 3 layers:

a. A Raw Data Layer: As the

name suggests, this layer
contains all the raw data that is
generated during the
manufacturing of a part in the
machine. The drivers
continuously collect
information from the machine
and store it in the form of
documents. Each document in
the raw data layer follows a
specific schema as shown in
Figure 3:

b. An Information Layer: The
information layer contains
relevant information about the
machine from which the data
is being pulled by the drivers.
This layer is populated only
once when the first time a
machine in installed. The
information layer contains
information about the machine name, version number, technology used, power consumption
ratings, materials used etc.

Figure 3: Document Structure Inside Each Collection

1166

c. Summary Layer: The summary layer contains a summary of all the parameters captured by
the raw layer, relevant statistics pertaining to them (mean, mode, kurtosis etc.) and parts
created using the machine.

These three layers are accessible to the application developer. The developer can access these
layers using the generic machine access library as described below.

3. The Generic Machine
Access Library: We have
built a generic access library
in Python which allows end
users (in our case
developers) to build their
own applications for the
machine. The library takes
care of several aspects of
data pulling and command
issuance so that the user does
not have to deal with
machine specific commands.
The library also offers an
object oriented approach to
programming. As a result,
the application developers simply have to initialize an object referring to the machine and they
can directly monitor and control the machines. It offers several functions such as
getMachineData(layer) [for pulling specific layer data] or sendCommand(command) [for
sending commands to the machine]. The generic access libraries give us the ability to analyze
and retrieve information intelligently. It allows us to connect to the databases and pull relevant
data, along with some basic in-built algorithms. The system can also utilize external libraries or
user defined functions. As such, the developer needs to know only one language (Python, for
example) and they can develop programs for any hardware without knowing internal details for
the hardware. Together this structure can be shown diagrammatically in Figure 4.

The machine’s driver and the database are specific to
a machine. Therefore, if we have N machines on a
shop-floor, we will have N such frameworks.
However, the library on top of them can be used for
all the machines. Therefore, a single app can be used
for accessing and analyzing the process information
from multiple machines We can also have multiple
machines being monitored/controlled using a generic
architecture as shown in Figure 5. Multiple machines
will be reporting its data to the database associated

Figure 4: Overall Architecture for Third Party App Ecosystem development

Figure 5: Architecture for multiple machines

1167

with each machine. It is conceivable that a database of databases can be designed to direct the
control of client requests to multiple machines.

Results

Application in FDM and EBM machine:

We chose 2 very different AM machines to demonstrate a proof of concept of our architecture.
The first machine we chose was a Makerbot FDM machine and the 2nd is an ARCAM EBM
(Electron Beam Melting) Machine. The Makerbot has a relatively open architecture compared to
the EBM machine. We were able to get access to the Makerbot controller via the s3g protocol [11]
(a custom communication protocol built on top of pySerial by Makerbot for communicating with
Makerbots programmatically). Python based drivers for the Makerbot collects the following
information from the Makerbot controller: Extruder(s) in use, extruder temperature, extruder
status, platform temperature, motherboard status, axis positions, file being printed, time stamp
and layer number. The driver collects this information and pushes it into a dictionary object in
Python. This dictionary is then sent to MongoDB.

The EBM machine is a closed architecture system with no direct access to the controller. However,
the machine generates very descriptive machine logs during the print operation. Scripts were
written to read these log files, parses them and generates a dictionary. The ARCAM machine can
keep a track of more than 15000 parameters for a single build. The number of parameters which
actually vary during the build fluctuate from part to part. We examined several parts where the
number of parameters vary from 700-900. Amongst the various parameters collected by the
machine, some of the significant ones collected are as follows: Build height, layer number,
temperatures, timestamp, alarm status, current, power consumption etc. This data is pushed into
the raw layer of the machine as per their incidence in the log files. Once a build is completed, the
machines summary and information layers are also updated automatically by the driver.

Case Study 1: With Makerbot FDM

This particular app written for the Markerbot is
designed to capture machine axis movements
and rebuild the part digitally by collecting data
from the controller via driver codes, the part file
and any associated sensor data. We will be
using this raw data to identify the parts that parts
were printed on the Makerbot, associate and
visualize sensor readings with the slices of the
part. This can be especially useful when there
are fleets of FDM printers and the need for
traceability on part validation and verification,
particularly when process monitoring data is Figure 6: Actual part made on Makerbot

1168

gathered. Moreover, by associating process information with product information, it becomes
possible to identify differences at a slice level between products.

Here we have a part that was printed
under a 0.1 mm resolution on a Makerbot
printer. The machine was enabled to
transfer the movement, temperature and
sensor information to a database. We
wrote a Python app to pull this
information and plot the machine
movement in a 3D scatter plot using the
generic access library and the matplotlib
library in Python (for plotting). For
clarity, we have reduced the point size of
the scatter plot. A sample document
stored in the database is shown in Figure
7. As seen, external application can easily retrieve file names, information about the motherboard
status, build state, platform and tool temperatures along with the associated sensor values, all
synchronized by a timestamp. This information is collected 10 times every second as the printing
process runs. Using the app, we can see in Figure 8, the part was built with a hexagonal infill. The
side view and the iso views of the part are shown in Figure 8:

Figure 8: ISO and TOP Views of Digitally Reconstructed Parts from Machine Axis Data

The summary layer of the machine contains statistics for various parts including the mean,
minimum and maximum values for the sensors. We can plot all the layers which have a sensor
value more than the average of the values in the summary layer. We see the following plot, the
sensor readings were more than the average for around half the part (slices exceeding sensor
reading averages are represented in red and the part in green).

Such an analysis can be used for enhanced study of FDM printed parts and may also be used as a
“playback” system for the machine. With the attachment of sensors such as rotary encoders, it will
be possible to identify the actual movement of the motors vs the commanded motor movements

Figure 7: Sample document in MongoDB

1169

for the FDM printer. By storing the values of the encoders, it will be possible to make an app which
can compare the commanded movements with the actual movement of the axes. Such a system
can be used for complete quality control of 3D printed products for every single part produced. It
can also be useful when security implications are considered. Advanced pattern recognition apps
can be written to identify deviations of part fabrication from the norm to warn users of errors and
potential malfunction.

Figure 9: Side(A) and Front Views(B) of Reconstructed Parts with Sensor Values Overlaid (B) shows retrieval of reconstructed

layers that have exceeded a certain value. This allow enabling qualification and verification processes.

Case Study 2: With ARCAM EBM

The Electron Beam Melting
machines are far more
complex and are a topic of
intense research both by
statisticians and material
scientists. We demonstrate the
use of our architecture for
development of an app which
can be used to facilitate
research into development of
analytical models and data
visualization. In this app, we
demonstrate the use of the
generic access libraries along
with the matplotlib and numpy
packages in Python to develop
regression models and data
visualization tools for the
ARCAM machines. This is
unique such that it allows researchers to go above and beyond the basic visualization tools offered
by ARCAM in their Log Studio software.

Figure 10: Sample Log Studio Interface from ARCAM Software

1170

Log Studio Software package is developed by ARCAM to the customers of their machines for
analysis of the log files of the parts being built using the EBM machines. The software is meant
for analyzing the build statistics for a particular build in the machine. A major limitation of the
Log Studio is the inability to analyze multiple parts at the same time. As such, it becomes very
difficult to compare multiple parts and multiple process features simultaneously without writing
excessive code to compare data across multiple log files. We will demonstrate a simple app using
our architecture to compare more than one part at a given time.

The app’s algorithm framework
is shown in Figure 11. We built
two apps for the EBM. One is
an app which requires a user to
select a parameter and the app
fits a curve to the data for
modeling. As an example, we
modeled the time for melting of
a particular layer as the build
proceeds for the fabrication of
the NCSU football. We
demonstrate our result in the
following graph (generated via
the app) in Figure 13. As can be
seen, the time taken for melting the powder for each layer (contour) is low at the beginning and at
the end of the build. But it increases as we move to the middle of the part. Just by interfacing with
the log data generated, it is possible to identify the general contour shape of the part.

Figure 12: Porous Mesh Football built on the

ARCAM EBM machine

Figure 13: Contour Time vs Build Time. Due to the shape of the football,
it is expected that melting time to create a contour is high in the center.

Two such footballs were printed with varying properties. Since the machine generates a huge
amount of data (more than 900 parameters are recorded and measured during the build process),

Figure 11 App Algorithm Framework

1171

we decided to demonstrate the use of our method to compare parameters for both footballs that
was only different in its orientation during the build process. Regression model for the curve: Time
for a contour at any given point of time since the start of the build

y= t2 * (-0.0013) + t*(0.0608) + 0.3679

where t is the time elapsed since the build started.

The second client app
reads the database for
both the parts and plots a
movement of the part
table in the Z direction
(which can be correlated
with the height of the
part), the temperature
measurement at the
bottom of the table and the
time of the build (i.e.
when the time data
recording was started).
Figure 14 represents the
data we have plotted in a
single chart for
comparison of two part builds (same football model) with different orientations in the EBM
machine. The bold dark marker (file 1) represents version 1 of the football and the thin line marker
represents version 2 of the football. We notice that while the bottom temperatures (indicated using
red color) of the two builds are similar, they are not identical. We notice there are differences after
the peak in both plots. An interesting feature we can notice from the data is that for the football
version 2, the build time is 46 hours but the height of the table goes down at first and then increases.
This is explained using the bottom temperatures. The temperature is constant for the first 15 hours
till which point the height reduces. This indicates that machine table position was simply moving
with no actual printing taking place. This is not the case with the version 1 of the football. While
we cannot ascertain the reason for this difference, it is apparent now that through the app,
automated algorithms can be built to crunch through all of the log files to find anomalies. This can
assist in process monitoring and qualification. Another point we can readily note is the difference
in the height of the two versions. This difference can be due to several reasons such as orientation
of footballs during the printing process. The importance to note is that such comparisons can be
scaled to any number of parts. Models surrounding the data streamed from the electron beam
melting machines enables better data analytics. The middleware architecture also enables any third
party to build apps to extend the functionality of the machines.

Figure 14: Build Height and Temperatures plotted against time for 2 machine log files

created from the same model part.

1172

Discussion

As we have shown in both the case studies, our library and architecture provides a layer of
abstraction for both 3rd party developers and researchers which can be used for academic or
industry related development. We have demonstrated the use of our architecture for development
of data analytics tools for additive manufacturing machines. The results can be graphical as well
as analytical. The project benefits from the use of a NoSQL database which allows storage of
information in a schema-less format, freeing the driver developer to focus on collection of
information and not in devising the schema. Also the inherent advantages of storing information
in a document based structure since we store incoming data in the form of a time series data
structure. As a result, it becomes possible for us to associate every reading with a time stamp. The
results we have seen are dependent on the requirement of the application developer. Since the data
is readily available, the app developer only needs to import the generic access library and use
existing Python frameworks for making their task of app development faster.

There are numerous challenges and improvements to this work. The generic access library needs
to be expanded to incorporate advanced numerical analysis. The graphing functions are currently
implemented at the application level, which requires the app developer to have significant
understanding of the libraries they are using (e.g. matplotlib and numpy). This can be incorporated
in the library to unburden the developers from worrying about the graphs.

It is also possible for us to develop the generic access library for popular languages such as C,
C++, Java, R etc. to suit the need of different academicians/industry. In fact this might be a
necessity as Python is not the fastest of the languages in terms of execution. One major challenge
here is that the libraries depend on the public availability of drivers for the language to interact
with MongoDB. While they are available for most popular languages, some of the more
exotic/proprietary languages will lack such drivers. As such, there will be a need to develop
suitable workarounds.

More work needs to be done on better understanding the data from the additive manufacturing
machines for identification of parameters which affect the printing process. For example, there are
over 15000 parameters which can be tracked by the EBM machine. We are only able to track a
few. Since we have all the information generated by the machine, it should be possible to
implement advanced statistical and/or deep learning techniques to predict properties of the parts
which are being printed in the EBM machine.

Another area of improvement could be development of a big data framework on top of MongoDB
in order to speed up queries. While MongoDB is quite stable and scalable for large datasets,
reduction of query times will result in faster code runs and might enable us to have real time control
of AM machines based on sophisticated deep-learning algorithms running in real time.

1173

Conclusion

We demonstrated the use of a completely open-source system for real-time monitoring and storage
of manufacturing data for additive manufacturing machines. The system was built using custom
driver software for each AM machine using Python which stores the data generated along with the
slice information in a NoSQL database providing a scalable and easy way for associating
production data with design information. We also developed a generic access library which
provides APIs for extraction and analysis of this data from the database along with option control
commands where available (in this case, Makerbot printers). We demonstrated the use of our
architecture for 2 machines, Makerbot and ARCAM EBM machine. For the Makerbot case study,
we demonstrated the ability to use the data generated for replaying what was developed in the
machine and identifying the sensor reading values at different layers in the part manufactured. The
EBM data was used to demonstrate the ability to perform regression analysis and to perform simple
visual analytics on the build process.

Acknowledgement

We would like to thank Dr. Tim Horn and Austin Isaacs for providing their valuable help with the
EBM machines. We would also like to thank the ISE department and the NSF for providing the
resources for this research.

References
[1] Lee, J., Bagheri, B., & Jin, C. (2016). Introduction to cyber manufacturing. Manufacturing Letters, 8,
11-15. doi:10.1016/j.mfglet.2016.05.002

[2] Dinwiddie, R. B., Love, L. J., & Rowe, J. C. (2013). Real-time process monitoring and temperature
mapping of a 3D polymer printing process. Thermosense: Thermal Infrared Applications XXXV.
doi:10.1117/12.1518454

[3] Faes, M., Abbeloos, W., Vogeler, F., Valkenaers, H., Coppens, K., & Ferraris, E. (2014, September).
Process monitoring of extrusion based 3D printing via laser scanning. In PMI 2014 Conference Proceedings
(Vol. 6, pp. 363-367).

[4] Li, Y., & Bian, P. Y. (2014). A Strategy for On-Line Monitoring the Crosslinking Degree of 3D Printing
Hydrogel Fiber Based on Dual-Threshold Enhancement Method. In Key Engineering Materials (Vol. 621,
pp. 38-43). Trans Tech Publications.

[5] Kim, D. B., Witherell, P., Lipman, R., & Feng, S. C. (2015). Streamlining the additive manufacturing
digital spectrum: A systems approach. Additive manufacturing, 5, 20-30.

[6] A Flexible Adaptive Open Architecture to Enable a Robust Third-Party Ecosystem for Metal Powder
Bed Fusion AM Systems (4051). (n.d.). Retrieved July 14, 2016, from https://goo.gl/Q3H4rP

[7] Materialise Streamics. (n.d.). Retrieved July 14, 2016, from http://goo.gl/SclisW

[8] Glossary. (n.d.). Retrieved July 14, 2016, from https://goo.gl/7CCyB2

1174

https://goo.gl/Q3H4rP
http://goo.gl/SclisW
https://goo.gl/7CCyB2

[9] Andrus, J., & Nieh, J. (2012). Teaching operating systems using android. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education (pp. 613-618). ACM.

[10] Kalan, M. (2015). MongoDB in Chicago: Benefits of Using MongoDB Over RDBMS. Retrieved July
14, 2016, from https://www.mongodb.com/presentations/mongodb-chicago-benefits-using-mongodb-
over-rdbms

[11] Makerbot/s3g. (2013). Retrieved July 14, 2016, from https://github.com/Makerbot/s3g

1175

https://www.mongodb.com/presentations/mongodb-chicago-benefits-using-mongodb-over-rdbms
https://www.mongodb.com/presentations/mongodb-chicago-benefits-using-mongodb-over-rdbms
https://github.com/Makerbot/s3g

