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Abstract 

 One main challenge of additive manufacturing is the lack of geometric accuracy of the parts. 

Part geometry measurements generated using Next Engine 3D scanners yields an extremely large 

amounts of data. The generated data is so large, that it is difficult to characterize and quantify the 

geometric accuracy of the part directly. Self-Organizing Map is utilized to investigate the major 

types of geometric deviations.    

I. Introduction 

Additive Manufacturing (AM) enables the fabrication of complex and customized parts based 

on Computer Aided Design (CAD) models via layer upon layer depositing of broad range of 

metals, composites, and plastics ([(Y. Huang et al. 2015),(W. Gao et al. 2015),(Thompson et al. 

2015),(Ameta et al. 2015)]). Although AM provides several advantages, such as reduction of 

material waste, fabrication of complex geometries, and heterogeneous compositions ([(Y. Huang 

et al. 2015), (Thompson et al. 2015),(Moylan, Cooke, and Jurrens 2012)]), over traditional 

‘subtractive’ manufacturing methods, lack-of-geometric- accuracy and surface finish of the 

fabricated parts with AM are major issues, which are obstacle in widespread acceptance of additive 

processes [(Moylan, Cooke, and Jurrens 2012)]. Existing standard methods including: ASME, 

ANSI, and etc. has been applied to resolve the geometric accuracy problems, but these approaches 

are not able to account for entire information that are hidden in complicated and new shapes. 

Hence, there is a lack of understanding about the different type of geometric deviations affected 

by process parameters, geometric designs, etc. Therefore, there is an urgent need to develop a 

methodology to characterize the types of geometric deviations, and to establish the relationship 

between process design parameters and geometric deviations.  

We categorize the existing literature of geometric accuracy measurements into three major 

categories: (i) Geometry Optimization based on empirical deviation examinations [(Wong and 

Hernandez 2012)] and ASME/ANSI standards [(Schleich et al. 2014)], (ii) Simulation based 

approaches such as Finite Element Method (FEM), and (iii) shape compensation.  

In previous studies, [(Davidson et al. 2005)] applies ASME features like Geometric Dimensions 

and Tolerances (GD&T) to extract the geometric information on the designed part, and relate them 

to design parameters. GD&T is a system for defining and communicating engineering accuracies. 

Commonly used GD&T features are flatness, straightness, thickness, circularity, parallelism, 

perpendicularity, angularity, run out, etc. These features are suitable for meaningful and 

diagnosable regions. For example, the deviation in different shapes like circle and cylinder can be 

extracted; however, one of the important drawbacks of this method is the fact that these features 

cannot tackle non-geometric information, which defined as shapes with irregular contours, and 

whose edges are not straight, nor can it consider small portion of them [(J. Gao et al. 2005)]. In 
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other words, the mentioned features cannot account for complex and new shapes. Furthermore, 

using same ASME variables is not able to distinguish geometric quality of different parts. Also, 

linking the (GD&T)’s to design and process parameters is a multi-objective optimization process, 

which has two major limitations: first, it requires plenty of experiments due to a large number of 

parameters that controls the AM processes to define an objective function. Second, using limited 

number of experiments to approximate the optimal solution brings about significant uncertainty. 

The known disadvantages of these methods do not end here, among others, expensive data usage 

for quantifying inaccuracy features, complex and tedious calculations of accuracy analysis, which 

make the method time-consuming and prone to error [(Chase et al. 1996)].   

Additionally, quite a few simulation based approaches such as Finite Element (FE) are studied 

for realization of contingent relation of physical process parameters and finished part quality 

specifically geometric accuracy ([(King, W. E. 2015), (Xu and Chen 2015), (Pal et al. 2013), (Tapia 

and Elwany 2014), (Paul, Anand, and Gerner 2014)]). FE is a three-dimensional thermo-

mechanical method that accounts for the thermal deformation in AM parts based on slice thickness, 

part orientation, scanning speed, and material properties [(King, W. E. 2015)]. In particular, 

thermal deformation occurs during the solidification process of each layer. Such effects are 

accumulated and amplified through multiple deposited layers and eventually result in distortion 

and shrinkage of the final parts ([(Q. Huang et al. 2014), (Wang, W. L. 1996)]); this impacts 

geometric and dimensional properties. However, the captured results of simulation methods are far 

away from the practical results and more experiments preferred to achieve the real world outcomes. 

Furthermore, different types of statistical and empirical methods that have been found to assess the 

accuracy of AM processes ([(Campanelli et al. 2007), (Zhou et al. 1999), (Onuh and Hon 2001)]), 

are hardly authoritative for new and inexperienced geometries.   

Recently, there are several additional studies dedicated to analyze the geometric accuracy of 

parts and their finished surface, is shape compensation ([(Q. Huang 2016), (Q. Huang et al. 2014), 

(Xu, Lijuan 2013)]) that facilitates the quality measurement, online monitoring, and feedback 

examination of geometric accuracy. This procedure, at first, demonstrates optimal compensation 

strategy for two-dimensional (2D) shape deformation, then upgrades the results to 3D [(Xu, Lijuan 

2013)]. However, these methods are prone to explore the well-known model for complicated 

shapes, due to considering inter-layer interaction in specific cross-sections and also assuming 

identically independent distribution for errors of different cross-sections.  

Our objective is developing a novel methodology to quantify the geometric deviations of 

fabricated parts, profile them in feasible number of groups, and link them to process design 

parameters. We apply a Self-Organizing Map to cluster the different types of geometric 

inaccuracies. Unlike ASME, we can measure the geometric accuracy of complex parts and with 

less amount of scanned data. Also, our method’s uncertainty is less than the simulation based FEM 

approach. At first, the SOM clustering procedure applied to categorize the geometric deviation 

data in different points. Secondly, we use a probabilistic occurrence of each cluster concept to 

calculate the expected value of error in fabricated part, analyze the accuracy of various process 

parameters, and also achieve a criterion to compare the scale of accuracy in the part. At last, 

preference ranking correlation technique is further developed to discern the precision of changes 

in data usage compared to fully scanned data.  The results are validated using a part with specific 

shape fabricated using Fused Depositing Model (FDM), as shown in Figure 1. The geometric 

accuracy data is obtained via is the NextEngine HD laser scanner. The QA Scan 4.0 software is 

used to obtain the GD&T quantifiers directly from the laser scanned point cloud data.    
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The remaining of this paper is organized as follows: in section (II), we will describe the 

deviation measurement procedure and different process parameter combination, and also we will 

present the data generation flow. In section (III), we will introduce the SOM, clustering method, 

and its applications, then we will apply the method to formulate our problem, train a specific 

network for big data problems, and eventually in the last part of this section we will discuss the 

obtained numerical results according to the method. At last, we will illustrate sensitivity analysis 

based on amount of data usage and its impact on decision making to find appropriate set of process 

parameters (Infill, Temperature).   

II. Form Accuracy Measurement of AM Parts  

The experiments and measurements generate a tremendous amount of data pertaining to the 

form accuracy of parts. Text-format files saving the data takes 901 MB of digit space and the data 

has 18,098,301 rows corresponding to 12 different process parameters. Each row of data is a 

representation of a geometric deviation found in the part produced by one of the process 

parameters. Beside the process parameter identification, they have 6 columns indicating the xyz 

coordination of the geometric deviation, and the extent of the geometric deviation on each of the 

three axes. To generate this data 12 different, but identical parts, shown in Figure 1, have been 

produced and scanned later to find the geometric deviations and their coordination. Overall, the 

data has three important features the process parameters, geometric deviation’s coordination, and 

geometric deviation severity. The following Table I introduces the types of different process 

parameters and the total number of geometric deviations they have. Parameter combination at Row 

3 in Table I results in the lowest number of geometric deviation. However, the magnitude of 

geometric deviation is not taken into account, and considering only number of geometric deviations 

and also ASME measurements cannot explain the accuracy of multiple couple of process 

parameters because of the issue of distinguishability in mentioned measurements. However, there 

is a need to figure out different types of geometric deviations and their severity before reaching a 

conclusion.       

    

Table 1.Different Process parameters 

 

  
Figure 1. Fabricated part’s geometry  

  

III. Self-Organizing Map (SOM)   

Self-Organizing Map is a method of Artificial Neural Networks (ANN) for unsupervised tasks 

such as clustering, for reference see [(Jafari-Marandi, Hu, and Omitaomu 2016), (Keramati, Abbas 

2014)]. Its well-known graphical tools is what gives SOM a superiority over other clustering 

PP ID  Temperature (°F)  Infill (%)  N. geometric 

deviations (rows)  
1  225  80  1,712,653  
2  225  90  1,107,267  
3  225  100  685,961  
4  230  80  1,250,357  
5  230  90  1,619,690  
6  230  100  1,796,948  
7  235  80  1,795,849  
8  235  90  1,758,031  
9  235  100  1,692,290  
10  240  90  2,211,521  
11  220  90  1,233,867  
12  230  70  1,233,867  
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techniques. In fact, recently and unprecedentedly the transparency of SOM has made the 

unsupervised ANN applicable for more supervised tasks such as classification and decision 

makings, for reference see [(Olawoyin 2012),(Konat et al. 2015)]. In this paper, SOM’s graphical 

tools and capacity to handle a gigantic amount of data allow us to create a decision-making 

procedure to characterize geometric deviation in Fused Deposition Modeling.  

  

The SOM (Self Organizing Map) Neural Network is also known as Kohonen Neural Network 

system. As outlined earlier the method works best for unsupervised learning tasks and its 

superiority is its visual presentation of the data. SOM maps the data into a 2 dimensional space 

membership map [(Pratiwi 2012)]. The map with specified membership of the data is what the 

method outputs. Figure 2 represents a SOM network for a dataset with 3 attributes. This structure 

of the network could address a clustering challenge on a dataset with three attributes and 12 

possible clusters. On each structure of SOM network, as shown in the Figure 2, there are three 

types of entities: input neurons, connecting vectors and output neurons. The vectors connect the 

input neurons to the output neurons, and also connect neighboring output neurons. Each vector has 

a weight associated with it, produced randomly in initialization and updated in training process. 

Based on the nature of connections in the output layer, two types of SOM map exists: quadrilateral 

or hexagonal. The network in figure bellow will output a quadrilateral map with at most 4 

connections for each neuron with its neighbors.   

Similar to any other artificial neural network, the network has a training process and before that, 

an initiation procedure. The initialization process basically assigns random weights between -1 to 

1 to each and every connection in the network. In training process of SOM, each output dataset 

will be, at least once, presented to the network. The input neurons will assume the values of the 

presented row of data, and based on the existing weights of the connections one of the output 

neurons will have greater value than others. The weights of the SOM will be updated so that the 

best output neuron value will be selected.   

In this paper a 5×5 hexagonal SOM topology has been employed. The reason for choosing this 

specific topology is that this topology responded well in our small experiments before the final 

training. A good topology for SOM has two aspects. First, the topology is wide enough to be able 

to distinguish and extract hidden patterns in the data. On the other hand, there is a need for the 

topology to be computationally and analytically computable. In other words, too big of a topology 

will increase the computational expense of the calculations and also will make it more difficult to 

analyze. With the special need for computational consideration of this paper, owing to the huge 

size of the data SOM needs to be exposed to, we have found that a 5×5 hexagonal SOM topology 

struck the perfect balance for the two aspects.  

 
Figure 2 .Self-Organizing Map Neural Network sample [(Keramati, Abbas 2014)] 
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III.I. Network training process   

To cluster and then profile different types of geometric deviations in the dataset, the process 

needs to have a holistic approach. In other words, all the 12 different process parameters, as shown 

in Table I, should have the same chance in shaping the network. This introduce a challenge in the 

training of network for this paper’s dataset. The amount of data in the network is so many that it's 

problematic to give all the 12 process parameters the same fair chance. To introduce the existing 

approaches, the most simplistic way would be to start exposing the network to each and every type 

of data from the start to the end. This approach has the drawback of giving the first data-rows an 

advantage, because SOM is vulnerable to its first exposures, due to its random weighting. Another 

approach would be to pick randomly among all the data for each and every data-row being 

presented to the network. In turn, this approach suffers from the disadvantage of never being certain 

if all of the data-rows have been equally introduced to the system. To guard against both downsides 

and assuage them, a compromise in-between approaches has been selected for training the 

networks.  

For starters, the network is exposed to a random 200 batches of 5000 data-rows from randomly 

selected process parameters. For every batch, each data-row in the batch is presented to the network 

200 times. The reason behind this special process of randomization is the size of the data in need 

of processing. The data associated with each set of process parameters had to be kept in different 

files, and loading all the files at once would impair the computers functionality. Then, the data-

rows of each set of process parameters are presented to the network 200 times. The order in which 

the process parameters were chosen is random. Lastly, the first random procedure of data-row 

selection is repeated. In total, the network is exposed to 4,019,660,200: 2×200×5,000×200 + 

18,098,301×200. It took slightly more day 4 days to train the network on a computer with 3.6 GHz 

CPU, and16 GB RAM.   

III.II. Final decision making based on SOM   

In this study, we try to profile the geometric deviations in fabricated parts with different process 

parameters based on their location via SOM (𝑥, 𝑦, 𝑧) clustering method. SOM has been applied to 

geometric deviation data of fabricated (𝐺𝑥, 𝐺𝑦, 𝐺𝑧)  parts with distinctive process parameters. 

Figure 3 presents the membership map of SOM for only four process parameters. Every cell in 

Figure 3, is the possible type of geometric deviation, and the numbers in each cell accounts for 

number of deviation in each type. The figure illustrates that, for instance, the fabricated part with 

process parameter 3 has almost all different types of deviations; however, the process parameter 8 

has less deviation types compared to others. These findings facilitate characterization and profiling 

different types of geometric deviations and also distinguishes process parameters with less 

deviations from others. Therefore, this kind of visualization is helpful in distinguishing geometric 

quality of parts based on number of deviation types on them. In our case study, fabricated parts 

with process parameters 8, 9, and 4 have acceptable geometric quality compare to others. However, 

fabricated parts with process parameters 3, 6, 10, 11, and 12 have almost all possible types of 

deviations and are unacceptable parts regarding to geometric quality.  

The significance of this visualization outcome is the presented discrepancy with regard to the 

type of deviation in clusters, and also geometric accuracy of different process parameters. To 

measure the magnitude of deviation in each cluster, compare it with others, and concentrate the 

three 𝑥, 𝑦 𝑎𝑛𝑑 𝑧  and   values into a single value, Equation 1 proposes a magnitude measure of 

deviation in each point.  
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 𝑔𝑖𝑗𝑘 = √𝐺𝑥𝑖𝑗

2 + 𝐺𝑦𝑖𝑗

2 + 𝐺𝑧𝑖𝑗

2             , {
𝑖 = 1,2, … ,25
𝑗 = 1,2, … , 𝑛𝑖

𝑘 = 1,2, … ,12
                                                                 (1) 

              

The Equation 1 affords us an estimation of the distribution of deviations and the average 

magnitude for each cluster. Applying Kolmogorov\Smirnov on deviation data of each cluster for 

any process parameter results in normality of distribution in every cluster, as presented in Figure 

4. Additionally, it demonstrates the distribution of deviation in each cluster for different process 

parameters, as indicated deviations in every cluster are normally distributed. These distribution 

curves facilitate a few portions of deviation data to determine the geometric accuracy of a part. For 

instance, except magnetic, blue, pink, and green curves, which are belonging to 21, 16, 22, and 11 

respectively, other curves can be accumulated in one or two clusters, and they have same effect on 

accuracy of various process parameters. So, these distribution curves are contributory for data 

reduction, and Figure 4 accounts for a data reduction section with different degree of accuracy.  

 
 Process Parameter 3 

 
Process Parameter 6 

 

Process Parameter 8 

 
Process Parameter 9 

 

Figure 3. Demonstration of each part with 

different process parameters via SOM-based 

deviation clustering method 

Process Parameter 3 

 

Process Parameter 8 

 

Process Parameter 6 

 

Process Parameter 9 

 

Figure 4. Normality of geometric deviations 

distribution for cluster

Notation and model formulation is indicated as following:  

𝐺𝑖𝑘~ 𝑁[𝜇𝑖𝑘, 𝜎𝑖𝑘
2 ]                               (2)                                                                                                                      

𝐺𝑖𝑘: Distribution of Cluster 𝑖 in part 𝑘 

𝜇𝑖𝑘: Mean of Cluster 𝑖 in part 𝑘 

𝜎𝑖𝑘
2 : Variance of Cluster 𝑖 in part 𝑘 

𝑛𝑖𝑘: Number of data in cluster 𝑖 in part 𝑘 

𝑔𝑖𝑗𝑘: : Deviation of point 𝑗 in cluster 𝑖 of part 𝑘 

𝑁𝑘 : Number of scanned point for part 𝑘              

𝑁𝑘 =  ∑ 𝑛𝑖𝑘
25
𝑖=1                                               (3)                                                                                                                                                                                                                       

𝑃𝑖𝑘 : Incidence probability of deviation for cluster 𝑖 in part 𝑘      

𝑃𝑖𝑘 =
𝑛𝑖𝑘

𝑁𝑘
                                                   (4)                                                                                                                                                                       

𝐸𝑘 : Total expected value of deviation in process parameter 𝑘 (Infill, Temperature)       

𝐸𝑘 =  ∑ 𝑃𝑖𝑘 ∗ 𝜇𝑖𝑘
25
𝑖=1                                                                        (5)                                                                                                    

𝜇𝑖𝑘 = ∑
𝑔𝑖𝑗𝑘

𝑛𝑖𝑘

𝑛𝑖𝑘
𝑗=1  , 𝜎𝑖𝑘

2 = ∑
(𝑔𝑖𝑗𝑘−𝜇𝑖𝑘)2

𝑛𝑖𝑘−1

𝑛𝑖𝑘
𝑗=1                                (6)   
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If we tend to compare median of different clusters statistically, it is mandatory to ensure that 

there is not significant disparity in variation of different clusters, hence we apply a distribution-free 

two-sided all treatments multiple comparisons based on pairwise rankings-general configuration 

test1 [(Hollander, Myles, Douglas A. Wolfe 2013)] to test the null hypothesis of 𝐻0: [𝜏𝑖 =  𝜏𝑗  ∀ 𝑖 <

𝑗] versus alternative hypothesis of 𝐻𝑎: [𝜏𝑖 ≠  𝜏𝑗   ∀ 𝑖 < 𝑗], 𝜏𝑖 accounts for variation in cluster 𝑖 , 𝑖 =

1,2, … ,25   within different process parameters, in significance level of  1 − 𝛼 = 0.95  , the 

conclusion is fail to reject 𝐻0 in all 300 comparisons. Therefore, pairwise comparisons of mean 

values for each parts clusters are permitted because their variances’ are statistically the same. 

The driven results from the Equation (1-6) has been summarized in Table 2 and 3, and also and 

each parts’ deviation magnitude and expected value of deviation for any cluster has been visualized 

based on resulted Tables (2,3) in Figure 5 and 6 respectively. 

 
Table 2. Mean value of various clusters in part k for visualization in figure 4 

𝝁𝟐𝟓𝒌 𝝁𝟐𝟒𝒌 𝝁𝟐𝟑𝒌 𝝁𝟐𝟐𝒌 𝝁𝟐𝟏𝒌 

𝝁𝟏𝟔𝒌 𝝁𝟏𝟕𝒌 𝝁𝟏𝟖𝒌 𝝁𝟏𝟗𝒌 𝝁𝟐𝟎𝒌 

𝝁𝟏𝟓𝒌 𝝁𝟏𝟒𝒌 𝝁𝟏𝟑𝒌 𝝁𝟏𝟐𝒌 𝝁𝟏𝟏𝒌 

𝝁𝟔𝒌 𝝁𝟕𝒌 𝝁𝟖𝒌 𝝁𝟗𝒌 𝝁𝟏𝟎𝒌 

𝝁𝟓𝒌 𝝁𝟒𝒌 𝝁𝟑𝒌 𝝁𝟐𝒌 𝝁𝟏𝒌 
 

Table 3. Expected value of Deviation in clusters of part 𝑘 for visualization in figure 5 

 𝑷𝟐𝟓𝒌 ∗ 𝝁𝟐𝟓𝒌  𝑷𝟐𝟒𝒌 ∗ 𝝁𝟐𝟒𝒌  𝑷𝟐𝟑𝒌 ∗ 𝝁𝟐𝟑𝒌  𝑷𝟐𝟐𝒌 ∗ 𝝁𝟐𝟐𝒌  𝑷𝟐𝟏𝒌 ∗ 𝝁𝟐𝟏𝒌 

 𝑷𝟏𝟔𝒌 ∗ 𝝁𝟏𝟔𝒌  𝑷𝟏𝟕𝒌 ∗ 𝝁𝟏𝟕𝒌  𝑷𝟏𝟖𝒌 ∗ 𝝁𝟏𝟖𝒌  𝑷𝟏𝟗𝒌 ∗ 𝝁𝟏𝟗𝒌  𝑷𝟐𝟎𝒌 ∗ 𝝁𝟐𝟎𝒌 

 𝑷𝟏𝟓𝒌 ∗ 𝝁𝟏𝟓𝒌  𝑷𝟏𝟒𝒌 ∗ 𝝁𝟏𝟒𝒌  𝑷𝟏𝟑𝒌 ∗ 𝝁𝟏𝟑𝒌  𝑷𝟏𝟐𝒌 ∗ 𝝁𝟏𝟐𝒌  𝑷𝟏𝟏𝒌 ∗ 𝝁𝟏𝟏𝒌 

 𝑷𝟔𝒌 ∗ 𝝁𝟔𝒌  𝑷𝟕𝒌 ∗ 𝝁𝟕𝒌  𝑷𝟖𝒌 ∗ 𝝁𝟖𝒌  𝑷𝟗𝒌 ∗ 𝝁𝟗𝒌  𝑷𝟏𝟎𝒌 ∗ 𝝁𝟏𝟎𝒌 

 𝑷𝟓𝒌 ∗ 𝝁𝟓𝒌  𝑷𝟒𝒌 ∗ 𝝁𝟒𝒌  𝑷𝟑𝒌 ∗ 𝝁𝟑𝒌  𝑷𝟐𝒌 ∗ 𝝁𝟐𝒌  𝑷𝟏𝒌 ∗ 𝝁𝟏𝒌 

 

   Figure 5 uses the membership map of SOM to illustrate the different type of deviations in 

various parts with calculating the magnitude of each type, as shown in Table 2, and Equation 6. 

The dark colors display major deviations. By comparing the colors in various clusters and different 

parts, it is apprehensible that clusters 21, 16, 22, and 11 are the major deviations respectively for 

every part, hence this visualization helped us to characterize the severity and type of deviation 

within clusters. However, comparing geometric accuracy of various process parameters is not 

applicable due to disregarding of number of deviation for different clusters. Therefore, the number 

of geometric deviation in each cluster is an important indicator for geometric quality of part, and 

we apply this criterion in coming section in Figure 6.   

                                                 
1 DWASS,STEEL, AND CRITCHLOW-FLINGER 
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Process Parameter 3 

 
 

Process Parameter 6 

 

Process Parameter 8 

 
 

Process Parameter 9 

 

Figure 5. Magnitude of each deviation with 

corresponding Cluster 

Process Parameter 3 

 
Expected Value = 0.482367 

Process Parameter 6 

 
Expected Value = 0.2916284 

Process Parameter 8 

 
Expected Value =  0.08119973 

Process Parameter 9 

 
Expected Value =  0.08527282 

Figure 6.Weighted magnitude of geometric deviations 

in each cluster for different process parameters using 

100% scanned data 

In Figure 6, as indicated in Table 3, we take the number of deviation in each cluster to account 

for calculating the incidence probability of corresponding cluster, Equation(4), then we calculate 

the weighted average of deviation in each cluster. In terms of visualization and color, we apply the 

same concept in Figure 5, but the results are totally different from Figure 5. In this visualization the 

geometric accuracy of various process parameters are distinguishable, for example, in Figure 5,  

process parameter 3 and 8 do not have obvious difference in terms of geometric accuracy by 

considering only type of deviations ; however, in Figure 6, process parameter 8 explicitly has more 

geometric accuracy compared to process parameter 3.  Furthermore, the effect of major clusters are 

vanished in this visualization due to less number of data points. Another criterion that can be 

extracted based on this Figure is expected value of geometric deviation for every process parameter, 

as formulated in Equation 5. By comparing the calculated criterion for various process parameters 

optimal process parameters according to geometric accuracy are extracted as well. Therefore, 

coupling the mentioned approach in this section and membership map of SOM enable us to quantify 

the geometric accuracy of parts and distinguish geometric quality of complicated shapes with 

various process parameters.  

IV. Sensitivity analysis  

As aforementioned, the main challenge of working with this data is its colossal size. In this part 

we are interested to know how much of this data is actually integral in making the final decisions. 

The final decision that the decision making process presents is a preference ranking. Preference 

ranking is set of numbers from 1 to 12, which indicates the quality of part in terms of geometric 

accuracy for each set of process parameters. In other words, the rank will show the order of best 

choices among the set of process parameters using the decision making procedure. Using the whole 

data, the order of these choices for set of process parameters is decided to be 8, 9, 7, 4, 5, 1, 2, 12, 

10, 6, 11, and 3, the couple of process parameters (Infill, Temperature) can be find in Table I in the 

beginning. The ranking is calculated using 𝐸𝑘  (Total expected value of deviation in process 

parameter 𝑘 (Infill, Temperature)) and the results are presented in Figure 6. We observed that 99.9 

percent of the calculated 𝐸𝑘 for every single row of data has value between zero and 3.5. To analyze 

the role of size of the data in the final decision (final rank), the following data sensitivity process 

was applied. First, a ranking is extracted only based on the data that has 𝐸𝑘 greater than 3.5, which 

1310



accounts for less than 0.01 percent of the data. With the step of 0.1 in 𝐸𝑘 value, being taken away 

from 3.5 in each step, 349 more rankings are made. The correlation between the ranking of the final 

decision and each ranking extracted in the explained procedure is presented in Figure 7. The 

correlation between preference ranking for various amount of data and whole data indicates how 

the preference rankings are similar.  This diagram shows a couple of major jumps that are important 

in accuracy of decision making based on smaller number of our data. Using only the deviations that 

has 𝐸𝑘 value greater than 1.62, which accounts for 0.1% of the data, leads to a ranking which has 

0.86 correlation with the final decision. The ranking for this point is 4, 9, 8, 1, 7, 2, 5, 10, 6, 11, 12, 

and 3 (each number accounts for set of process parameters in Table I). Although the final decision 

on the best process parameters is different (4 instead of 8), this is still significant given the 

percentage amount of the data being used for the decision.  

  
Figure 7. Data size sensitivity analysis based on 𝐸𝑘 

To have a better understanding of the role of the percentage amount of data, Figure 8 and Figure 

9 are presented. In fact, the two figures are complementary. Figure 8 magnifies the changes of 

correlation values when the percentages is between 0 and 4, while Figure 9 illustrates the rest.  We 

can see that 1.6 that we earlier saw is in fact the start of the correlation value to stay above 0.85 

until percentage value hits 12.1. At this level of data engagement correlation is above 0.9 and stays 

that way for the rest of percentages.  The decision ranking is 4, 9, 8, 5, 7, 1, 2, 12, 11, 10, 6, and 3 

for 12 different set of process parameters. The ranking has gotten closer to the final decision, but 

we are still not finding the best process parameters. At 20.8% (data usage percentage) in Figure 9, 

the diagram passes 0.95 correlation and stays above that for the rest of the values. The 𝐸𝑘 value 

that engages this percentage of that data is 0.32 and the ranking is 8, 4, 9, 7, 5, 1, 2, 12, 11, 6, 10, 

and 3. This is very significant that only 21% of the data should have been kept and analyze, since 

the final decision of the procedure stays the same and the ranking correlation stays above 0.95.   

  

  
Figure 8.Data size sensitivity analysis based on the data usage     Figure 9. Data size sensitivity analysis based on the 

percentage 0-4%                                                                             data usage percentage 4-100% 

V. CONCLUSION   

We applied SOM clustering method to characterize/profile the geometric deviation of part with 

specific shape fabricated using FDM. The developed method is able to characterize the types of 

deviations and distinguish good-quality parts from others. It facilitates achieving optimal process 

parameters based upon expected value of deviation, and the obtained process parameters are unique 

according to magnitude of geometric deviations in part. Furthermore, our approach is capable of 

analyzing geometric accuracy of parts with complicated and untried geometries. Instead of 
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considering limited amounts of geometric dimensions and deviation criteria such as flatness, 

thickness, circularity, straightness, and etc., it handles the high-volume scanned data to find the 

severe geometric deviations, which lowers the geometric accuracy of the fabricated part. Data 

reduction is the most significant outcome of this research because it utilizes very small portion of 

data to approach the optimal process parameters captured with entire data rows.  
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