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Abstract 

The microstructural and mechanical properties of Laser Based Additive Manufacturing 

(LBAM) are still inconsistent and unreliable, which is a major barrier that prevents Additive 

Manufacturing (AM) from entering main stream production. The key challenge is the lack of 

understanding for the underlying process-properties relationship. We monitor Laser Engineered 

Net Shaped (LENS) process using a state-of-art thermal image system, and the resulting high-

speed Melt Pool (MP) data stream is used to characterize the complex thermo-physical process. 

We propose a novel method based on Self-Organizing Map to cluster the MPs based on their 

morphology and link MPs clusters’ characteristics to the porosity of fabricated parts, which is 

crucial to mechanical properties of parts. The results are validated using X-Ray tomography of Ti-

64 thin-wall. Our approach identifies various patterns of MP morphology, which corresponds to 

different types of porosities. The proposed method can potentially be used to certify the part quality 

in a real-time and non-destructive manner.  

1. Introduction

Laser Based Additive Manufacturing (LBAM) provides a unique capability for creating 

customized/complex shapes that cannot be produced using traditional manufacturing methods [1]. 

However, mechanical and microstructural properties of additively manufactured parts are still not 

as reliable as the traditional manufacturing methods. The time-varying the melt pool, the region of 

molten metal at proximity to the laser/material interface, during the build of LBAM processes is 

an important indicator for the underlying thermo-physical process, and is significantly correlated 

to the microstructural and mechanical properties of the fabricated parts, for instance,  porosity and 

compression respectively . Since the melt pool is the initiation of the solidified part, the 

morphology of the melt pool is of paramount interest in enhancing the geometric integrity, 

microstructural and mechanical properties of the finished part.  

Recent advances in the sensor technology has enabled the real-time, in-process monitoring of 

the melt pool employed via infrared thermography, generating huge-size, complex-structure 

thermal imaging data streams. The resulting enormous data sets provide tremendous opportunities 

for understanding and characterizing the underlying thermo-physical process, and the integrity of 

the finished parts. Nevertheless, characterizing and modeling the melt pool morphology is indeed 

very difficult because the melt pool can elongate, shrink, splash, and thus become excessive 

unstable during the build.  

Most of the existing methods for quantifying and characterizing the time-varying melt pool are 

developed based on physics-based differential equations that govern the underlying thermo-

physical process. Examples of this category of methods include the process mapping method 

developed based on Rothensal’s analytical solutions[2], cladding/welding models that are used to 
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approximate the LBAM process[3], etc. However, most of these methods that deterministic models 

that do not have the capability to leverage the in-process thermal imaging data, and thus cannot 

account the process uncertainty during the build.  

A number of recent studies began to utilize the monitored thermal data streams for the purpose 

of closed-loop control according to the review papers by  [4] . Birnbaum et al concentrated on the 

issues related to control of melt pool size in LBAM, and they presented process map approach to 

control the melt pool size in LBAM, and that approach falls down results from large amount of 

simulations over quite a few number of parameters in plots [5].Also, Qi et al studied physical 

phenomena related to melt pool, and they proposed a model for motion of melt pool’s free surface 

in uninterrupted cladding, then they benchmarked their findings against practical results according 

to melt pool’s width, length, and the height of solidified cladding track which corresponded to 

their results[6]. Pinkerton and Li applied energy and mass balance to analyze the geometry of laser 

melt pool. The proposed method was capable of modelling the melt pool cross-section in horizontal 

plane[7].  These methods mainly use simple metrics of the melt pool, such as, the peak temperature, 

total area, length along a certain axis, etc., as the process signature. However, such simple metrics 

may be not good indicators, since the overall melt pool depth and volume may be significantly 

different [3]. 

There is an urgent need for developing a formal methodology that can be used to quantify and 

characterize the time-varying melt pool morphology by leveraging thermal imaging data 

streams[8],[4].Continued existence of this need is an imperative problem because the 

microstructural properties and thus “trustworthiness” of LBAM parts cannot be optimized/detected 

due to the lack of understanding of the process-property relationship. 

 In this study, we propose/develop a data-driven modeling scheme to quantify and 

characterize the morphology of melt pool, and identify the anomalies in melt pool morphology and 

evaluate the geometric integrity of fabricated parts based on the X-Ray tomography validation. To 

begin with, we extract melt pool characteristic data based on the thermography image streams. 

Note that monitored thermal images of thermal monitoring system are complex-structured due to 

various features such as area, width, length, etc., and huge sized (e.g., 10 GB for the thermal images 

of a Ti-64 Thin-Wall).  

We propose a method to reduce the noise level and extract features based on the thermal 

imaging dataset. Since contours can illustrate elongation, shrinkage, and splash on melt pool 

obviously; specifically, we extract the contours of melt pool morphology via selection the 

boundary of the melt pool based on the melting temperature of fabricated materials. At the melting 

temperature, solid switches to liquid phase and both are in equilibrium, and melting temperature 

differs from material to material, thus it is important to consider melting point to extract the 

boundary of melt pool in each building process. Forasmuch as the thin-wall is built up from Ti-64, 

the cut-off temperature of melt pools’ boundary is 1636 ºC. 

Secondly, we quantify and model the melt pool morphology via non-parametric curve fitting, 

because non-parameterization types of fittings causing well-featured representation of melt pool 

shape compare to parametric methods like Gaussian curve fitting. Note that previous appearance 

of melt pool was contour and now instead of many points, melt pool can be characterized with a 

few features. The results are melt pool models. To enable the implementation of functional data 

analysis tools, we apply the Cartesian-polar transformation to the resulting melt pool morphology 

and represent the melt pool morphology in the forms of angle-radius functions. Non-parametric 

curve fitting by cubic spline models, which are commonly used for image processing, are used to 

fit and interpolate the melt pool morphology functions. Thirdly, these models allow for comparing 

different melt pool morphology patterns, and identifying the changes in melt pool morphology. 

Unlike what is seen in the literature, we will compare the information of each melt pool in every 
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layer with others. To understand the differences of melt pool characteristics and anomaly 

extraction during the build, we use a SOM clustering method to understand how the melt pool 

characteristics varies for different layers and during the build to extract the anomalies in part and 

also melt pools morphology patterns. These changes in patterns and anomalies may indicate the 

changes in the mechanical and microstructural properties of the fabricate part. Fourthly, we relate 

the anomalies of melt pool morphology to pores and geometric inaccuracy of parts via 

experimentation (X-ray).  

To proof the concept of the proposed methodology, we focus on the AM of Ti-64 thin-wall 

parts using blown-powder DLD. We use X-Ray tomography to scan the fabricated part from 

multiple views and extract the porosities/ anomalies. We found strong correlation between SOM 

findings and X-Ray validation. At last, this provides an efficient and effective non-destructive 

evaluation method to inspect the anomalies and pores of additively manufactured parts.  

The remaining sections are organized as follows: melt pool characteristics selection based one 

morphology-extracted features, using Non-Parametric feature selection method and clustering 

technique for anomaly detection, and validation of clustering techniques by X-Ray Tomography.  

 

2.Melt pool Feature Selection 

 

The morphology of melt pool shape is analogous to figure (1.a), but that demonstration is not as a 

function. Hence, polar transformation figure (1.b) had been applied to illustrate melt pool as a 

function. Note that parametric fitting methods are not capable of extracting all features of melt 

pool and bring about some inaccuracy due to approximation. For instance, Gaussian fitting 

presents melt pool with 3n parameters, and they only account for peaks and amplitude of peaks in 

curve, and they do not cover whole information of it. So, non-parametric methods (Figure 1.c) are 

appropriate solution to capture characteristics of different shapes because they include all of the 

points and do implement exact method. Regarding the feature extraction of various melt pools, 

polar coordination of melt pool shapes are variant in number of point, as shown in figure(1.b,2.b). 

So, an integrated method is needed to represent melt pools in similar way and one-dimension. 

Cubic spline interpolation is a proposed method, which uses given interpolates to find values of 

the underlying curve. In this case as presented in figure (1.d and 2.d), interpolate is angle of polar 

coordination, and radius should be interpolated according to equally divided angles for different 

curves. Therefore, every curve has specified number of features in one dimension because the set 

of angles are same for all of them, and also the value of interpolated cubic spline in the given set 

determines the features.
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Figure 1.a : Melt Pool Extraction According to Cuttoff Temperature Figure 1.b : Transformation from Cartesian to Polar System 

    
Figure 1.c :Non-Parametric Curve Fitting (Cubic Spline ) Figure 1.d : Interpolation for Feature Selection  ( Number of Features for 

Each MP = 63) 

 

3.Anomaly Detection Method ( Self Organizing Map (SOM)) 

 

After feature extraction step, SOM clustering technique is carried out to organize the melt pool 

shapes in apprehensible way. The most important advantage of this technique is mapping data 

from high-dimensionality space to two-dimensional space. In this case every melt pool has 63 

features as discussed later, shown in figure (1.d and 2.d), so SOM uses this amount of features to 

cluster 1552 number of melt pool shape with different characteristics. According to distintiction 

among non-parameteric extracted features, and applying  of SOM clustering method, which is 

capable of recognizing hidden-structures in datasets, 2-Dimensional map had illustrated the  

different melt pools clusters and their similarity, shown in figure 3. Another ability of SOM is 

indicating the correlation between clusters. Figure 3.b shows that some of clusters are not strongly 

correlated with others ( black and red colors), and it is plausible to be interpreted as anomalies. 

After looking at the morphology of each cluster and capturing the centriod of them, figure 4, it can 

result in strong evidence for porosity characterization because obviously there is a difference 

among anomaly-assumed melt pools cenroids and the major clusters’. A considerable point is that 

the number of melt pool in clusters that they do not have strong correlation with others are so small 

in comparison with main clusters, so it is another reason that they can be interpreted as anomalies. 
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Figure 3.a : Number of Each Melt Pool in Each Cluster Figure 3.b :Correlation Between Clusters 

 

 

 

 

 

 

 

 
Figure 4: Centroid of Each Cluster [(Prototyping)  Each Melt Pool]
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Using  the coordination of mentioned melt pools in Ti-64 Thin-wall and profiling equippments 

enable us to link each melt pool to its location on thin-wall, its features,peak tempratures, and so 

on.  

 

4.Porosity location identification and applying X-Ray tomography validation method 

 

According to corerelation anlysis in clustering section (figure 3.b), few numbers of melt pool 

shapes are not correlated to others. By taking into consideration of centroid  of each cluster, it 

could be understood that the distinguished melt pools are totally different in size and shape;thus, 

the guessestimation of this clustering-based defect characterization method is that the distinctive 

morphologies are prone to be anomalies,shrinkage,splashes, unmelted area and material 

dissemination. Note that the different types of defects have been determined on baasis of similarity 

to others, and also they can be classified according to average peak temprature. The  location of 

each anomaly has been extracted by SOM clustering method and illustrated in thin-wall in figure 

5, and experimental methods called X-Ray tomography has been performed to evaluate the 

accuracy of mentioned approach. The captured pores, geometeric inaccuracies, lack of fusions, 

and also umelted areas based on X-Ray Tomography has been shown in figure 6.  

 
Figure 5: Thin-Wall Ti-64 Porosity Detection with SOM 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑆𝑂𝑀 = 32  
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Figure 6: Thin-Wall Ti-64 Porosity Detection with X-Ray Tomography 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠, 𝑔𝑒𝑜𝑚𝑒𝑡𝑒𝑟𝑖𝑐 𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠, 𝑙𝑎𝑐𝑘 𝑜𝑓 𝑓𝑢𝑠𝑖𝑜𝑛𝑠, 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑢𝑚𝑒𝑙𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑠 

 𝑤𝑖𝑡ℎ 𝑋 − 𝑅𝑎𝑦 𝑇𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦 = 51  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠 𝑎𝑛𝑑 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑖𝑛 𝑐𝑜𝑚𝑚𝑜𝑛 𝑤𝑖𝑡ℎ 𝑏𝑜𝑡ℎ 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 = 32  

𝑆𝑂𝑀 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑′𝑠 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑆𝑂𝑀

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠 𝑎𝑛𝑑 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑋 − 𝑅𝑎𝑦 𝑇𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦 

=
32

51
= 62.75% 

Conclusion 

The preliminary data of melt pool was in form of image that was captured via thermal 

monitoring system, and we proposed a method to characterize the melt pool morphology and 

extract the features in melt pool shape.Based on captured features the clustering method had been 

applied to distinguish between different types of melt pools and detect the dissimiliar types to 

others. Afterwards, X-Ray tomography used to extract the anomalies in the thin-wall. Comparing 

the cooordination of detected anom anomalies in these two methods indicates about 63% accuracy 

of clustering method. As a result, our approach identifies various patterns of MP morphology, 

which corresponds to different types of porosities. The proposed method can potentially be used 

to certify the part quality in a real-time and non-destructive manner.  
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