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Abstract 

The promise of additive manufacturing is that a user can design and print complex geometries 
that are very difficult, if not impossible, to machine. The capabilities of 3D printing are restricted 
by a number of factors, including properties of the build material, time constraints, and 
geometric design restrictions. In this paper, a thorough accounting and study of the geometric 
restrictions that exist in the current iteration of additive manufacturing (AM) fused deposition 
modeling (FDM) technologies on a large scale are discussed. Offline and online methodologies 
for collecting data sets for qualitative analysis of large scale AM, in particular Oak Ridge 
National Laboratory’s (ORNL) big area additive manufacturing (BAAM) system, are 
summarized. In doing so, a survey of tools for designers and software developers is provided. In 
particular, strategies in which geometric data can be used as training sets for smarter AM 
technologies in the future are explained. 

Introduction 

Additive manufacturing (AM) is a $4.1 billion industry that is currently growing at a rate 
of 35.2% [1]. AM is a means of depositing material layer-by-layer to build a part from the 
bottom up; in fused deposition modeling (FDM), an extruder-based printer deposits a bead of 
material along a tool path onto a printer bed [3]. Oak Ridge National Laboratory’s (ORNL) 
Manufacturing Demonstration Facility (MDF), along with Cincinnati Inc (CI)., designed a large 
scale 3D printer capable of depositing material at rates almost 100 times that of typical desktop 
printers [7, 8]. In large scale AM, successful prints are determined by a number of varying 
factors. The speed of the printer gantry and the bead width of the printed material can fluctuate 
unexpectedly and so represent noise extent throughout the printing the process. Also, the 
materials and thermal properties inherent in the print create noise during the process. As a 
particular material cools, warping often occurs in unpredictable ways, propagating error 
throughout a printed part. 

The geometry of a given print affects all of these parameters. A part with high curvature or 
sharp, sudden angles in its geometry will cause high acceleration on the printer head motion, and 
acceleration creates sudden changes in the flow rate of a printed material. Furthermore, while a 
proportional-integral-derivative (PID) controller might be used to stabilize the velocity of a 
printer head, a feedback mechanism to keep the acceleration stable would operate too slowly for 
the system to remain stable. Thus, high curvature and sharp angles create fluctuations in the bead 

1922

Solid Freeform Fabrication 2016: Proceedings of the 26th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper

Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International



width during a print.  Geometry can also affect a print as if is highly variable, as this will 
likewise cause changes in the printer head velocity. 
 
This noise exists on the perimeter and interior of the print. On the perimeter, noise is cause by 
changes in velocity. In the interior, changes in velocity are similarly inevitable, but the infill tool 
path is influenced by the geometry of the part too. Tool path density and trajectory will have an 
impact on print viability and build success. 
 
To combat these obstacles, scan data on rudimentary part geometries was collected to begin 
development of an open source training set that might be used to better learn tool paths and do 
analysis on AM build failures. The literature on deviation analysis in BAAM printing is 
seemingly sparse. Work has been conducted to understand deviation in stereolithography 
[10,11]. Deviation models have been developed that consider parametric models of FDM 
printing that seeks to correct for geometric part error in the CAD model [5,12]. A deviation 
analysis is presented here for large scale systems and potential strategies to overcome part 
defects in a given geometry are consequently discussed. This part serves as inspiration for 
potential intersections of machine learning, tool path planning, and controls.  
 
Experiments 
 
A series of triangles with a variety of angles on the BAAM-CI system was printed. The BAAM-
CI printer was developed by ORNL in conjunction with Cincinnati Inc. and can print 
components as large as 20-ft. long, 8-ft. wide, and 6-ft. tall. It uses a single-screw extruder to 
deposit feedstock material [7]. For this experiment, 20% carbon fiber reinforced ABS was used. 
The pellet feedstock material is ~3.45mm in diameter and ~3.75mm in length. Triangles were 
printed whose CAD models had angle ratios of 90°-80°-10°, 90°-70°-20°, 90°-60°-30°, and 90°-
50°-40°, as can be seen in figures 1-2 and 4-7. A 12-in. by 42-in. rectangular block with pillars 
and holes of various sizes in it was also printed, as can be seen in a topographical deviation 
analysis image in table 7. A sinusoidal wave with 6-in. amplitude appended to a 43.99-in. by 
3.99-in. block was printed as well and can be seen in table 7. 

 
Table 1: The dimensions of the triangle prints completed on the FaroArm Laser Scanner. 

BAAM Prints 80-10 70-20 60-30 40-50 Sinusoidal 40-50 
Base Length 
(in.) 

2.12’’ 4.37’’ 6.93’’ 10.07’’ 43.99’’ 42’’ 

Height (in.) 12’’ 12’’ 12’’ 12’’ 9.99’’ 12’’ 
Hypotenuse 
Length (in.) 

12.19’’ 12.77’’ 13.86’’ 15.66’’ N/A N/A 

 
Scanning AM parts to test deviation analysis and understand part quality has been conducted [4]. 
To build offline training sets, a Faro Platinum Laser Arm Scanner was used to scan point clouds 
of each object. Mesh triangulations of a surface geometry were calculated using 3D Systems’ 
2015 Geomagic Software, yielding a deviation analysis between the scanned point clouds and the 
CAD models. The training sets can be seen in tables 1 through 7. Each table lists a range, 
denoted “>=Min” to “<Max,” of deviation in the orthonormal direction from the surface 
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geometry of the CAD model and the number and percentage of points within the point cloud that 
exist within that given range. 
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Previously, infrared camera footage was used to analyze AM metal parts [2]. For online 
experiments, a FLIR Laser Scanner was attached to ORNL’s BAAM system. The BAAM system 
was developed by ORNL and is capable of printing components 3.28-ft long, 7.87-ft wide, and 
5.9-ft tall. It runs a single-screw extruder using pellet feedstock material, in this case 20% carbon 
fiber reinforced ABS [7]. The pellet feedstock size is ~ 0.136in. in diameter and ~0.148in. in 
length.  
 
Experimentation was conducted on the ORNL BAAM machine with an infrared FLIR AX5 
camera. The camera has a focal length of 19-in. so a clamp was designed to attach the FLIR 
camera to the side of the extruder at the requisite distance from the printer bed. The camera runs 
at a frequency of 30 Hz and has a resolution of 320 by 256 pixels. An online bead width 
measurement of a given print can now be captured, giving an accurate online measurement of 
printer flow rate. 
 
The FLIR camera can capture online measurements of the width of the bead extruded from the 
printer head. By clamping a camera to the side of the extruder, flow rate measurements can be 
read throughout a given print. While FLIR cameras capture temperature alone, we used a 
MATLAB filter to derive the width of the bead from differences in the temperature values 
captured in the pixels. The color values can be captured in a matrix and filtered into a binary 
grey scale value. 
 
The BAAM system’s controls run off the machining language G-Code which assigns the 
location and velocity of the gantry that moves the extruder. We can run the MATLAB filter on a 
video feed of the print. Using this and the video feed from the FLIR camera allows for the 
calculation of a local deviation analysis of the printed material for a given part. These 
measurements can be made online or stored in a database to be processed for later analysis.  
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Discussion 
 
By accumulating data tables of deviation analysis of sample geometries like triangles, curved 
paths, holes and pillars, accumulating training sets for various purposes is now possible. 3D 
prints are prone to error at areas of sharp curvature, and given an arbitrary print, the curvature of 
a given tool path can be approximated numerically. If the tool path of the printer head is denoted 
𝑓𝑓(𝑡𝑡) = (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)), as in [6,9], then the curvature 𝜅𝜅(𝑡𝑡) = �𝑥𝑥′(𝑡𝑡)𝑦𝑦′′(𝑡𝑡)−𝑦𝑦′(𝑡𝑡)𝑥𝑥′′(𝑡𝑡)�

�𝑥𝑥′2+𝑦𝑦′2�
3/2 . Numerically, we 

get  
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𝜅𝜅(𝑡𝑡)

≈ �
𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡)𝑦𝑦(𝑡𝑡 − ∆𝑡𝑡) + 𝑥𝑥(𝑡𝑡)𝑦𝑦(𝑡𝑡 + ∆𝑡𝑡) − 𝑦𝑦(𝑡𝑡)𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡) − 𝑦𝑦(𝑡𝑡 + ∆𝑡𝑡)𝑥𝑥(𝑡𝑡 − ∆𝑡𝑡) − 𝑥𝑥(𝑡𝑡)𝑦𝑦(𝑡𝑡 − ∆𝑡𝑡) + 𝑦𝑦(𝑡𝑡)𝑥𝑥(𝑡𝑡 − ∆𝑡𝑡)

(∆𝑡𝑡)3
� 

�
(∆𝑡𝑡)2

(𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡)2 + 𝑦𝑦(𝑡𝑡 + ∆𝑡𝑡)2 − 2𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 + ∆𝑡𝑡) − 2𝑦𝑦(𝑡𝑡)𝑦𝑦(𝑡𝑡 + ∆𝑡𝑡) + 𝑥𝑥(𝑡𝑡)2 + 𝑦𝑦(𝑡𝑡)2)�

3
2

 Error!  No sequence specified., 

where 𝑥𝑥(𝑡𝑡)is the x-coordinate of the printer head in a layer, 𝑦𝑦(𝑡𝑡) is the y-coordinate,  𝑡𝑡 is the time 
in the print, and ∆𝑡𝑡 is the time step.  
 
Subsets of a part’s geometry can be partitioned to better understand what design parameters are 
feasible in the AM process. Since acute angles are a frequent cause of print error, the angle width 
in a layer of a part can be identified within a scan and added to the database that currently 
includes a few triangles. Error likelihood can be estimated as the training set grows. Similar 
understandings can be developed for areas with large numerical curvature and the shapes seen in 
tables 6 and 7.  Correlation can be calculated between subset geometry size and curvature.  
 
Similarly, analysis can be achieved through an online feedback mechanism. By attaching an IR 
camera to large-scale 3D printer extruders, deviation analysis can be conducted locally on the 
interior of part geometries. Statistical correlation can be calculated between numerous 
parameters of AM, including gantry velocity, flow rate, and tool path curvature. Infill tool path 
geometry can be classified in much the same way that the surface analysis can be studied using 
offline scans. 
 
Training sets of these parameters, in both the online and offline setting, can lead to fairly basic 
but extremely helpful tools for designers and software developers. The mean deviation 
associated with various levels of curvature of a part can be easily computed. Computing the 
eigenvalues and eigenvectors of the correlation matrix of the surface deviations of various 
curvatures and knowing consistently successful geometries can help predict the likelihood of 
success of a print, as large eigenvalues indicate large variance from successful prints.  Further 
data analysis and machine learning technologies can be applied to calculate how geometric 
variety affects the success of a print.  
 
Similarly, in the online case, the likelihood of the success of a particular tool path can be 
classified by local curvature. If a particular segment of tool path exists frequently in poor-quality 
prints, as determined by the offline scan data, then design software can flag a user that a part 
geometry is not amenable to a print’s success. If certain curvature values can be associated with 
successful prints, then a classification of tool paths can be constructed, whereby tool path 
optimization can be achieved. If outlier curvature values in a typically successful tool path 
frequently leads to print failure, then software can potentially automate the rejection of designs 
or tool paths containing those trajectories. These are all examples of potential strategies for 
utilization of the data acquired via the training sets developed.  
 
The data from our tables show where particular part error occurs. As expected, sharp turns result 
in large protrusions around acute angles. For some prints, we get very narrow distributions, with 
most deviations extant around only a few standard deviations within each table. For instance, for 
the 80-10 triangles, 55.64% of the points were within 0-.1 cm from the CAD model; for the 50-
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40 print, 38.39% of the points were with 0.0044 and 0.1036 cm of the CAD model. For other 
prints, we get more spread out distributions. Greater sample sets would needed to determine a 
trend. 
 
An analysis of the data begins to demonstration when part failures and defections are more 
likely. At highly acute angles, we can see part defects and missing data from the original CAD 
model. We can also see more frequent and sever gap regions extent in triangles with greater 
acute angles. This occurs because, on the scale at which BAAM takes place, higher acceleration 
causes greater variance in bead width, propagating part defects throughout a print. This can also 
be seen in the pillars and holes build, in which defects can be found around the pillars and holes. 
In this print in particular, we learn that there is a limit on “pillar” size in a print. For the three 
smallest pillars in the print, the build experiences underfill problems, whereas the other pillars 
resulted in overfills. We also see missing data in the highest curvature regions of the sinusoidal 
prints.  
 
Conclusion 
 
In large scale AM systems, large data sets are needed to better understand the technology. By 
accumulating training sets on print quality, analysis can be done to correlate particular design 
parameters, tool paths, and printer settings with a successful build. The acquisition of such data 
can ultimately be used to program smarter robotic systems for better AM technologies. 
 
To achieve these ends, two ways to acquire geometric deviation analysis on ORNL’s BAAM 
systems were outlined. A series of sample shapes were printed and laser scanned. Using the point 
clouds acquired from the laser scan, the difference between the cloud data and the surface of a 
CAD design was tested. This gave an online database which can now be drawn on for various 
purposes in software design. An online feedback system using an IR camera was also set up on 
the BAAM system. By collecting a video stream of the print, a deviation analysis can be 
similarly conducted and a training set built up, this time at each instance of the print. 
 
With methods of developing training sets in hand, quality testing on every single printed object 
of the BAAM system can begin. These training sets can also be utilized in machine learning 
algorithm development. In this way, BAAM machines can be “taught” when prints will be 
successful, to what degree, and how they should react to improve print quality and success 
likelihood. 
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