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ABSTRACT 

Additive manufacturing enables fabrication of complex lattice cell structures that are not 

manufacturable using conventional methods.  In order to exploit this lattice capability in 

structural designs, the effect on structural performance must be considered.  This paper uses a 

goose neck door hinge component to illustrate the effects of lattice structure optimization when 

stiffness criteria drive part design.  The effect of intermediate lattice cell density parameters on 

resulting lattice configurations from automated lattice structure optimization are studied and it is 

found that the compliance of the model depends upon the range of intermediate density elements 

present.  The paper then compares the effect of a displacement constraint on optimized weight 

from rib-stiffened and lattice-stiffened shell models.  It is shown that optimized weight results 

from the lattice configuration depend on part stiffness requirements.  The results show that lattice 

structures can be successfully implemented in weight-critical components where relaxation in the 

displacement constraint is acceptable. 

I. INTRODUCTION 

Additive manufacturing (AM), also popularly known as 3D Printing is a layer based 

manufacturing approach in which a complete three-dimensional part is fabricated by adding 

materials layer by layer [1]. Due to this layer-based additive approach, parts with higher 

geometric complexity relative to conventional methods can potentially be fabricated. This 

capability provides the designer with higher design freedom to optimize the part design based on 

problem physics for optimum performance rather than being limited by manufacturing 

constraints [2]. 

One of the capabilities enabled by additive manufacturing is hierarchical complexity, i.e., the 

ability to build features at multiple size scales: micro, meso and macro [1]. This paper focuses on 

meso-scaled repetitive cellular structures like lattice structures. These cellular structures can be 

designed in such a way that they can be used to fill certain regions of a geometry. From a 

structural perspective, the main advantage provided by a lattice structure is high strength to 

weight ratio when being used to target mass reductions [3]. Also, lattice structures provide good 

energy absorption, thermal and acoustic characteristics [1]. They can also be used as support 

structures in several additive processes with minimum support material usage [4]. 

Lattice structures are inspired from the unique repetitive arrangement of atoms and the bonds 

between them in crystalline solids. Similarly, in this case, these structures are modelled as 

interconnected struts between nodes in terms of unit cells and these unit cells are repeated in 

three- dimensional space to create a truss like structure [5]. The main parameters that are to be 

controlled in a unit cell are the end diameters of each lattice member and the cell type. Though, 

there are many types of unit cells, the tetrahedral mesh used in the hinge model in this work 
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generates lattice beam elements on the edges of relevant tetrahedral intermediate density 

elements to form unit cells..  

This work uses a goose neck door hinge component to illustrate the effects of lattice structure 

optimization when stiffness criteria drive part design. The lattice optimization is executed using 

an approach driven by a topology optimization algorithm.  During topology optimization, the 

density of elements are discretized as either 0 (void) or 1 (solid). Whereas, when a lattice 

optimization is performed, the intermediate density elements are converted into lattice structures. 

Due to the porous nature of these cellular structures, compliance of the model tends to increase 

upon their inclusions. The first half of the paper illustrates the effect of intermediate cell density 

settings on compliance of the model and the second half of the paper compares the effect of a 

displacement constraint on the mass of rib stiffened and lattice stiffened models. 

II. BACKGROUND 

Previous work performed in the fields of lattice structures, topology optimization, lattice 

optimization, and the effects of lattice optimization on part stiffness is discussed in this section. 

A. LATTICE STRUCTURES 

Due to advancements in AM, there has been a considerable increase in research in the area of 

cellular structures and especially lattice structures. A significant amount of work has been done 

to investigate the applications and properties of lattice cells. Stucker, et al. [6], has shown that 

periodic lattice filters can be used efficiently in casting of molten metals as a replacement to 

ceramic foam filters. Additionally, due to its excellent thermal properties, heat exchangers are 

modeled after a tetrahedron diamond lattice design by Heidrich et al. [7] and in the field of metal 

AM, lattice cells are widely used as support structures leading to minimal support material usage 

(Hussein et al.) [8]. 

Extensive research has also been done on lattice cell parameters and properties. Most 

commonly, strut thickness is considered as a key design variable in a lattice unit cell. Whereas, 

the work by Tang et al. [5] shows that the orientation of lattice cells plays an important role on  

structural properties. Iyibilgin et al. [9] observed that lattice structures built using fused 

deposition modeling process has higher strength compared to specimens with same porosity built 

using the sparse and sparse-double dense styles. Another work by Maskery et al. [10] 

demonstrates through experimental testing that the mechanical properties of latticed parts are a 

function of unit cell size. In cellular structures, the octet truss lattice configuration is a widely 

studied cell structure. Deshpande et al. [11] have analyzed the mechanical properties of an octet 

unit cell by considering it as struts that are pin jointed at its vertices and have found good 

agreement in results between analytical predictions and FE calculations.  

B. TOPOLOGY OPTIMIZATION 

A topology optimization problem is formulated such that optimal spatial distribution of 

material is obtained for a given set of loads and boundary conditions to minimize or maximize a 

certain objective function [12]. Topology optimization is performed to obtain a concept design 

that usually requires further fine tuning by shape and sizing optimizations. Several optimization 

algorithms are developed for this purpose. Initially in 1988, a homogenization method based on 

square and rectangular holes was introduced by Bendsoe and Kikuchi [13] and it was further 

developed into the SIMP method (Solid Isotropic Microstructure with Penalization) by Rozvany,  

who has performed a detailed evaluation of available topology optimization algorithms in his 

work [14].  
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C. LATTICE OPTIMIZATION 

Lattice optimization has been implemented as an extension of topology optimization. The 

main task involved in lattice optimization is to develop an algorithm for designing lattice 

structures. Several methods have been proposed for designing these cellular structures. For 

instance, Nguyen et al. [15] proposed a two-step approach for designing conformal lattice 

structures (CLS) based on a heuristic which assumes, stress distributions are similar in CLS  and 

in a solid body of same shape. As an alternative to the time consuming traditional CAD software, 

McMillan et al. [4] have developed a programmatic method for generating lattice structures 

directly in the STL format and in order to deal with computational and storage complexities in 

CAD systems caused by large conformal truss structures, a hybrid modeling method was 

developed by Wang et al. [16]. Further, a size matching and scaling method was developed by 

Chang et al.[17] for designing meso-scaled lattice structures. Hao et al. [18] have established an 

image based algorithm for developing periodic lattice structures and have investigated its 

manufacturability using selective laser melting (SLM) process. A comparison was done between 

uniform voxel based approach and conformal lattice approach for constructing lattice structures 

by Park et al.[19]. Finally, another comparative study was done between Particle Swarm 

Optimization (PSO) and least-squares minimization (LSM) for designing cellular structures by 

Chu et al. [20]. Later, it was found that PSO was more effective in searching large design spaces 

whereas LSM converged more quickly than PSO. 

This work uses the Altair OptiStruct Optimization program [21] for lattice optimization. 

Specifically, the work uses OptiStruct version 13, which is the initial lattice optimization release 

and has certain capability limitations. Some of the current limitations of the program include: 

lattice strut mesh dependency, lattice structures limited to circular cross section, and an inability 

to remove lattice members below a threshold diameter limit. 

D. EFFECT OF LATTICE OPTIMIZATION ON PART STIFFNESS  

This work illustrates the dependence of structural compliance on the extent of lattice 

structures present in a part. Similarly, Rosen et al. [22] has demonstrated that  stiffness of octet-

truss structure decreases with an increase in the number of cells and Cerardi et al. [23] observed 

the inverse relationship between mechanical properties (stiffness and tensile strength) and the 

porosity rate (lattice cells) in three different structures. These results are in agreement with an 

investigation performed by Sudarmadji et al. [24] who demonstrated the inverse relationship 

between stiffness and porosity in functionally graded scaffolds using 13 different polyhedral 

configurations. 

III. LATTICE STRUCTURE DESIGN OPTIMIZATION 

This section provides the model details and its topology and lattice optimization results. 

Further, the effects of intermediate density range and porosity parameter value are discussed. 

A.  HINGE MODEL DETAILS 

In this work, a goose neck door hinge is used for illustrating the effects of lattice 

optimization. This component is used to open doors in aircraft and automobiles where an abrupt 

throw out action is necessary to clear an outwardly curved surface or other obstructions [25]. 

Figure 1 shows a conventional design of the door hinge. 
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Figure 1: Conventional design of goose neck door hinge 

 

The key area to focus is the location of placement of stiffeners along the hinge neck. The 

component is assumed to be made of aluminum. The blue region is the design space and the 

green region called “Lug” is non design space as shown in Figure 2. The base of the hinge is 

constrained by means of six fasteners to the door.  Door rotation occurs about a pin through the 

lug. The lug is subjected to four separate loading conditions as shown in the free body diagram in 

Figure 2. The horizontal load represents the door in an open position whereas the vertical load 

represents the door in a closed position. The other two side loads are to account for inertial 

forces. 

 

 
 

                            

 

 

 

 

 

 

Figure 2: Design Space and Free body diagram of Goose neck door hinge 

B. HINGE TOPOLOGY OPTIMIZATION 

This work is an extension of work done by Taylor et al. [26]. Here, Altair’s HyperMesh 

software is used for preprocessing and OptiStruct solver is used for optimization. The objective 

of topology optimization is to obtain the stiffest material distribution for the applied loads and 
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boundary conditions as shown in Figure 2. The OptiStruct solver is based on DRCO (Design 

variable, Response, design Constraint and Objective function) approach.  

OptiStruct uses a density based approach to solve topological optimization problems [27]. 

Under this method, the element density is used as a design variable that should ideally take a 

value of 0 (void) or 1 (solid), which would make it a discrete variable leading to higher 

computational needs. In order to bypass this, element density is treated as a continuous variable 

between 0 and 1 and any intermediate value represents fictitious porous material, which is not 

meaningful in conventional materials. Hence, these intermediate density values are penalized, 

forcing the final design toward element densities of 0 and 1.  

The hinge optimization study uses volume fraction and weighted compliance responses. 

Volume fraction refers to the percent of initial design space to be maintained in the final solution 

and weighted compliance is the sum of compliance of four individual load cases. Both the 

responses are global and are defined for the whole structure. A specific percent of volume 

fraction is used as a constraint and minimizing weighted compliance is the objective function 

used to obtain the stiffest configuration. Based on the optimization results for various values of 

volume fraction constraints, 40% is chosen for further analysis as it provides better feature 

definition compared to other models.  

Topology optimization provides an optimum design based on critical load paths which are 

often not manufacturable through conventional methods. Without manufacturability constraints, 

the optimized configuration, shown in Figure 3, has a hollow interior, which is effective in 

resisting both the bending and torsion conditions induced by the load cases.  

 

                   
Figure 3: Optimization result for 40% volume fraction constraint 

 

A draw direction constraint can be imposed for linear tool access to improve 

manufacturability with conventional machining operations [28] but this constraint penalizes the 

torsional stiffness of the optimized design. The optimized result with the draw direction 

constraint is shown in Figure 4.  This configuration resembles an I beam section, which resists 

bending during the open and close loading conditions better than other beam cross sections but is 

less effective at resisting side load-induced torsion than the previous hollow section 

configuration. 
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Figure 4: Optimization result – 40% volume fraction with draw direction in Z axis and no 

holes constraint 

C. HINGE LATTICE OPTIMIZATION 

Lattice optimization provides a method to create solid components combined with lattice 

structures, which can potentially leverage additive manufacturing capabilities. Lattice 

optimization is a two-step approach [29] as shown in Figure 5. 

 

 
Figure 5: Lattice Optimization Flowchart.  

 

Whereas in regular topology optimization, the intermediate density elements are treated as 

fictitious material and are penalized into voids and pure solids, in lattice optimization, these 

intermediate density elements are converted into lattice structures using a two phase process. 

During the first phase, regular topology optimization is carried out, except that intermediate 

density elements are not penalized and are retained within the model [29]. The range of 

intermediate density elements to be present can be controlled and it will be discussed in the next 

sub-section. In the second phase, the omitted intermediate density element edges are converted 

into lattice rod elements and the end diameters are sized based on a stress constraint for further 

fine tuning. In order to perform lattice optimization, the LATTICE command is included in the 

DTPL bulk data entries as shown in Figure 6.  

 

 
Figure 6: Bulk data section in .fem file 

 

Regular Topology 
Optimization 

•Include intermediate 
density elements 

Lattice Optimization 

•Convert intermediate density 
elements into lattice struts 

•Size lattice members 
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Inclusion of the LATTICE command allows the user to specify the cell structure, lower and 

upper bound for intermediate densities and stress constraint values for lattice sizing. Density 

values below the lower bound “LB” will be converted into void and values above the upper 

bound “UB” will be converted into solids. Elements between LB and UB are converted into 1D 

simple beam elements (Type ROD) with diameters proportional to the density of the 

intermediate density elements that were replaced [29]. Figure 7 shows the lattice optimized result 

and the sized lattice end diameters. The limitations of the initial lattice optimization 

implementation in OptiStruct version 13.0 can be seen in the mesh dependent lattice members 

and the inability to control the orientation and lattice cell configurations.  Despite these 

limitations, this lattice optimization capability enables the component stiffness study executed in 

this work. 

 

 
Figure 7: Lattice optimized hinge and sized lattice end diameters. 

 

1. EFFECT OF RANGE OF INTERMEDIATE DENSITY ELEMENTS 

The use of lattice structures can reduce component weight but it should be noted that lattice 

structures display lower stiffness per volume compared to fully dense material which increases 

the compliance. Hence, the amount of increase in model compliance depends upon the density 

range of intermediate elements present which are later converted into lattice structures. A stress 

constraint of 20 ksi is constantly used throughout this work for sizing the lattice diameters in the 

second phase of optimization. The increase in compliance relative to the range of intermediate 

density elements is shown in Figure 8. The open and close loading conditions drive the design in 

very similar trends and hence the plot of compliance vs intermediate density element range is 

explained only for open loading condition. It can be seen from the graph that the compliance 

steadily increases as the upper bound of the intermediate density range increases, which means 

higher the upper bound the larger the number of lattice structures and higher the compliance. 
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Figure 8: Compliance Vs Intermediate Density Elements  

Range for Open Loading Condition 

 

The trend which is observed in Open and Closed loading conditions cannot be applied to the 

side loads because side loads puts the hinge under torsion whereas Open and Closed loading 

conditions causes bending. A box type structure as shown in Figure 3 would prove efficient for 

resisting torsion but as the draw direction constraint is imposed in lattice optimization, material 

along the sides is removed and replaced with lattice structures that increase the compliance for 

the side loads.  The magnitude of the increase remains more or less the same throughout the 

entire range of intermediate densities studied as shown in Figure 9.  During Open or Closed 

loading, the lattice elements resist shear and during Side loading, they resist twisting. Both sets 

of load cases drives the design differently and it can be observed in plots Figure 8 and Figure 9.  

 

 

 
Figure 9: Compliance Vs Intermediate Density Elements  

Range for Side Loading Condition 
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2. EFFECT OF POROSITY PARAMETER 

From the previous section, it is shown that compliance of the model depends upon the 

amount of lattice structures present, which is controlled by specifying the range of intermediate 

density elements. Another way to control the amount of lattice structures present is by using the 

porosity parameter [29]. The porosity parameter controls the penalization of intermediate density 

elements in the first phase of optimization. It is very similar to penalization which occurs during 

regular topology optimization except that intermediate density elements are retained in the 

model. Three options are available for this design optimization parameter: High, Medium and 

Low.  

If the Porosity value is High, then there is no penalty applied which leads to a larger amount 

of intermediate density elements in the first phase, resulting in a high volume fraction [29] of 

lattice structures in the final design. It is to be noted that the model will have very high 

compliance due to the large amount of lattice structures. For a Medium porosity value, the 

penalty applied is 1.25 which leads to reduced lattice structure zones compared to the previous 

option. Both High and Medium options are preferred in applications where the component 

porosity is desired. For instance, in the case of a biomedical implants, porosity helps in the 

growth of tissues over the implants [22]. When the porosity value is Low, a natural penalty of 1.8 

is applied which generates a further reduction in intermediate density elements in the first phase 

and leads to a design with very low lattice zones and mostly fully dense material distribution. 

This option is preferred in obtaining a stiffest design (compliance minimization problems). The 

variation in porosity in shown in Figure 10 for lattice optimized model with 10 to 80% 

intermediate density element range. 

 

 

 
Figure 10: Variation in Porosity parameter: High, Medium and Low 

  

Though the above model has a very high intermediate density range of 10 to 80%, it should 

be noticed that the amount of lattice structures reduces drastically as we move from High to Low 

and hence there is a decrease in compliance as shown in Figure 11. Also, for the low porosity 

option, the lattice structures are concentrated in the area of stiffeners as predicted by the topology 

optimized result from Figure 4. 

 

High Porosity Medium Porosity Low porosity 
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Figure 11: Increase in compliance vs Load cases for various 

porosity options 

IV. SIZING OPTIMIZATION AND LATTICE STRUCTURES 

Shell model created from the topology optimization result and other model variants with 

lattice structures along with its sizing optimization results are discussed in this section.  

A.  HINGE SHELL MODEL DETAILS 

Sizing optimization is required after obtaining an optimized topology result in order to 

determine geometrical parameters such as plate thickness for a 2D shell element or diameter for 

a lattice member is determined. In sizing optimization, the structural connectivity of the model 

determined during topology optimization remains fixed throughout optimization process [30]. 

Whereas minimum compliance design in topology optimization adds material along critical load 

paths and provides the stiffest material distribution in the model, it does not take strength or 

stability requirements into consideration. Hence, a shell model as shown in Figure 12 is 

developed from the topology-optimized result and is size-optimized by taking strength, stability 

and displacement constraints into account.  

 

 
Figure 12: Shell model of the Hinge with Stiffeners 

 

Similar to the topology optimization model, the shell model is also constrained by means of 

six fasteners at its base and has the same loading conditions as shown in Figure 2. Gap elements 

are used at the base of this model as an interface element between two faces of the structure. Gap 

elements are one-dimensional elements defined by two nodes and are capable of transferring 
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only axial forces (tension and compression) [31]. Here, initially the gap between the base of the 

hinge and the door is assumed to be closed and there is a load transfer only when the gap 

elements are in compression (closed condition). 

B. HINGE MODEL VARIATION AND SIZING OPTIMIZATION 

In order to understand the effect of the displacement constraint on optimized lattice structure, 

two other models were created apart from the Shell and Stiffener model (Model-I) shown in 

Figure 12. Model-II and Model-III consist of lattice structures in place of stiffeners, as shown in 

Figure 13, with the lattice structures imported from the lattice optimization result.  Optimized 

lattice structures were used from the 10-80% intermediate density range configuration and the 

low porosity option. The main difference between Model-II and Model-III is the diameter of 

lattice structures. In Model-II, the diameter of lattice structures are the end diameters from the 

lattice optimized result whereas in Model-III, the lattice structures are divided into 3 sections 

along the neck of the hinge: forward, mid and backward region and corresponding sizing 

variables are created. During the optimization, each section is sized individually so that all the 

lattice members in a single section have the same diameter.  

 

 
Figure 13: Shell model of the Hinge with Lattice Structures 

 

In order to transmit the load from the upper flange to lower flange through lattice structures, 

the nodes along edges of lattice structure are selected and connected to the flanges by using rigid 

RBE2 elements, which rigidly transmit displacement from one node to another. 

Similar to topology optimization, OptiStruct uses the DRCO approach for sizing optimization 

as well. The plate thickness of 2D shell elements and diameters of 1D lattice members are the 

design variables. Stress, displacement and mass responses are created. Stress constraints of 

max/min principal stress within ±40 ksi and a displacement constraint of 0.03 in. are applied for 

all three model variations. For Model-III, tension and compression stresses of 40 ksi and 20 ksi, 

respectively, are given as constraints for sizing the lattice members. The buckling eigenvalue is 

constrained to be greater than 1.0 to ensure flanges and stiffeners remain stable under the design 

loads.  Finally, minimizing the mass is the objective function for this problem and sizing 

optimization is performed. 

The resulting optimized design satisfies all stress, displacement, and stability constraints.  

Figures 14 -16 show Von Mises stress plots for all three models.. From the lattice stress plots, a 

small number of lattice members reach peak stress along the edges where they are tied to the 
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shell flanges using RBE2 elements.  Figure 17 shows the resulting optimized shell thicknesses 

for all three models. 

  
Figure 14: Model-I Von Mises stress plot with deformation 

for Open, Closed and Side load cases 

 

     
Figure 15: Model-II Von Mises stress plot for topology sized lattice members 

for Open, Closed and Side load cases 

 

      
Figure 16: Model-III Von Mises stress plot for three zone sized lattice members 

for Open, Closed and Side load cases 

 

     
Figure 17: Thickness plot for Model-I, Model-II and Model-III 
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C. MASS COMPARISON FOR VARIOUS DISPLACEMENT CONSTRAINTS 

As mentioned previously, though the use of lattice structures reduces the mass of component 

significantly, it also increases its compliance. In order to benefit from the usage of lattice 

structures, it is necessary to understand the relationship between mass and magnitude of the 

displacement constraint of the component. For this purpose, all 3 models were size-optimized for 

increasing displacement constraint values, holding stress and buckling constraints as previously 

set, and their optimized mass values were recorded.   Figure 18 shows the optimized mass result 

versus displacement constraint magnitude. 

 

 
Figure 18: Displacement vs Mass for three model variations 

 

 
Table 1: Mass (lbs) and %Lattice benefit for various  

Displacement constraints 

 

Table 1 provides information about mass for all three model variations for increasing 

displacement values. Here, %lattice benefit denotes the percentage reduction of mass by 

comparing Model-I and Model-II. With the initial tightly constrained diplacement values, 

essentially no benefit is obtained from the lattice optimization—the initial negative values are 

within numerical noise and model idealization error.   Although the mass of Model-I and Model-

II are almost the same initially, mass reduction increases to around 14% as the displacement 

constraint is relaxed. From Figure 18, the relation between displacement and mass is similar in 
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all three design variants as expected, i.e. the mass of the component reduces if the displacement 

constraint is relaxed. The displacement vs. mass curve for Model I and II flattens after 0.5 in. 

displacement constraint magnitude because the thickness of the shell elements reaches a lower 

bound value of 0.05 in. during sizing optimization. From Figure 18, it can be seen that Model-III 

is comparatively heavier than the other models. Due to large number of lattice members, it is 

difficult to manually hand pick each lattice and create individual design variables. For this 

purpose, they were segregated into three sections and sized section wise. As the lattices are sized 

section wise based on stress, one or two lattice members determine the size of whole section 

which reduces the design freedom and leads to heavier weight.  

V. CONCLUSION AND FUTURE WORK 

This work studied the effects of lattice structure configurations on component stiffness in a 

two phase effort.  In both phases,  a goose neck door hinge with four load cases is used for 

demonstrating the effects of lattice optimization. In the first phase, topology optimization of the 

model provides an I beam configuration which resists bending during Open and Closed loading 

conditions and determines the location of stiffeners. Later, topology optimization is extended to 

lattice optimization and it should be noted that lattice structures are formed primarily in the place 

of stiffeners. Compliance of the model depends on the amount of lattice members present which 

can be controlled using two parameters: range of intermediate density elements and the porosity 

parameter. Figure 8 provides the relationship between the range of intermediate density elements 

and model compliance. It should be observed that model compliance increases as the density 

range increases. Similarly, the porosity parameter can be used to control the amount of lattice 

structures present, which in turn determines the compliance of the model. There are three 

porosity options: High, Medium and Low. From Figure 8 and Figure 11, we can come to a 

conclusion that compliance of the model depends upon the lattice volume fraction, i.e., the 

higher the number of lattice members, the higher the compliance.  

The second phase of the work involves fine tuning of the design. To understand the 

relationship between lattice structures and displacement constraint, three shell model variations 

with stiffeners and lattice structures are created where the lattice members are imported from low 

porosity lattice optimization result. These models are size optimized for increasing displacement 

constraint values and their corresponding mass values are recorded. From Figure 18 and Table 1, 

it can be noticed that mass of the component reduces as we increase the displacement constraint 

value and this trend is similar in all three model variations. About 14% mass reduction can be 

observed between the model with stiffeners and the model with lattice structures once we 

increase the displacement value. Based on the above observations, lattice structures can be 

implemented in solid models where low weight is preferred and at the same time relaxation in 

displacement constraint is acceptable. 

HyperMesh and OptiStruct version 13.0 was used for simulation purposes in this paper. The 

next version 14.0 has been released and work needs to be done to investigate the changes in 

results by using the enhancements of latest version. Some of the updated features in lattice 

optimization include use of tapered lattice members, lattice smoothing, and re-meshing features. 

Also, work is planned to study lattice structures designs in other applications where they can be 

used to reduce the component weight without affecting its stiffness. Future work will also 

examine methods to control the directionality, density, and cell configuration and to address the 

stress concentrations in the lattice structures which might lead to fatigue failure. 
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