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Abstract

Additive Manufacturing (AM) offers the opportunity to transform design, manufacturing,
and qualification with its unique capabilities. AM is a disruptive technology, allowing the
capability to simultaneously create part and material while tightly controlling and monitoring the
manufacturing process at the voxel level, with the inherent flexibility and agility in printing
layer-by-layer. AM enables the possibility of measuring critical material and part parameters
during manufacturing, thus changing the way we collect data, assess performance, and accept or
qualify parts. It provides an opportunity to shift from the current iterative design-build-test
qualification paradigm using traditional manufacturing processes to design-by-predictivity where
requirements are addressed concurrently and rapidly. The new qualification paradigm driven by
AM provides the opportunity to predict performance probabilistically, to optimally control the
manufacturing process, and to implement accelerated cycles of learning. Exploiting these
capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible,
and practical is the focus of this paper.

Introduction

Additive Manufacturing (AM) is a flexible, agile production pathway ideal for low volume,
high value, high consequence, complex parts that are common in high-risk industries such as
defense, energy, aerospace, and medical [1,2]. To achieve a paradigm shift in qualification using
the promise of AM there are multiple technical challenges that must be addressed. Today, AM
processes suffer from challenges with variability in part quality due to build-to-build
inconsistencies, inadequate dimensional tolerances, surface roughness, grain size, and defects [3,
4]. These challenges result in costly and time consuming post-build processes (e.g. Hot Isostatic
Pressing, machining) to inspect/remediate internal defects (porosity, cracks), alter material
properties (strength, ductility), or introduce surface modifications (finish, tolerance). Minimizing
these added post-build processes is strongly desirable for financial and qualification needs.
Having the ability to predict properties, structure, and performance of AM builds allows for the
use of optimization for part performance and the ability to eliminate -- or at least reduce -- post-
build processing to specific locations known before the build.

Inherent to the paradigm shift needed to change qualification is the integration of
computational and physical models that comprise of a range of material options and incorporate
multiple length and time scales. Utilizing these integrated models to produce a validated,
predictive capability integrated with real-time and ex-situ diagnostics is the foundation of this
approach. The technical challenges to achieve this new paradigm can be divided into five key
areas.

1. Novel real-time AM diagnostic tools to quantify and monitor critical AM process

variables for materials control and optimization.



2. Innovative and rapid experimental techniques to calibrate and validate models as well as
correlate materials performance to in-process diagnostic measurements.

3. Computational models to relate process conditions to microstructure and ultimately to
bulk measurable properties.

4. Approaches to characterize, model, and control variability in AM processes.

5. Intelligent data collection from various and diverse sources to develop science-based
heuristics.

The need to bridge multiple length and time scales is intrinsic in these technical challenges,
which favors an approach that is hierarchical, optimization focused, and science-based. The
acquisition of foundational knowledge through novel real-time AM diagnostics [5] and materials
assessment techniques ultimately progresses to next-level assemblies and then to full component
qualification.

A new qualification approach is motivated by using AM to advance component design [6]
and performance. Tight control of the manufacturing process promotes the ability to increase
process yields and fosters the ability to predict process performance. Materials can be designed
with desired properties for performance while facilitating easier characterization of property
measurements for model calibration. Designing model validation experiments for the expected
material and component performance provides a direct line to mechanistic model-form
development and performance assessments. These validated models elucidate the Process-
Structure-Property-Performance (P-S-P-P) connectivity that is difficult or impossible to deduce
experimentally. Validated computational models require extensive experimental observations to
understand the domain of model agreement or bias and uncertainties in model predictions.
Ultimately, as highlighted in Figure 1, using the capabilities of AM integrated with a validated,
predictive capability and real-time and ex-situ diagnostic tools facilitates creation of a framework
to translate AM Process results to material properties by relating micro Structure to bulk
measurable Properties to ultimately predict component Performance.
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Figure 1: General P-S-P-P approach to development of a New Qualification Paradigm



Another driver in the development of a new qualification paradigm using AM is the
ability to decrease the length of the product cycle from design through production. This is
especially true for high value, high consequence, complex parts common in high-risk industries
where requirements for high reliability often leads to cost inefficiencies, loss of flexibility, and
diminished agility in designs. Figure 2 shows a notional construct of how a reduction in cycle
time can be achieved. The first reduction, Figure 2b, is in time-to-build using the inherent
promise of AM to quickly produce parts and components. A second reduction, Figure 2c, is tied
to the ability to predict component performance, greatly reducing the dependence on validation
tests of process and performance. These cycle time reductions are partially
driven by an expansion of the design phase [7] to allow for a focus on prototype development.
Advanced prototyping supports an Accelerated Cycle of Learning [8] approach, where
confidence and knowledge is increased with more information available earlier in the product
cycle. Overall the improved cycle time is a natural output of using AM to enable probabilistic
performance estimation, design optimization, and P-S-P-P connectivity, which are all key
requirements to creating new performance regimes for changing design, manufacturing, and
qualification.
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Figure 2: Overview of an improved a product cycle to achieve New Qualification Paradigm,
(a) typical product cycle using traditional manufacturing processes, (b) product cycle using
AM capabilities, (c) product cycle possible using AM with ability to predict performance

This paper is organized by focusing on the core technical challenges to achieve a new
qualification paradigm. Process control and in-situ diagnostic needs and challenges are
introduced in Diagnostics - Process and In-situ. Process and performance benchmark artifacts
are discussed in Assessing Materials and Process Performance. The need for capabilities to
rapidly characterize materials assessment is covered in Rapid Characterization. Modeling and
simulation needs to bridge the time and length scales, the need for P-S-P-P connectivity, and the
capability to predictive performance is discussed in P-S-P-P Models. How data science and



optimization is at the heart of the challenge to develop the new qualification paradigm is
overviewed in Optimization and Uncertainty Quantification.

Implementation
The development of a new qualification paradigm that is rapid [9], flexible, and practical
centers on developing a validated, predictive capability via integrated models in conjunction with
real-time in-process and ex-situ diagnostics. The technical challenges that must be overcome to
achieve the new paradigm will be discussed in the following sections.

Diagnostics - Process and In-situ

One of the most significant technical gaps is the need for consistent and accurate
measurement tools for in-situ diagnostics [10,11]. In-situ measurements are the first step to
quantifying and monitoring critical AM process variables for materials control and optimization,
and providing correlation to the relevant physics of the process. New and novel measurement
techniques, sensors, and correlations to materials science phenomena are needed, and must be
well-suited to the spatial, temporal, environmental and processing considerations of AM. Real-
time, in-situ measurements are also critical to developing a deep understanding of the AM
process, with immediate determination of the impact of a requirement or manufacturing process
change, while also allowing for changes in component performance to be quickly diagnosed.

Process control is impeded by a lack of adequate process measurement methods to
characterize temperature, geometry, chemistry, phase content, and physical abnormalities, and to
quantify and monitor critical AM process variables for materials control and optimization. The
highly dynamic nature of some additive processes, e.g. laser powder bed fusion, introduces
additional challenges as critical physical events can occur at time scales faster than sensor
capabilities and length scales below typical sensor resolutions. Moreover, challenging subsurface
measurements are desirable as the voxels continue to evolve and do not reach their metastable
end state until they are deeply buried below additional material.

Data management has been observed to be another barrier as high bandwidth process and
sensor sets can quickly approach terabytes of data. Ideally, the assessment techniques would be
able to define all relevant structure, chemistry, defects, and properties in every voxel of an
additively manufactured material, with the goal of connecting all possible variables to part
performance. The identification of benchmark process and performance artifacts are vital to
materials characterization efforts and testing. Achieving a system that integrates the in-situ and
process measurements with these benchmark artifacts would provide designers and process
engineers a perfect storm of information for process control.

Assessing Materials and Process Performance
Accurate performance predictions are essential for developing a viable qualification
paradigm, and AM provides a range of possible options including uniquely designed benchmark
process and performance artifacts, and the use of exemplars to demonstrate efficacy of the
approach. These artifacts can be designed to provide accurate validations of performance
predictions and monitor process stability. While process and performance artifacts ideally will be




identical, it is noteworthy to differentiate between process verification and component
performance. Process artifacts (e.g. sacrificial specimens) are typically used to verify process
performance through a post-process evaluation. The selection of artifacts for process control and
evaluation is a well published subject [12,13] and these efforts are guides to select appropriate
performance artifacts.

Performance artifacts in our new qualification paradigm have the goal of verifying
component performance in conjunction with in-situ manufacturing diagnostics and predictions of
performance. Overall these performance predictions would ideally change the purpose of post-
process, product testing to validation rather than performance evaluation. The selection criteria
for the performance artifacts are driven by multiple requirements and constraints of AM. First,
they must provide the ability to evaluate several material types to assess unique material, design,
and process challenges. They should also have modest performance requirements to simplify
testing requirements where preferably performance can be assessed by measuring a limited
number of requirements, metrics, or properties. These performance artifacts must also be
selected considering AM’s strengths and shortcomings, such as dimensional tolerances or surface
finish, that could dilute the focus from the goal. It also is reasonable to consider applications with
an opportunity to evaluate the enhanced functionality of components which can be uniquely
enabled by AM.

Rapid Characterization

To succeed in AM material assessment, where properties might vary from voxel-to-voxel
or build-to-build, the existing materials assessment paradigm must be modified. Conventional
materials assessment typically requires time scales on the order of weeks to months to machine
test coupons and prepare for chemical and metallographic microstructural analysis, relying on
expensive and time-intensive non-destructive evaluation such as CT scans. The challenge is to
create a rapid characterization capability to generate a material assessment in a matter of hours
rather than months. A combination of high-throughput, rapid screening characterization
techniques with more selective, higher-fidelity assessment of P-S-P-P connectivity using
conventional methods is an ideal solution to characterize process variables at the needed spatial
and temporal scales. Figure 3 shows a rapid testing configuration [14] where an array of
miniature tester bars is produced and tested using AM at a cost and time scale comparable to the
testing of a few conventionally produced and tested tensile bars. Having the capability to print
and test arrays of tensile bars provides a wealth of data quickly that allows for the capture of the
statistical nature of many mechanical properties that is critical to the creation of a new testing
paradigm that we refer to as “Properties Alinstante.” This testing paradigm requires high-
throughput, real-time measurements used in tandem with more detailed, lower throughput
measurements to efficiently establish the structure, process, and property relationships of AM
materials. Innovative experimental techniques are essential to provide assessment of materials
performance and properties, and are required to link the limited information available from in-
situ information and process and performance artifacts to the full P-S-P-P relationships of real
components [15].
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Figure 3: Rapid testing configuration for determining mechanical properties and
performance. (a) shows the general mini-tensile bar geometry (b) is a picture of a rapid
testing configuration for arrays of AM printed mini-tensile bars

Some quantities of interest in materials assessment are amenable to high-throughput
automation and integration (e.g. hardness, chemistry, and electrical conductivity) whereas others
(e.g. grain structure, long-term corrosion resistance, thermal diffusivity) are currently not.
“Properties Alinstante” is required to link the information available in-situ (i.e. during
processing) with complementary detailed structure and property measurements using
conventional techniques to fully establish P-S-P-P relations. To this end, high-fidelity
microstructural characterization is required to inform and calibrate multi-scale modeling
techniques (including continuum, phase-field and molecular dynamics simulations) to provide
microstructural information that can be referenced performance. The ability to predict process
and component performance is the first step towards design-by-predictivity.

P-S-P-P Models

A predictive, science-based description of the relevant mechanism responses for the
observed properties in AM materials is the end goal for P-S-P-P connectivity. This requires
predictive models to be developed using an Integrated Computational Materials Engineering
(ICME) [16] approach to achieve fundamental physics-driven design from microstructure to
parts and then components. Computational models must relate microstructure to bulk measurable
properties to translate AM process results to predictable material properties and ultimately
product performance. As such, the structure-property connections in AM materials must
encompass the three main length scales: micro-meso material modeling, macro-modeling, and
process modeling. Ultimately it is expected that validated computer models will guide the
synthesis process, providing a feedback loop for selection of process parameters.

A modeling approach to bridge the length scales is shown in Figure 4 for a metal AM
process such as a powder-bed fusion or laser engineered net shaping (LENS) process [17]. The
overarching goal of this modeling technique is to eventually achieve finite element analyses of
full parts, with accurate thermal histories, microstructures and residual stress fields. Such an
approach requires input from all length scales of modeling. We begin with the mesoscale, where
discrete element dynamics (DED) simulations are used to study the packing of powder particles
[18] as they are spread across the substrate, as in a powder-bed fusion machine. Because the
DED simulations have no inherent length scale, it is possible to construct atomistic



representations of the particles in the simulated powder pack, to study via molecular dynamics
(MD). MD is used to determine the thermal conduction of metals in a powder bed environment,
which will give accurate information about the size and shape of the melt pool as a function of
laser power and beam width. It is also possible to use these simulations to study changes in melt
pool geometry due to oxidization of powders, or powder packs that have skewed size
distributions due to powder re-use. Melt pool geometries and thermal conductivities from
mesoscale powder and process models are being imported into kinetic Monte Carlo (KMC)
simulations, along with thermal histories from macroscale simulations, to develop models of the
unique microstructures found in metals subjected to a moving heat source. With accurate
microstructures available, microstructurally-aware finite element analysis can be utilized to
determine residual stresses in as-built parts [19]. The potential predictive impacts of the models
are wide-ranging, and will require iterative loops of experimental characterization and modeling
with applied mechanical and thermal stresses to determine feasibility [20]. These models may
ultimately identify process routes presently outside the bounds of what is practical or achievable,
and guide the design of next-generation AM systems.
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Figure 4: AM process is being simulated at multiple length scales. (a and b) At the powder
scale, molecular dynamics and discrete element methods are used to study powder particle
flow and physical properties. (c and d) At the mesoscale, combined thermal-fluid simulations
provide detailed meltpool information and surface shape. Microstructure simulations also give
insight to solidification grain structures. (e and f) At the macroscale, simulations of full parts
provide thermal histories and residual stress fields, along with microstructural effects on part
performance.

Optimization and Uncertainty Quantification
Ultimately optimization, data science [21,22], and uncertainty quantification [23-26] are at
the heart of the challenge. Overall the goals are to (1) use optimization as the interface between
simulations, experiments, data, and uncertainties, (2) map numerical capabilities to real




experiments, (3) use data science to ask questions, not just answer questions, and (4) use data
science in each part of the P-S-P-P map. To provide maximum information and create robust
solutions in the face of uncertainties, the development of a research strategy for intelligent data
collection and analysis of diverse sources (experiments, diagnostics, models) requires generating,
filtering, selecting, and sampling data. To transform practices, we need to be able to characterize
uncertainties at all stages: at the raw material stage, during the AM process, in the resulting
microstructure of the material created in the AM process, and ultimately, in the product created
from that material. These uncertainties are characterized by enormous sets of experimental data,
materials models across all length scales, and AM process models. Efficient techniques are
needed to propagate parameter uncertainties through models, including sampling, stochastic
expansions, interval analysis, and reliability methods. The ability to fully couple numerical
multi-scale simulations with efficient analysis tools is necessary so that models can be calibrated,
used in an optimal design process, and eventually guide the manufacturing process. Techniques
must also be developed and implemented to calibrate model parameters with incorporated
experimental uncertainty. Finally, we need to follow structured model validation processes
[27,28] for comparing model predictions to experimental data and computing validation metrics
under a variety of conditions. Validation helps ensure that each of the models shown in Figure 4
is appropriate for its intended use. This is necessary both for proper use of individual models
and for the coupling of models across scales.
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Figure 5: Framework for new AM-driven Qualification Paradigm
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optimization all play important roles in managing and characterizing uncertainties in the overall
product development and qualification. These capabilities drive a possible framework for a new
qualification paradigm shown in Figure 5. This new qualification framework utilizes a multi-
scale approach that is rapid and flexible where performance is predicted probabilistically and the
manufacturing process is tightly controlled. The computational and statistical methodologies
exist to achieve end-to-end uncertainty quantification, but the integration with large data sets,
many scales of material models, and preliminary AM models makes this task very challenging.

Summary and Conclusions

AM provides the opportunity to develop a new qualification paradigm for materials and
components by incorporating deep materials and process understanding. This requires
integrating a validated, predictive capability with real-time and ex-situ diagnostics to realize
uncertainty quantification driven qualification of design and processes. Success in executing a
new qualification paradigm will result in a revolution of component engineering, design, and
manufacturing. This new framework, shown in Figure 5, requires integrated models, in situ and

process diagnostics, the use of artifacts and exemplars, and uncertainty quantification, all
within an optimization focus. Impacts of the new qualification paradigm are far reaching and
substantial. Immediate determination of the impact of a requirement or manufacturing process
change will be possible with the ability to predict performance of the process, materials and
component. The new paradigm will allow for problems or unexpected changes in component
performance to be quickly diagnosed and propagated through the design-manufacture-
sustainment chain to assess impacts to an entire enterprise. In addition, the ability to verify and
predict process stability and eventually materials assurance allows for science-based and trusted
manufacturing and an increased confidence in lifetime performance.
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