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Abstract 

The implementation of additive manufacturing as an industrial manufacturing process 

poses extraordinary challenges to companies due to their far-reaching differences to conventional 

processes. In addition to the major differences in the production process, the pre and post process 

steps in particular also require a rethinking for companies and their employees. To overcome these 

challenges and specifically to assist SMEs in the integration of technologies five industrial 

companies are researching together within research project "OptiAMix", funded by the German 

Federal Ministry of Education and Research (BMBF) and coordinated by the Paderborn University. 

This paper focuses on the development of an optimal and standardized process chain and its 

implementation in a general integration methodology. This enables the standardized integration of 

additive manufacturing in order to create a uniform understanding of the procedures and tasks 

within the company for the industrial application of additive manufacturing at an early stage as 

well as the full exploitation of its high potentials.  Therefore, the methodology also includes other 

technology-specific components such as strategic component selection, decision support for "make 

or buy" and the implementation of automated component marking. 

Introduction and Motivation 

Companies have to deal with many problems while integrating additive manufacturing 

(AM). Only a few national and international standards regarding the value chain exist, expertise 

among engineers and technicians is still missing and the integration of a discontinuous production 

into a continuous line requires precise knowledge of the technology and its processes. Nevertheless, 

companies want and have to meet the challenge if they do not want to lose out from a technological 

point of view.  

To enable the technology integration for companies, five industrial partners, coordinated 

by the Paderborn University, are researching within the project "OptiAMix - Multi-objective 

Optimized Product Development for Additive Manufacturing" since the beginning of 2017. As part 

of the ProMat_3D funding program [BMBF17] of the BMBF, the consortium is developing 

methodologies for the integration and application of AM in general and the specific Selective Laser 

Melting process in particular as well as various tools supporting the product development process. 

With the AM service providers Krause DiMaTec, Hirschvogel Tech Solutions, the research 

institute DMRC of the Paderborn University and the development service provider EDAG 

Engineering, the consortium has high expertise regarding AM technologies and is supported by 

INTES in the field of software development for topology optimization and WP Kemper as an 

application partner in the field of food technology. 
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As basis for the integration into companies, a generally applicable AM Product 

Development Process (AM-PDP), which is described in detail below, was developed. This process 

includes various AM-specific methods, such as strategic part selection or integrated component 

marking as well as an overarching procedure within the development of AM parts and products. In 

order to ensure an implementation of this AM-PDP in the company and with this the integration in 

general, a integration methodology was developed in addition to the process. The procedure 

described in the following as well as the individual methods for integrating and applying additive 

manufacturing into company follow the premise of a concrete challenge or a concrete need. In 

contrast to the implementation due to strategic goals such as technological leadership, the decisive 

target value of the integration methodology is not only the technological but also the near-term 

economic success, which significantly increases the efficiency especially for SMEs (small and 

medium-sized enterprises) with lower investment capital.  

 

Additive Manufacturing in the Context of Conventional Product Development 

 

Additive manufacturing constitutes a completely new manufacturing technology. However, 

the AM-PDP does not have to be set up reference-less and from scratch. Industry standards and 

guidelines developed for traditional manufacturing processes, such as the VDI Guideline 2221 as 

a generally accepted standard procedure in design methodology [Wulf02] or the ISO 9000 series 

as an international standard for quality management, can also be applied to AM and used as a basis, 

particularly in the area of product development [VDI2221; ISO9000]. 

 

Figure 1: Distribution of guidelines and standards to different phases of the AM-PDP / source: author 

The VDI Guideline 2221 (“Methodology for developing and designing technical systems 

and products”) defines the phase of product planning and development very precisely. Based on 

various procedural models in literature [FeGr13][Rode70][Roth00], it divides the phase into seven 
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Figure 2: General procedure for development and construction / source: author according to [VDI 2221] 

 

This procedure applies to AM as to most other manufacturing technologies, since only the 

sequence is defined, but the scope and depth remain explicitly in the employee's competence. 

However, a minor adjustment is particularly useful due to the limitation of AM, its high potential 

for functional integration and the consequent design of monolithic components. Due to the 

increasing proportion of automatically generated CAD data (e.g. topology optimization), the 

phases "Develop Layout of Key Modules" and "Complete Overall Layout" cannot be clearly 

separated. In the context of AM, a preliminary design is also becoming increasingly rare, as it is 

strongly dependent on the computer-based generation of the geometry. For the PDP, the design 

phases are therefore combined, but the general idea of VDI Guideline 2221 remains unchanged. 

Important requirements of the guideline for the AM-PDP are: 

 

1.1 For process standardization it is necessary to define one or more specific product 

development processes as reference processes [VDI2221-2] 

1.2 Parallel work should be preferred to sequential work [VDI 2221][VDI2221-1] 

1.3 Information should be collected and made available as extensively as possible in order to 

achieve the highest possible transparency [VDI2221-1] 

1.4 Project reviews must be defined within the product development [VDI2221-1] 

1.5 Parallel to product development, a consistent cost management takes place, so that the 

calculation can be adjusted in the event of product changes [VDI2221-2] 

1.6 Customers should be involved in the product development process on defined points 

[VDI2221-2] 

 

In addition to VDI Guideline 2221, the ISO 9000 series of standards is a global set of 

instruments for setting up a product development process. The series of standards defines quality 

management systems and task-independent standards that can also be applied to the development 

of the AM-PDP [IS0 9000]. In contrast to VDI 2221, ISO 9000 and in particular the ISO 9001 and 
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9004 that are part of the series offer globally applicable rules which can be applied to every process 

step and phase in the product development. Selected rules of this series are: 

 

2.1 The organization has to maintain documented information in order to support the 

execution of its processes and to retain documented information [ISO9001] 

2.2 Customers and users must be involved in the development process [ISO9001] 

2.3 The top management should determine the relevant processes and manage them so that 

they function within a coherent system [ISO9004] 

2.4 The organization should monitor, analyze, evaluate and review the organization’s 

performance [ISO9004] 

 

Further standards and guidelines from related areas which are helpful for the creation of a 

generally applicable AM-PDP are the VDI guidelines 2222 ("Methodical development of solution 

principles")[VDI 2222], 2235 ("Economic decisions in design") [VDI2235] and 3600 ("Processes 

and process orientation in production logistics on the example of the automotive industry") 

[VDI3600] as well as the DIN EN 60300-3-3 ("Dependability management - Part 3-3: Application 

guide - Life cycle costing") [DIN60300-3-3]. The following rules have been taken from these 

guidelines for the design of the desired model: 

 

3.1 The development of a principle solution according to VDI 2221 is only necessary if no 

exact task is specified [VDI2222-1] 

3.2 During the design, cost control should be carried out after each technical specification to 

ensure a short control loop [VDI2235]. 

3.3 Individual processes must be designed with the target of short lead times, high quality and 

low costs [VDI3600]. 

3.4 A life cycle analysis should be realised in the early design phases [DIN60300-3-3]. 

 

In addition to the established guidelines for traditional manufacturing, first guidelines for 

AM have recently been published or are currently being developed (e.g. VDI 3405, part 6.1, Draft, 

Published: 06/29/18). These mainly aim at the manufacturing process itself, but individual 

elements can be extracted very well and converted into rules. This allows a process flow to be 

derived, particularly in the area of post-processing: 

 

4.1 The integrated component marking is recommended to ensure traceability [VDI3405-3]. 

4.2 Together with the components, tensile test specimens shall be prepared in accordance with 

DIN 50125 [VDI3405-2]. 

4.3 For non-destructive testing of components, penetration testing (DIN EN 571-1, DIN EN 

ISO 3452-1) and radiographic testing (X-ray regarding to DIN EN 444 and CT regarding 

to DIN EN 13068-3) are recommended [VDI3405-2]. 

4.4 Used powder has to be collected to the highest possible extent and prepared for further use 

[VDI3405-6.1]. 

4.5 Post-processing is carried out in the steps "transport", "cleaning of removed components", 

"separation from the build platform", "removal of support structures", "blasting of 

components" and further traditional processing steps (e.g. machining, heat treatment) 

[VDI3405-6.1] 
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New Product Development Process for Additive Manufacturing 

 

In accordance with VDI Guideline 2221, part 2, reference processes were used to develop 

the generally applicable AM-PDP. The companies involved in the project and the DMRC have 

been using AM as manufacturing technology for many years and have thus already defined their 

own procedures for AM product development. Within OptiAMix these were analysed, documented 

and combined to form a consolidated overall process, which serves as a reference and basic 

framework for the general AM-PDP [Bue17]. Then the previously identified rules from guidelines 

and standards were implemented into the reference process. For this purpose, the established rules 

were checked for their applicability for AM, adapted and integrated as further process steps if 

necessary (e.g. Life Cycle Analysis as a consequence of rule 3.4). 

Figure 3: Structure levels of the AM-PDP / source: author 

 

In a third step the process was analyzed with regard to the previously defined premise of 

technology integration based on a concrete challenge and extended by AM-specific elements. The 

specific challenge based on a specific product inevitably leads to the question of the place of 

production and responsibility of the implementation and thus to the make or buy decision. For this 

purpose, the "Make or Buy & Part Selection” process step was added to the overall process. The 

strategic analysis of one's own product portfolio for suitable component candidates contradicts at 

first glance the premise set out above. Although it can also be a logical consequence if the concrete 

challenge is not a specific product but the market or competitive situation. It can be a follow-up 

process if the make or buy evaluation results in insufficient machine utilization. In this case, it is 

useful to look at other products to identify possible alternative products that increase utilization. A 

further consequence of the make or buy analysis is the necessary consideration of both in-house 

production and outsourcing of production to a service provider.  Both integration alternatives must 

be covered within the AM-PDP. Therefore, additional factors, in particular traceability and quality 

assurance across company boundaries, are implemented in the process. These are “Integrated 

Component Marking” and “Continuous Component Documentation and Continuous Cost Efficient 

Design”. The implementation of AM-specific elements is completed with the “Multi-objective 

Optimization”, developed within OptiAMix. The software solution developed by the partner 

INTES will enable not only load-related optimization but also cost, post-processing and 

production-related optimization. The resulting design phase changes are taken into account and 

implemented in the PEP at an early stage.  
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The AM PDP in General 

 

 
Figure 4: The AM-PDP for the design phase / source: author 
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 The AM-PDP has been finalized for the phases "Design", "Data Preparation", 

"Manufacturing Process", "Post Processing" and "Quality Assurance". Figure 4 above shows the 

process using the example of the design phase, built in adapted BPMN 2.0 (Business Process 

Modelling and Notaton 2.0). BPMN 2.0 provides different elements for the construction of 

processes. These are events (start and end of a process step), gateways (X, OR and XOR decisions), 

activities (process steps) and documents. In addition, optional, iterative and optional-iterative 

activities were introduced in OptiAMix to reduce the number of junctions and to make the overall 

process clearer. The AM-PDP starts with Make or Buy evaluation and strategic part selection (2). 

This is followed by the planning-intensive steps of VDI 2221 and, following the first "Project 

Review", the phase "Design of the Entire Product". This includes the first AM-specific step of part 

marking and the process of multi-objective optimization (3). The entire process is completed with 

the process sequence of part marking (4) as part of the seventh step of VDI 2221 and as initiation 

for the data preparation (not shown in the figure). Parallel to the AM-PDP, the continuous 

component documentation and the continuous cost efficient design are performed (1). 

 

Discussion of Specific Process Steps of the Additive Manufacturing PDP 

 

Section 1: Continuous Cost Efficient Design  

Cost Efficient Design may only be achieved if the overall part costs can be estimated in the 

different iterative steps of the PDP. The knowledge about the process steps and the respective cost 

drivers are prerequisites to set up a specific costing model. The knowledge about the importance 

of a cost driver is a significant aspect for the product design which is a viable option to understand 

the relevant workflows and to extract the relevant information with the help of business process 

analysis [VDI5610-1]. Cost Efficient Design and its methodologies should be embedded into a 

systematic Product Development framework as presented before in order to be efficient [Fisc08] 

[EKH+07][PBF+07]. This implies that the discussed tools, which shall support a Cost Efficient 

Design with the AM technology, also need to be embedded into an (existing) framework. There 

are no requirements to the type of structured process, which means that the discussed contents are 

subject to be integrated into any well structured Product Development Process. This may be a 

process published by a standardization body, e.g.  the VDI 2221, but as well a company dependent 

Product Development framework or in this case the standard AM-process. To achieve the goal of 

integrating AM technologies and the developed concepts into the Product Development Process, 

the designers need exactly these structured ways to find economically feasible part candidates. In 

addition, tools need to be integrated in this structured process. This allows to estimate AM part 

costs with the available information at a given point during the design and planning activities. 

Keeping this and the requirements in mind, a structured process needs to be reproducible, 

systematic and simple to execute. It should propose tools and needs to consider Lifecycle Costs. 

To achieve this aim, the framework is not only based on the three different methodological 

approaches from the VDI 2221. The VDI 2235 guideline for economic decisions in design and the 

DIN EN 60300-3-3 shall also become a crucial part of the methodology. By this the designer should 

get the awareness of Lifecycle Costing and AM part costs during the design and planning phases. 
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Figure 5: Combining different approaches framework enabling a Cost Efficient Design / source: [Lind18] 

The integration has several advantages for the selection of an appropriate product design 

and production technology. It supports 

 the awareness about costs among the design engineers, 

 a direct economical assessment of a given part / part candidate, 

 a structured repeatable approach, which is viable for Cost Efficient Design, 

 the consideration of Lifecycle Costs during the design process. 

 

Section 2: Part Selection & Make or Buy 

 The strategic part selection and the make or buy 

evaluation are inseparable elements with regard to the 

AM integration into existing companies. Following the 

given premise of a concrete challenge, different 

triggers can lead to the necessity of a more exact 

consideration of AM and thereby influence the 

chronological sequence of part selection and the make 

or buy decision. If the trigger for the analysis is a 

product only a technological verification is carried out. 

Subsequently, it has to be clarified whether the 

component can also be manufactured economically 

using AM – by investing in an AM machine or by 

outsourcing the production. If the investment in a 

machine is not worthwhile due to a lack of capacity 

utilization, a detailed evaluation of the entire product 

Figure 6: Procedure for Part Selection and Make or 

Buy Evaluation / source: author 
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portfolio follows to identify further part candidates. If, on the other hand, the market or competitive 

situation triggers the analysis, the detailed component selection must be the first step and the make 

or buy evaluation follows in second place. 

 

Part Selection 

As AM is a comparably new manufacturing technology, finding the right applications and 

application fields is a crucial prerequisite for the economic deployment. The uncertainty about part 

candidates is also created by the lack of knowledge and confidence in this technology [LJM+13]. 

The selection of suitable parts for this technology is a complex process as there are multiple 

relationships between different attributes of a build (e.g. build direction and mechanical strength). 

With a sufficient understanding of the processes and the given attributes, meaningful information 

can be gained [GRS10]. Still, the emphasis in literature has rather focused on finding a certain 

manufacturing machine for a given part than vice versa (e.g. [MZC+15], [BoGo11]). Published 

approaches for part selection are mostly qualitative and not quantitative. Many of these quantitative 

processes rather focused on deciding if AM might be an option for the company in general 

(compare e.g. [WoCe15], [Mate16-ol]). And so far no approaches have been investigating the 

optionality to add further components or parts to a certain build job to increase the economic value 

of the production. One of the key factors for the success of AM is the selection of appropriate part 

candidates. The part selection shall be a systematic and repeatable process [LRJ+15]. According 

to Eisen the human is one of the main influence factors on the achievable quality for parts in the 

SLM process to be controlled [Eise10]. 

 

As the utilization of the build chamber has a high impact on the machine productivity 

[Lin18], looking for additional parts to increase the occupancy rate of the building chamber may 

influence the later make or buy decision in a major way. AM has some further peculiarities with 

regards to the selection process. They change the way of how an engineer needs to think and due 

to this reason needs special attention during the PDP. In the phases conception, design and 

elaboration the engineer needs to have a certain knowledge about the possibilities and limitations 

of the considered manufacturing technologies. Here, task number four “divide into realisable 

modules” is of special interest. As discussed in the sections before, the possibilities of what is 

realisable change significantly using the layer by layer manufacturing. 

 

In literature on conventional manufacturing, the general approach is to find a manufacturing 

technology for a part, rather than to find a part for a manufacturing technology. The choice of the 

manufacturing technology is always supposed to be a comparison of different production variants 

[PBF+07] [WWD+11]. The overall aim in finding an appropriate manufacturing technology is to 

achieve a result which is efficient, systematic and free of intuitive decisions. Currently lot sizes 

and the complexity of a product may lead to a preselection in favour for or against AM. The 

technology will be one further option amongst all other manufacturing processes. In the future, this 

shall also be the general approach used for AM-part selection. As the knowledge about AM is still 

scarce today, it improves the tool for a dedicated screening of AM part candidates and their 

selection. Based on the requirements of a part candidate which is to be manufactured, a comparison 

of different production alternatives is necessary. Westkämper et al. [WWD+11] propose to evaluate 

criteria for the choice of manufacturing technology concerning product/-process-/economical/-as 

well as environmental and social criteria. Each of these main categories consists of different sub-

criteria. Depending on the application area of a part, the most important sub-criteria from each 

main category need to be selected to determine the most promising manufacturing method. Some 
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of these criteria are quantitative whilst others are rather qualitative. To be able to rank some of 

these decision criteria proposed by Westkämper [WWD+11] with regards to AM, a specific 

knowledge is necessary (compare figure 7). This knowledge can be split into three categories 

requiring different sets of knowledge. The engineering knowledge is subject to rank product- / part 

related criteria while the AM-Manufacturing knowledge is necessary to rank process and economic 

related criteria. The knowledge about business administration deals with economic criteria and the 

integration of business administration knowledge. Each of these knowledge fields enables a 

reasonable decision with regards to the manufacturing method. These may be in practice be 

incorporated in one person but normally are split up to different people in an organization. Whereas 

the engineering knowledge is clearly located at the design engineers, the other knowledge areas 

may be performed by other roles.  

 

 

Figure 7: From Manufacturing Technology selection to parts selection for AM / source: [Lind18] 

Make or Buy-Decision 

In most conventional manufacturing processes, the make or buy decision is a simple cost 

comparison calculation, since cost drivers are normally known and the productivity is clearly 

proven by the OEM. In AM, however, the evaluation of the costs becomes an optimization 

problem. One of the main objectives of in-house production is the optimum utilization of machine 

capacity. This is the only way to achieve economic success despite high system costs [WoCe15]. 

Three factors are decisive for this in AM: the build time, the discontinuous production and the 

flexible part placement within the build chamber. 

 

The build time is one of the most important cost factors in AM [LJM+12]. The simplest, 

but neither standardized nor specified method is the use of the manufacturers data. However, since 

important influencing variables (material, support structure, recoating time, etc.) are not taken into 

account, the use of this data is only recommended to a limited extent [Lind18]. In addition, there 

are various more precise cost models available in literature which, in addition to various factors, 

consider scan speed and recoating time as influencing variables [GRS10][Lind18][MeRe10] 

[RuHa07]. This segmentation makes it clear that optimum build space utilization also leads to 

better assembly rates and thus to lower costs per component, since the recoating time is a factor 

independent of the utilization. On the other hand, it becomes clear that build rates have to be 

calculated depending on the component and thus complicate the make or buy evaluation. 

 

 The discontinuous production of SLM results in a second challenge in achieving maximum 

capacity utilization. In Germany, for example, only 14% of employees work three or four shifts 
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[LTT13]. So at least 86% of companies have to distinguish between operating and closing times. 

The logical consequence of this is the necessary reduction of the build chamber utilization to let 

build jobs end if possible at the beginning or during the operating times and thus to avoid 

production downtime. Discontinuous production is therefore a factor that conflicts with the 

maximization of the build rate. 

 

 The third factor is the flexible part placement within the build chamber. This factor is 

crucial for the achievement of an optimum compromise between maximum build rate and 

manufacturing times adapted to the operating times. Since the height of the build job in particular 

has an effect on the build time due to the recoating time, a variation of the build chamber utilization 

for different components can contribute to the optimization of the manufacturing times with 

constant platform utilization. However, since component orientation and nesting are decisive 

factors, the advantage arising from a technological point of view becomes a calculatory challenge. 

 

In order to solve the optimization problem regarding the three factors and thus reduce the 

make or buy evaluation to a level of complexity corresponding to traditional manufacturing 

processes, an investment calculation tool was developed at the Paderborn University, which 

determines an optimal plant utilization depending on the operating times [Bues18]. This also 

includes all cost factors for the cost comparison calculation and thus ensures an efficient make or 

buy evaluation, especially with regard to the different scenarios to be considered due to the part 

selection. 

 

Section 3: Multi-objective Optimization 

 

Multi-objective optimization is the core topic of the research project OptiAMix and 

accordingly also considered in the AM-PDP. Previous solutions for component and topology 

optimization only provide the load-related design of components (e.g. Altair OptiStruct [Alta18-

ol]). The OptiAMix consortium and especially the software developer INTES wants to expand this 

and additionally enable cost, post-processing and production-related optimization. For this 

purpose, design guidelines for the corresponding targets are developed at the Paderborn University, 

converted into a machine-readable format and implemented by INTES in their software Permas in 

order to create a sustainable optimizer [ToLa18][FWW18]. 

 

Section 4: Part Marking 

 

Objective 

Marking of parts to be manufactured additively is considered in the general PDP in section 

4 as a crucial bunch of activities to achieve traceability and to connect physical parts with its digital 

twin and the digital process chain for example secured by blockchain technologies. This connection 

is often mentioned as one fundamental requirement to reach the vision of Industry 4.0, the next 

industrial revolution [ReMe15]. Additive Manufacturing (AM) as a technology with high relevance 

in the scope of Industry 4.0 offers the potential to directly produce markings for traceability during 

the manufacturing process. Even industries that are not focusing on products with critical 

functionality can benefit from markings for quality management and liability exclusion. The 

identifiability of products is a valuable outcome. Markings can be understood as a kind of 

individualization of parts. As individualization does not increase production costs when using AM 

the only effort results from the integration of markings in the digital product data. [JBK16] 
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A solution to mark products individually for AM is highly desired by industry. Using usual 

CAD software tools it is possible to integrate a marking for traceability manually. Doing the same 

for a whole batch of products that need an individual marking, the effort is not reasonable in relation 

to the achievable benefits. Therefore a software-driven solution has been developed by Additive 

Marking, a spin-off of Paderborn University, to allow efficient integration of markings in digital 

product also for high batch production. [Jahn18-1] 

 

Procedure 

 

 
Figure 8: Procedure of AM Part Marking 

 Selection of Marking Area 

As a first step the marking area has to be selected based on design data created during the 

PDP. The application of product marking to be generated during AM affects the geometry 

of a part in the specific area. Depending of selected formats “in”, “on” or “under” a surface 

markings can influence the structure. Therefore for loaded structural parts it is 

recommended to consider the markings and the area already in the early design phase.  

 Specification of Placeholder 

Based on the selected area, a placeholder / pattern has to be placed on that area specifying 

dimensions in X, Y and Z direction as well as the format of the marking to be generated. 

The formats defines how the marking will be readable on the manufactured part. For visible 

markings “in” or “on” a surface are recommended while “under” a surface is the right 

option to achieve invisible markings for example for authentication matters. This steps 

results in an “pre-marked” digital model.  

 Part Duplication & Positioning 

Digitally “pre-marked” models can be duplicated or even automatically multiplied in a 

virtual building chamber representing the selected AM system. Thus for example for 

Polymer Laser Sintering a 3-D and for Selective Laser Melting a 2-D filling algorithm 

supports the multiplication automatically just requiring the X, Y and Z distances between 

the parts. Each part inherits the defined pattern so that the marking effort is no longer 

depending on a batch size.  

 Individual Marking 

For each single part individual markings can be generated based on the “pre-marked” 

pattern following specific rules of creation. The content of the marking is only limited by 

imagination. Alphanumeric or machine readable codes (EAN, QR, Datamatrix etc.) are 

possible as well as braille or anything that is following definable rules. The position and 

orientation of each single part defined in the previous step of duplication and positioning 

can become part of the content as well.  

 File Export 

Marked parts can be exported out of the software solution as single parts for further 

preprocessing or just as the whole build chamber that has been filled automatically. The 

main benefit of this solution is that all parts are already oriented in relation to each other to 

ease further pre-processing and to support serial production. 
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Promising Applications 

Promising fields for the application of AM part marking are: 

 Marking of spare parts e.g. usually manufactured by injection molding so that the products‘ 

marking has generated by the mould.  

 Test specimen with a need of traceability to its position, orientation and process parameters 

 Products for safety critical applications with need to traceability following legal regulations 

 

Integration of the AM-PDP into Existing Companies 

 

With the development of the AM-PDP an efficient and traceable procedure for the 

application of AM is intended. To ensure this, an integration methodology has been developed in 

addition to the process. This provides a four-step approach, whose main component is the merging 

of the existing business process with the AM-PDP. 

 

Analysis of the Company’s Value-Added Process 

In the analysis of the overall process, existing processes must be prepared and described 

for AM integration, similar to the integration according to ISO 9001 [Fuee14]. Process owners get 

appointed, a project team is formed and business processes are documented. For AM, two 

fundamentally important conditions for the success of integration must be considered: When 

forming the project team and the subsequent documentation, all departments with direct contact to 

product development as well as future stakeholders planned for AM must be taken into account. 

Also an expert from the field of AM technologies should be part of the team. By this it can be 

ensured that employees are willing to accept the integration of the technology. The second 

important aspect in the actual analysis of the existing processes is the choice of an optimal level of 

detail. If processes are only documented superficially, optimal connection points in the process 

may not be correctly selected or even ignored. If the selected level of detail is too high, the 

documentation and analysis effort becomes unmanageable. 

 

Definition of PDP Limits 

Following the analysis, the existing structures have to be prepared for the integration. This 

involves the definition of interfaces of the traditional PDP, the isolation of the process from 

previous and subsequent activities and its removal from the overall process (figure 8). The 

transition from previous activities to traditional PDP is usually defined by an internal release, but 

must generally take place before the design phase. The transition to subsequent work steps, on the 

other hand, is more dependent on existing company structures. If the company has standardized 

processes for quality assurance in production, 

the end of the PDP is defined with the 

changeover to this area. In this case, the 

adjustment of subsequent process activities 

only takes place in the last step of the 

implementation methodology. Without 

consistent quality management, the individual 

processes are separated from the remaining 

steps with the completion of all production and assembly activities. In addition to start and end of 

the PDP, there are often breaks (e.g. Customer Feedback). Here, the project team has to decide 

Figure 9: Overall process with defined product development 

process limits / source: author 
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whether these process changes are related to the specific manufacturing process or are a general 

procedure in product development. In this case the regarding process steps have to be separated 

and preserved. To complete the definition of the PDP limits, the resulting open process ends are 

analyzed and documented with all input and output variables with regard to their process customers 

and suppliers.  

 

Unification of the Processes 

The combination of the entire process with AM-PDP is the main step in the methodology. 

For this purpose, the interfaces of the developed AM process are connected to those of the overall 

process and then the output variables previously 

documented at the defined process boundary 

are compared with the input variables of the 

additive product development. Individual 

processes whose information are not used 

within the AM-PDP are adapted or removed. 

Missing input variables are analyzed and 

associated activities are integrated into the 

preceding overall process. If all output and 

input variables match, the same procedure is 

performed at the end of the process until a closed information flow is ensured. Finally, the process 

interruptions must be integrated. Here, too, input and output variables are checked after connection 

to the AM-PDP and any necessary changes are integrated.  

 

Consolidation of the Overall Process 

AM can not directly replace other manufacturing processes. Not all properties of 

conventional manufacturing processes can be fulfilled by AM, although various further potentials 

can be exploited. Accordingly, the simple integration of AM in the PDP is not sufficient. The new 

overall process has to be analyzed in detail by the project team with regard to further possible 

applications as well as existing weaknesses. Typical additional application fields are the 

establishment of AM as an emergency technology, for example in the event of delivery delays for 

purchased parts. Weaknesses include, for example, supplier management, which has not yet been 

standardized. The project team must find solutions and take them into account in the overall 

process. Quality management must also be addressed again at this point. If standard processes are 

defined in the company, activities anchored in these processes have to be applied or adapted to 

AM. 

 

Application 

 

The potential of AM-PDP and AM-specific methods could already be demonstrated by a 

practical example introduced into the project by the DMRC. Although the conventionally 

manufactured variant of the sample tube station appears unsuitable for AM at first glance, the 

methodical part screening showed high potential, especially with regard to a possible function 

integration. The sample station is part of an automated sampling system for biochemical 

applications, in this case for testing the saturation of a liquid solution. The holder can hold 20 

sample vials so that samples can be continuously "drawn" without human intervention. In order to 

obtain a reliable and representative sample, the supply tube must be emptied from the rest of the 

previous sample into a sample glass before filling, so that a temporal allocation to the contents of 

Figure 10: Integration of the AM-PDP / source: author 

i i

i

AM-PDP
i i

27



the sample glass is possible. In the conventional design, the sample station consisted of six 

individual components that were assembled using additional connecting elements. A tank for 

emptying the residues in the hose was purchased as a further component and loosely connected to 

the station. Labels for traceability and mutual authentication of the sample station with the 

sampling system were not given in the initial design. Also the cleaning could not be carried out 

sufficiently due to the non-optimal shape and the high demands on the biochemical cleanliness. 

 

 
Figure 11: Practical example of applied methods with sectional view and CT scan / source: author according to [Jahn18-2] 

These weaknesses were eliminated by the integration of a channel for flushing with high 

water pressure according to AM-specific design rules in the version shown (Figure 11).  Thanks to 

the barcode and embossed DataMatrix codes (CT scan representation in cooperation with GE 

Digital Solutions), it is now also possible to automatically assign sample tubes to a respective 

station, which prevents measurement and analysis errors and ensures traceability of the product 

throughout the entire process. 

 

Summary and Outlook 

 

With the systematic approach for technology integration and the first evaluation based on 

the shown sample tube station as validation basis, the desired AM integration into existing 

companies can be achieved. By relying on reference processes already in use and established 

standards and guidelines the AM-PDP provides a sound basis as well as the AM-specific methods 

and the integration methodology for the integration of additive manufacturing in the industrial field. 

However, the example shown is not sufficient to achieve a general validation of the procedure 

described. For this, the entire approach must be evaluated, verified and finally validated in the near 

future on a concrete case of complete AM integration in a company. This will be pursued in the 

further course of the OptiAMix research project and promoted by the DMRC. 
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