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Abstract: Additive Manufacturing (more commonly referred to as 3D printing) is resulting in a
metamorphosis of the sand casting industry as 3D printed sand molds enable castings of
unmatched geometric complexity. The manifold benefits of these molds include: (1) the
integration of structural elements such as periodic lattices in order to optimize weight versus
strength; (2) the structural inclusion of unique features such as embossed part numbers and/or
other details of the production history; and (3) complex geometries that generate new casting
applications not possible previously. Additive Manufacturing is often described as providing
“complexity for free”, which may not be entirely precise but generally holds true and the
identification of castings that are sufficiently complex to benefit from 3D printing is generally
left to the intuition of the designer or foundry. New software tools are necessary for foundries to
discover opportunities in which the additional costs of 3D printing are compensated by the
benefits of increased structural complexity. This paper describes a complexity evaluation tool
that scores CAD models to determine the most economical casting approach based on slicing and
2D geometry evaluation. The three potential outcomes include (1) traditional sand casting,
(2) AM-enabled sand casting and (3) a hybrid of the two with 3D printed cores in traditional
casting flasks. Several case studies are described and evaluated.

1.0 Introduction

Sand casting is an economical metal process that was used as early as the Shang Dynasty of
China in 1,000 BC (Barnard 1961). In comparison to other forms of casting, sand casting
provides a wide range of casting sizes, complexity, and processable metals. Consequently, the
size of the global market recently exceeded 100 million metric tons (Staff 2016) with sand as the
predominant method of casting (USITC 2005). The significance of this ancient industry requires
the leveraging of the latest simulation and analysis tools to identify opportunities for 3D printing
of both sand molds and cores.

Additive manufacturing was invented in the 1980s and was generally relegated to creating form
and fit prototypes; however, the possibility of leveraging 3D printing for casting was recognized
as soon as a decade later (Hull et al. 1995; Cheah et al. 2004). The ability to fabricate
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geometrically complex parts using layerwise deposition as opposed to traditional subtractive
manufacturing now allows for molds and cores that would be otherwise impossible without 3D
printing (Bassoli et al. 2007). Important benefits of 3D printed sand molds are complex cavities,
tight dimensional accuracies, components insertion within the casting and/or mold (ceramics or
other metal structures), and an increased freedom in the design of the molten metal delivery
system (gating and risers). At least initially, 3D printed sand molds and cores also provide
improved delivery times as hard tooling is not required and all molds are rendered from
computer designed files in software. Consequently, 3D printed sand molds have lead to an
immediate impact on low volume and bridge production as well as design and prototype
iteration.

Understanding the decision boundary between when a casting is more suitable for traditional
methods versus 3D printing is important in order to close the business case. Furthermore, some
scenarios are best suited for a hybrid approaches which allow for complex internal cavities to be
formed with 3D printing while the outer features are created using traditional cope and drag
casting methodology. Fig. 1 left shows a casting that could not be fabricated with traditional

casting while the right figure shows a traditional casting using a pattern and core.

Figure 1: Complex casting with 3D printed mold (left) and traditional casting with traditional
cores and molds (right - courtesy of wikicommons)

As a result of the potential benefits, many groups have explored evaluating geometrical
complexity in the context of 3D printing for casting in which different challenges were addressed
or the benefits of 3D printing were identified (Atzeni and Salmi 2012; Upadhyay, Sivarupan, and
El Mansori 2017; Hackney and Wooldridge 2017; Deng et al. 2018; Shangguan et al. 2017;
Snelling et al. 2013; J. Walker et al. 2018; Mun et al. 2015; Singh 2010). Research has been
conducted on the economics of conventional manufacturing versus additive manufacturing of
end usable part production (Atzeni and Salmi 2012; Manogharan, Wysk, and Harrysson 2016;
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Hopkinson and Dicknes 2003; Baumers et al. 2016/1; Almaghariz et al. 2016; Conner et al.
2014; Martof and Conner 2017); (Thomas and Gilbert 2014), research has concluded parts with
high complexity and/or low volume result in cost savings when utilizing additive for part
production. Research on part shape complexity and the effect complexity has on energy
consumption in additive manufacturing has also been looked into (Baumers 2012; Psarra and
Grajewski 2001). However, fewer groups have investigated evaluating the complexity of the
structure directly in order to inform the economic decisions of using 3D printing for casting
(Almaghariz et al. 2016; Conner et al. 2014; Martof and Conner 2017). Research has been
conducted on the complexity of castings calculated using a regression analysis based on
parameters from a CAD model (Almaghariz et al. 2016; Joshi and Ravi 2010). Part volume ratio,
area ratio, number of cores and core volume ratio are a few of the parameters used to calculate
the shape complexity. This complexity factor formula was further researched in (Gullapalli 2016)
and used to calculate cost of different manufacturing processes. Four different scenarios related
to sand casting were considered. Traditional manufacturing of sand casting, 3D sand printing of
molds and cores, 3d sand printed cores with traditional molds, and 3d printed patterns. Two cases
studies were used to study the relationship between complexity to manufacturing costs and
determine the economical manufacturing method. This previous work, case studies and
complexity factor serve as a basis for the algorithms developed in this paper.

2.0 Materials and Methods
2.1 Complexity Algorithm

Complexity can be calculated with many geometrical methodologies in order to identify the
complex features that are relevant to castings, and more specifically, features that require 3D
printing (e.g. overhangs, internal voids requiring cores, low draft, ribs, parting line avoidance,
cross section uniformity, etc.). These pathological features requiring the use of 3D printing are
being indirectly measured in this work by slicing an STL of a final part into layers and then
performing analysis on each 2D slice by interrogating detected contours. In this study, four
algorithms were identified and were inspired from the works of others (Joshi and Ravi 2010;
Almaghariz et al. 2016; Gullapalli 2016; Baumers 2012; Watson 2011); (Psarra and Grajewski
2001) and based on the intuition of the authors. For each layer, two complexity numbers were
calculated for each algorithm in order to simultaneously evaluate the exterior and interior
complexity. Interior complexity is posited to provide data about the need for 3D printed cores,
while the exterior complexity informs the decision about whether a flask is required to be 3D
printed or if traditional techniques are more suitable.

Four algorithms were developed that all began by slicing each of the benchmark STL files and
performing analysis per layer producing an average complexity across all layers. This process
was repeated for three orientations of each part and the results were averaged including: an
unrotated case, a rotated case 90 degrees in X axis and rotated 90 degrees in Y axis. The
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rotations were completed in order to detect a complexity bias relative to orientation. For each
orientation, the complexity numbers from all layers were individually calculated and then the
total was divided by the number of layers for a mean value that was independent of the number
of slices selected. By using more layers, the accuracy was expected to improve by improving the
statistical sampling; however each additional layer meant an increase in the duration of
computation. For this study, 10 layers were used and each layer image was confined to 1000
rows and 1000 columns - all three numbers of which directly impact the computation duration.

Each algorithm leveraged existing analysis features of the Python libraries - OpenCV and
Numpy-STL - for finding contours, calculating perimeter length and area and identifying
concavity and convexity features of the contour. OpenCV is open source and when coupled with
the libraries Numpy and Matplotlib with Python as a language, provides a framework similar to
Matlab and is well suited for efficiently reading STL files and performing a rich set of geometry
functions to extract features and evaluate complexity.

Algorithm A: Number of contours per layer

The first algorithm was the simplest and just summed the number of contours detected for each
layer. Contours that were parents in the hierarchy (exterior contours) were added to the exterior
complexity number, and conversely, the child hierarchy elements were counted separately as the
interior. Both values were reported to help to identify the correct casting methodology. Fig. 2
shows algorithm A in action with the STL rendered and two layers illustrated.

Figure 2: Example of two layers in which contours are summed per layer. The STL of a gyroid
matrix (left), one layer with nine contours and a score of nine (center) and another example layer
with three contours and score of three (right).

Algorithm B: Ratio of contour perimeter to contour area per layer

Algorithm B is similar to A except that instead of incrementing the sum of contours, a ratio was
calculated and added to a running sum. This algorithm is similar to research conducted by NASA
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on perimetric complexity of binary images (Watson 2011). The ratio captured included the length
of the perimeter of a given contour divided by the area of the contour. A circle would provide
intuitively the smallest ratio and is therefore considered “simple”. An alternative and more
complex shape like a star would have a larger perimeter while maintaining a similar area and the
increased ratio would emphasize that the shape was more complex than the circle. All ratios per
layer were summed and all layers were averaged.

Algorithm C: Number of concave features per contour per layer

This algorithm summed the number of contours but also included a sum of concavity defects that
were sufficiently concave. A convex hull is the contour that encloses a contour in question but
without any concave features - the same contour if no concavity exists or a larger contour
circumscribing the original. Any point at which the two contours diverge with the greatest
separation is defined as a concavity defect and several are shown as red dots in fig. 3 for two
different layers of a dragon STL. This algorithm provides a score that is directly proportional to
the number of contours plus the number of concavity defects for all contours on a given layer.
Intuitively, concavity defects are an indication that the structure is complex in the context of the

casting as these features can interfere with the use of patterns in traditional casting.

Figure 3: Example of two layers in which contours and concavity defects are summed. The STL
(left), one layer with five concavity defects, one contour and a score of six (center) and another
example layer with three contours and four concavity defects and score of seven (right)

Aggregate Algorithm (D): “All of the Above”

This algorithm was an aggregate of the other algorithms: the contours, the ratio of perimeter over
area and the number of concavity defects summed together. The aggregate algorithm is the most
comprehensive measurement - capturing the number of contours, the complexity and concavity
of each contour. This consensus approach provided manifold perspectives in order to identify
cases that may be pathological in terms of determining if a casting requires 3D printing and was
identified as the most effective.
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2.2 Benchmark Casting Families

Sixteen structures intended for casting were selected. The first two were very simple geometries:
a solid sphere and a sphere containing a spherical cavity in order to evaluate the lower bound of
complexity from both the internal and external perspectives. In order to provide examples in the
upper bound of complexity, a Voronoi tessellation chess piece and a gyroid matrix were selected
(fig. 4 left). The queen chess piece was designed using voronoi tessellation. The Schoen’s gyroid
(fig. 4. left center) falls into a class of mathematical surfaces referred to as triply periodic
minimal surfaces (TPMS) which separate 3D space into two complex and intertwined but
separate phases . Here, one phase is established as a solid network of struts, while the second
phase is void and constitutes the porous volume. Due to their mathematical complexion,
TPMS-derived structures are extremely manipulable and computationally efficient; however they
are difficult if not impossible to cast with traditional methodologies. From a metal casting
standpoint, both the chess piece and gyroid part would require 3D printed tooling to cast.

Two additional industrially-relevant castings were included as both models were used in a
previous economic and complexity study, the results of which are used as a baseline in this study
with computer vision libraries. Both castings are provided by Humtown Products with one case
including an air brake (fig 4. center right). The design package consists of one mold design and
eight core designs. For this research, a family of castings was created with increasing levels of
complexity by incrementally increasing the number of cores while maintaining the outer mold
line dimensions. Hence a total of eight sub-cases were created by beginning with the first
sub-case (a solid casting with one mold and no cores) and then incrementally adding one extra
core. It should be noted that for the complete design, conventional manufacturing involves
fabricating eight hard core boxes to make eight cores which leads to issues with damage during
transportation, breakage during assembly, misassembly, core shift, and flash at core bonding
points. With 3D sand printing, the eight cores become consolidated to a single core.

The second previously studied casting was a turbocharger also provided by Humtown Products.
This consists of a mold and core design (fig. 4 right) and the complexity was changed by varying
the number of cores. Hence four sub-cases were created, where each sub-case has an additional
core and the four cases are: (1) solid turbocharger, no interior cavity and no cores, (2) a single
cube shaped cavity (one core), (3) two cylindrical shaped cavities (two cores), and (4) the
original design (requiring three traditionally manufactured cores which can be consolidated to
one core using 3D sand printing).
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Figure 4: Montage of the benchmark structures used in this analysis: (left) voronoi chess piece,
(left center) gyroid matrix, (right center) air brake, (right) turbocharger.

3.0 Results and Discussion

The different castings were run through the complexity software and the results are in Table 1
which summarizes the scores of the four complexity algorithms on the sixteen test structures.
These data are then compared to complexity scores assigned by previous work in which the
scores were generated manually and correlated well with the decision as to which casting process
was most suitable. One major difference with the software automated approach described in this
paper is that the original work did not capture internal versus external complexity. To compare
the current work to the previous study, a composite score was generated and this was in good
agreement with the original work (monotonically related).

3.1 Software Complexity Evaluation

Selected to demonstrate the lower bound of complexity, the Solid Sphere and Sphere with Cavity
both have relatively low exterior complexity valuations, as would be expected. Furthermore, the
Solid Sphere has 0.000 or null interior complexity as there are no interior features. Meanwhile,
the Sphere with Cavity has low but existent interior complexity corresponding to its simple
spherical cavity. In all cases (except null), the complexity value increases from Algorithm A to
Algorithm D, as more features are included in the computation and the difference between the
two sphere exteriors is primarily driven by resolution and rounding error. Fig. 5 displays the
complexity factor values for each of the benchmark castings as computed by each of the four
algorithms for both interior and exterior features.

The Air Brake and Turbocharger families further illuminate the ability of the algorithms to
discriminate complexity as it relates to selecting a casting technology.. In the Air Brake family,
all of the designs have the same external geometry and have increasingly more complicated
internal geometries from Design One to Design Eight. The identical exterior complexity of all
eight Air Brakes is captured well with all of the exterior complexity scores. The only minor
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differences are calculated and these can be attributed to slightly different geometric boundaries
where different internal features interface with the external surface and modified the outer form
slightly. Air Brake - 1 (AB1), the simplest of all, was determined to have a exterior complexity
(for the rest of this paper, all complexity scores are based on the D Algorithm) of 3.128 while
ABS, the most complex of all, was determined to have a similar exterior complexity of 2.953.
However, while AB1 only had an internal complexity of 1.556, each subsequent Air Brake
design had increasing internal complexity culminating in an internal complexity for AB8 of
6.187 - nearly four times higher. A similar trend is seen with the Turbocharger family. These
complexity scores, therefore, provide a very efficient method to differentiate between complexity
of structures, even when they may appear to be very geometrically similar from the exterior.

The Voronoi Chess Piece and Gyroid Matrix are immensely different but provide very clear
complexity scores. By visual analysis alone, it is obvious that both benchmark structures have
high exterior complexity and the scores capture this. With exterior complexity scores of 17.082
(Voronoi) and 27.580 (Gyroid), the two structures are rated as orders of magnitude more
complex with respect to their exterior surfaces than all of the other benchmark castings.
Interestingly, both of these structures have extremely low or null interior complexity scores. This
is a function of the character of lattice structures. Because all of the interior space is
interconnected, little or none of it is discriminated as actually internal. In cases like these,
however, the internal score is irrelevant though as the external score is high enough to indicate
the necessity for the entire mold package to be 3D printed.

Furthermore, differentiating between external and internal complexity is paramount to selecting
the most efficient manufacturing method for mold production. Low external complexity
generally indicates that a traditional sand mold can be effectively used with hard tooling,
whereas high external complexity would likely indicate the need for a complete 3D printed mold
package (i.e. The Voronoi Chess Piece and Gyroid Matrix). In the case of low external
complexity, though, there are still cases of low and high internal complexity. Low complexity
scores for both internal and external may be indicative of a case for entirely traditional methods
of mold production - that is, cases requiring simple cores or no cores at all. Conversely, the case
of low external complexity and high internal complexity would indicate that traditional molding
may be used for the cope and drag but additive manufacturing would be effective to address the
need for intricate cores.
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Table 1: Complexity results for the benchmark structures.

Exterior Complexity Interior Complexity

Algorithm AE BE CE DE Al BI @l DI

Solid Sphere 1.000 | 1.011 | 1.000 | 1.011 | 0.000 | 0.000 | 0.000 | 0.000
Sphere wih Cavity 1370 | 1.868 | 1.666 | 2.164 | 0888 | 0.896 | 0.888 | 0.896
Voronoi Chess Piece 10.037 | 12.045 | 15074 | 17.082 | 0111 | 0113 [ 0518 | 0.521
Gyroid Matrix 14.074 | 22.062 | 19.592 | 27.580 | 0.000 | 0.000 [ 0.000 | 0.000
Air Brake - 1 1.259 | 1.387 | 3.000 | 3.128 | 0.851 | 0.889 | 1518 | 1.556
Air Brake - 2 1.333 | 1.479 | 3.111 | 3.256 | 1111 | 1139 | 2.296 | 2.324
Air Brake - 3 1.333 | 1.464 | 3.148 | 3.279 | 1259 | 1291 | 2259 | 2.291
Air Brake - 4 1.333 | 1.460 | 3.259 | 3.390 | 1592 | 1641 | 2.851 | 2.901
Air Brake - 5 1.333 | 1.464 | 3.259 | 3.390 | 1.814 | 1878 | 3.296 | 3.359
Air Brake - 6 1.370 | 1.503 | 3.333 | 3.466 | 2.222 | 2.804 | 4.296 | 4.378
Air Brake - 7 1.407 | 1.541 | 3.407 | 3.541 | 2.666 | 2.766 | 5259 | 5.359
Air Brake - 8 1.259 | 1.398 | 2.814 | 2.953 | 3.000 | 3.112 | 6.074 | 6.187
Turbocharger - 1 2.000 | 2.150 | 5.962 | 6.113 | 0.000 | 0.000 | 0.000 | 0.000
Turbocharger - 2 2.074 | 2156 | 5592 | 5675 | 0074 | 0075 | 0074 | 0075
Turbocharger - 3 2222 | 2394 | 6337 | 6542 | 0185 | 0203 | 0.185 | 0.203
Turbocharger - 4 2.259 | 2.467 | 7.25% | 7.467 | 0703 | 0.759 | 1.444 | 1.500
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Figure 5: The complexity factor values for Algorithms A-D are shown for each of the
benchmark castings. E indicates exterior. I indicates interior.

3.2 Comparison to Previous Studies

Previous complexity factor analysis of the air brake family was completed in (Almaghariz et al.
2016) using a complexity factor model designed for castings developed by Joshi and Ravi (Joshi
and Ravi 2010). The J&R model requires knowledge of casting design by requiring (among
many factors) inputs for the number of cores required and the volume of those cores. A goal of
this layerwise complexity factor shown in this paper is to eliminate that design knowledge
constraint. Figure 6 shows each of the eight layerwise complexity factors plotted against the J&R
model complexity factor for the air brake family of castings. It should be noted that the J&R
model considers the casting as a whole and thus includes the exterior and interior complexity
together without separation. Consequently, exterior complexity factors (AE through DE) are
nearly constant compared to J&R model values.

A more constructive approach would be examining the summation of exterior and interior
complexities. Here we choose the summation of Algorithm D’s exterior complexity (DE) and
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interior complexity (DI). This is now plotted against the J&R model complexity factor in fig. 7.
The turbocharger family of castings are included in this graph. The trends are now very similar
between the two models but the results are different for the two families. A common reference
would be desirable. Weighting the layerwise complexity factors is an option.

By inspection, one can choose weights and obtain the following relationship (eq. 1):
Weighted Layerwise Complexity Factor ( WLCF) = 0.75 DE + 125 DI eq. 1

This is now plotted in fig. 8. Here the air brake and turbocharger values lie nearly on top of each
other and agree well. In fact, the following polynomial function (eq. 2) can be plotted through
the points with a R? of 0.9679.

WLCF = 6 x 10 *JRCF* =9 x 10 *JRCF”> +0.0485 x JRCF* — 12292 x JRCF +16.243  ¢q.2

Consequently, the Weighted Layerwise Complexity Factor is a viable method for geometric
complexity analysis that does not require detailed knowledge of conventional/traditional
fabrication processes.
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Figure 6: Each of the eight layerwise complexity factor values are plotted against the values
calculated in (Almaghariz et al. 2016) for the J&R model.
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Figure 7: The exterior (DE) and interior complexity (DI) of Algorithm D are added together and
plotted against the J&R model complexity factor.
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Figure 8: A weighted layerwise complexity factor is plotted against the J&R model
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For an economic analysis, we will consider four different methods of fabrication:

Traditional manufacturing (TM): Traditional subtractive processes to make molds / cores.
3D Sand Printing (3DSP): Complete sand printing of both molds and cores.
3D Sand Printed Core (3DSPC): 3D sand printing of cores and conventional pattern
making for the mold - cope and drag.

e FDM Pattern-making (FDMP): Conventional core making and 3D printing using fused
deposition modeling of hard patterns for conventional mold making with the advantage of
faster mold fabrication.

The cost model elements for each can be found in (Gullapalli 2016). Here we consider
application of complexity factors and cost modeling to the economics of mold and core sets for
the air brake family of castings. Figures 9, 10, and 11 are three graphs plotting cost per part as a
function of complexity (using the weighted layerwise complexity factor from above) for three
different production quantities: 1, 100, 1000. The process with the lowest cost per part is the
most economical for a given value complexity. The most economical process will vary as a
function of complexity and quantity. For example, in Figure 9, the most economical process is
3DSP regardless of level of complexity. However, at quantities of 100 as shown in Figure 10,
then for castings with complexity of 5 or higher, 3DSPC is the most cost effective method of
mold and core sets. For castings of low complexity, then FDMP is the cost effective. For
quantities of 1,000 as shown in Figure 11 then 3DSPC becomes the most cost effective for the
full range of complexities for this family of castings. The value of the complexity factor is to
help choose the most cost effective method of production.
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Figure 9. Mold and core set cost versus complexity of air brake family of parts for quantity of
one.
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Figure 11. Mold and core set cost versus complexity of air brake family of parts for quantity of
1,000.

Future work may include the addition of a three dimensional complexity analysis of STL part
files. In a previous work, a methodology was developed to calculate 3D signed distance fields of
STL files and to subsequently reconstruct 2D and 3D contours based on a level set approach (J.
M. Walker et al. 2017). The signed distance field generator is agnostic to the input shape and
contains a large amount of geometric and topological data including defining internal and
external space, distances to all faces, edges, and vertices, and normal vectors of all faces, edges,
and vertices. Combined with the layerwise analysis of contours, a supplementary three
dimensional analysis score could further elucidate complexity.

4.0 Conclusions

3D printing stands to transform the casting industry - particularly in cases of low volume, bridge
production, customized or complex castings. In order to inform the business decision as to
whether 3D printing makes sense - either fully or hybrid (only cores are printed), this research
demonstrated a relatively simple 2D slicing approach for measuring complexity of the casting
geometries. The finding show that of the four algorithms, the “all of the above” gave values that
provide a decision boundary that was in line with the intuition of the authors as well as obvious
extreme cases (sphere as a case of simplicity or a gyroid matrix for a case that can only be cast
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with the help of 3D printing). This layerwise complexity factor was compared to a known
complexity factor for conventional casting fabrication method and showed similar results but
without requiring design knowledge of the traditional methods. The economics of complexity
and quantity were shown for a traditional casting tooling method and then compared to three
methods that involved additive manufacturing.
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