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Abstract 

 

This work reports on the novel fabrication of aluminum nitride (AlN) complex components using 

binder jetting, on the use of sintering and hot isostatic pressing (HIPing) to increase their density, 

and on the characterization of the printed material, including thermal conductivity. The HIPing 

parameters employed were a temperature of 1900 °C using a rich nitrogen atmosphere at a 

pressure of 30,000 psi during 8 h. Results show that the printed and HIPed AlN components had 

a 1.96 g/cm3 (60.12%) density when compared to theoretical values. The thermal conductivity 

for densified and HIPed components was measured in the range from 23 °C to 500 °C resulting 

in values from 4.82 W/m*K to 3.17 W/m*K, respectively. Characterization using scanning 

electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction was used to 

investigate the ceramic structural morphology of the sintered and HIPed material, its chemical 

composition, and crystal structure of the binder jetting manufactured AlN components. 

 

1. Introduction 

 

1.1 Introduction to Additive Manufacturing  
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Additive manufacturing (AM) is a novel 3D fabrication process for a wide range of materials, 

such as polymers, metals and ceramics [1]. The fabrication by AM refers to processes in which 

material is added in layers guided by computer aided design (CAD) model to create a three-

dimensional object [2]. There are distinct AM technologies including vat-photopolymerization, 

material extrusion, and binder jetting (BJ), just to mention few [3]. In the last decade, there has 

been an increasing effort to characterize AM ceramic materials by using different techniques [3-

5], namely with diverse spectroscopic techniques such as X-ray diffraction (XRD) spectroscopic 

and electron optical and surface chemical characterization techniques. The recent advances in 

small-scaled electronics, combined with computational equipment had allowed scanning electron 

microscopy (SEM) to see morphology and chemical analysis through energy dispersive X-ray 

spectroscopy (EDS) in specific areas of samples under investigation to study the surface of 

fabricated components [2]. 

 

1.2 Introduction to BJ process 

 

The BJ process is a suitable technique for fabrication of 3D structures from precursor ceramic 

powder materials. The BJ process uses two main materials; a powder material and a binder. The 

binder acts as an adhesive between the powder layers and it is dispensed selectively into the 

powder bed through an inkjet print head that is able to displace along the "X" and "Y" axes of the 

machine. After printing, the binder can be cured, and a de-binding step carried out using the 

appropriate thermal post-processing [2]. Several steps are incurred in BJ processing of ceramic 

components: first, the ceramic powder material is spread over the build platform using a roller; 

second, the inkjet print head deposits the binder as adhesive on top of the powder where required 

by the design of the component; and third the build platform is lowered by a prescribed layer 

thickness, and another layer of ceramic powder is spread over the previous layer. Steps 1 through 

3 are repeated until the entire component has been printed. A schematic of the BJ process is 

shown in Figure 1. 
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Figure 1. Schematic representation of BJ process 

 

1.3 AlN ceramic material 

 

AlN has been used in the electronic industry since the past decade due to its combination of 

remarkable properties, such as wide band gap, high thermal conductivity, low thermal expansion, 

high strength, optical transparency, and piezoelectric properties [4]. AlN is a covalently bonded 

ceramic, it is synthesized from aluminum (13Al) and nitrogen (7N) in the stoichiometric as 

presented in Table 1. It does not occur naturally, and once synthesized it is stable in inert 

atmospheres at temperatures over 2100 oC. After fabrication of ceramic materials, components 

are sintered and also subjected to hot isostatic pressing (HIPing) method to improve 

densification. The HIPing method requires high pressures and temperatures intervals at different 

cycles under inert atmosphere [5]. The ability to use BJ for the fabrication of AlN exhibiting 

high thermal conductivity and strong dielectric properties, highlights the potential for the 

fabrication of components or devices for future electronic packaging applications [3]. 

 

Table 1. AlN stoichiometric chemical composition 

 
In this work, we report on the characterization of the thermal and other material properties for 

AlN produced using BJ, and highly densified through the use of post-fabrication heat treatments, 

for the first time. The components were fabricated using an ExOne M-lab equipment. After 

fabrication, components were sintered and also subjected to HIPing method to improve 

densification. After sintering and HIPing, various properties of the material, including thermal 

145



conductivity, crystal structure and chemical composition, were analyzed using SEM, EDS, and 

XRD.  

 

2. Experimental Details  

 

2.1 Fabrication of components by BJ 

 

In this work, the AlN precursor powder was sourced from American Element, with a measured 

purity of 99.9%. The powder had an average particle size of ~45 μm. Fabrication of components 

was performed in an ExOne M-Lab (Irwin, PA serial number: 0600H2). Other fabrication 

parameters used included a binder saturation level of 200%, powder packing ratio of 57.62%, 

and a feed ratio to layer of 1.75. Several geometries were designed and fabricated to test the 

resolution capabilities of the BJ to process AlN. The geometries included a set of tubes having a 

diameter of 1”, and varying thicknesses of 1/8”, 1/16”, 1/32”, and 1/64”; at two different heights 

of 1” in and ½”, respectively. Other geometries built included pellets with a diameter of 1/2” and 

thickness of 0.11”. The flow diagram for BJ of AlN components fabrication process is shown in 

Figure 2. The flow diagram shows the followed BJ fabrication process which main stages go 

under fabrication, densification and characterization of material properties.  

 
Figure 2. Fabrication flow diagram process for BJ of AlN components 

 

2.1.1 Curing, sintering and HIPing parameters 
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After printing, the AlN green bodies were subjected to a binder curing thermal process at 200 oC 

for 2 h. After curing, a sintering cycle was performed in a Sentro Tech furnace 1600. A first 

sintering cycle was performed, at 1500 oC for 1h with and without vacuum conditions and 

without use of a carbon crucible in order to understand the densification and chemical 

composition of fabricated components inside the furnace elements. . A second sintering cycle 

was performed with vacuum and in an inert atmosphere and using a carbon crucible. Then, the 

furnace was vacuum purged three times at -27 inHg, and a positive flow of argon (Ar) was used 

to create an inert atmosphere. Then, the sintering cycle was set with a ramp rate of 5 oC/min, 

followed by three dwell ramps at 150 oC for 1 h, 600 oC for 20 min and at 1500 oC for 5 h. The 

three dwell ramps used achieved humidity removal, binder evaporation, and increased the 

strength of AlN components, respectively. Finally, using an AIP-30H furnace model, a HIPing 

cycle was tested to increase the density of the fabricated components. The HIPing cycle 

consisted of a ramp rate of 5°C/min at 1900 °C in a nitrogen atmosphere at 30,000 psi with an 8 

h hold. The sintering and HIPing profile used are presented in figure 3. 

 

 
Figure 3. Sintering and HIPing parameters used to densify AlN components. 

 

2.1.2 Shrinkage and density measurements 

 

The dimensional shrinkage analysis (DSA) was done using a Metrology Multisensor OGP with a 

zoom up for accuracy of 10x magnification. The DSA of fabricated components with sintering 

and HIPing required the measurements of components at exterior diameter (Dext), interior 

diameter (Dint), and wall thickness (width), respectively. Density measurements of manufactured 
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components were calculated using the standard density formula where the mass is divided by its 

volume. 

 

2.2 SEM and EDS 

 

Morphology aspects and chemical analysis were performed by using a SEM from HITACHI 

SU3500 system with an integrated EDS spectroscopy from OXFORD Instrument X-MaxN brand, 

respectively. 

 

2.3 XRD 

 

XRD was done using a PANalytical Empyrean system with a CuKα radiation source at 40 keV 

and 30 mA in the 2θ range between 20o and 80o, at 0.02o steps every 4 seconds. The AlN 

crystallographic indexation was done using #ICDD: 00-025-1133 for hexagonal (C6v4-P63mc). 

 

2.4 Thermal conductivity measurements 

 

The thermal conductivity (TC) measurements were performed using a Netzsch LFA 457 

MicroFlash table-top instrument that uses the laser flash method (LFM) for thermal diffusivity 

measurements. The LFM is capable of determining the specific heat profile by using graphite or 

any standard that is pre-loaded into the software. Because the software knows what to expect 

from the graphite standard, it has a reference point for comparison to determine the specific heat 

of the unknown sample. Two pellet components of AlN with a diameter of 0.5” and thickness of 

0.11” were employed for this experimental at sintering and HIPing parameters, respectively. 

 

3. Results and Discussion 

 

3.1 Fabrication of components by BJ 

 

The ExOne M-Lab was used to successfully produce various components out of AlN precursor 

powders. Tubes with the dimensions previously discussed were all successfully fabricated. No 
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particular issues were found for any of the produced components, even those that were tall and 

had the smallest thickness. Figure 4 shows the BJ produced green body AlN tube with a 1” 

diameter, thickness of 1/64”, and height of 1”, after curing at a temperature of 200 oC for 2 h.  

 

 
Figure 4. Tube different views; a) and b) CAD design of tube with a 1” diameter, thickness of 1/64”, and 

height of 1”; c) Printed green body AlN tube after curing at 200 oC for 2 h. 

 

The fabrication of this component required 18h and 35 min, consisting of 260 deposited layers of 

AlN powder (at a layer thickness of 45μm), a spread powder layer time of 20 mm/sec and using 

22 passes of binder in between layers. It is worth mentioning that the AlN phase is easy to lose 

during fabrication and sintering of components due to the covalent bond between Al and N easy 

to contaminate at temperatures between 1500 oC to 1850 oC [6, 7]. Figure 5a) shows the tube 

after the sintering thermal process under vacuum conditions. As it can be appreciated, the tube 

maintains its grey color, which indicates that is related to the AlN phase. Figure 5b) shows the 

tube without vacuum conditions (open atmosphere). During sintering in an open atmosphere, a 

color change can be observed, where the material turned from grey to white which is related to a 

potential nitradation (oxidation) that occurred during the sintering process without vacuum 

thermal conditions.  
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Figure 5. a) AlN tube component sintered under vacuum conditions; b) AlN tube sintered in air 

conditions turned into aluminum oxide (Al2O3). 

 

Furthermore, Figure 6a) shows the tube after the sintering thermal process for de-binding (brown 

body). As it can be appreciated, the tube turned to a black color, which was attributed to the use 

of a glassy carbon crucible to protect the AlN tube from potential oxidation or contamination 

from the furnace heating elements during the sintering process.  

 
Figure 6. a) Tube after the sintering thermal process using a carbon crucible to avoid oxidation 

and b) tube after HIPing process showing the white-grayish related to AlN composition. 

 

Finally, the finished AlN tube was subjected to the HIPing cycle to increase its densification. 

Figure 6b) shows the tube after the HIPing cycle. The tube changed coloration from black 

(sintered tube sample) to white-grayish which is related to AlN ceramic phase [7]. It is worth 

mentioning that components were produced using BJ without sintering aids. 

 

3.1.1 Shrinkage and density measurements 
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The 1” diameter, 1/8” thickness tube component was measured using a SmartScope OGP to 

calculate the shrinkage it experienced after the post-processing steps of sintering and HIPing. 

Figure 7 shows the image as seen from the SmartScopeOGP top view of a segment of HIPed 

tube. It shows good packaging of the layers, a good texture and well defined and uniform edges 

around the surface of the component. 

`  

Figure 7. a) Picture of a segment at top view of AlN tube after HIPing process. 

 

Table 2 shows the calculated shrinkage experienced by the AlN tube with nominal external 

diameter and wall thickness of 1”and 1/8”, respectively. Compared with the nominal values in 

the as fabricated condition, specimens that were sintered and subjected to the HIPing cycle had 

overall shrinkage values of: -0.025”, -0.001” and +0.111” for the external, internal diameters and 

wall thickness dimensions (width).  

 

Table 2. Tube with sintering and HIPing for dimensions analysis. 

 
 

The measurements taken with the SmartScopeOGP showed that there was shrinkage of 

dimensions of the AlN 3D printed components which are in a complete agreement with HIPing 

process for sintering ceramics materials [6-8]. The reported density measured for this AlN tube 

at various stages during the fabrication ranged from ~ 1.07 g/cm3 after curing at 200 oC, ~ 1.13 

g/cm3 after sintering at 1500 oC, and finally to ~ 1.96 g/cm3 after the HIPing cycle. The density 
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values mentioned correspond to ~ 32 %, ~ 35 %, and ~ 60 % of the theoretical density for AlN 

[7]. 

 

3.2 SEM-EDS 

 

Microscopy through SEM was employed to characterize the density of components. One of the 

reasons densification is difficult, is because of trapped gases evolved from the powder surface or 

the decomposition of binder trapped in closed pores [8]. It is well known that the post thermal 

processing for AlN is difficult to achieve due to its covalent nature [9]. 

 

3.2.1 Sintering with and without vacuum conditions  

 

The fabricated components were analyzed by SEM and EDS, the first analysis was performed 

with samples that were subjected to sintering process conditions with and without vacuum at 

1500 oC and no without use of a carbon crucible, were studied to understand the thermal 

behavior of the material in different thermal conditions at the same temperature.  

Figure 8a) shows a representative SEM image at 2000X magnification from the AlN component 

sintered at 1500 oC with vacuum and without crucible protection. Figure 8b) shows the EDS 

corresponding to the chemical analysis found in sintered component. The percent content of 

chemical elements found were 38%, 60% and 12%, for aluminum, oxygen and molybdenum 

respectively. The traces of molybdenum (Mo) were attributed to contamination coming from the 

furnace heating elements made having a chemical composition containing this element. It is 

worth mentioning that besides oxygen, AlN has a high affinity for Mo which induces 

contamination [7]. 

 
Figure 8. AlN sintering at 1500 oC at vacuum without crucible; a) SEM and b) EDS  
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Figure 9a) shows the SEM image of the component sintered at 1500 oC without vacuum and no 

crucible covering. The image shows random sized AlN polycristals joined together without 

sintered particles properties. Figure 9b) shows the corresponding EDS (from the area indicated in 

Figure 8a). In the image, it can be seen that chemical elements Al, O and Fe were found at 52%, 

47% and 3% content respectively. This confirmed that the components would have undergone 

oxidation. Figure 9c) and 9d) show EDS maps showing profiles in green aluminum and red for 

oxygen. 

 

 
Figure 9. AlN sintering at 1500 oC in air atmosphere. 

 

EDS results for both sintered samples with and without the use of vacuum and no crucible 

covering, showed that contamination was present in components as exhibited by the presence of 

Mo and Fe, which were related to the sintering furnace heating elements. As mentioned before 

oxygen is well known combining to AlN, it was observed a potential presence of oxygen within 

the components with and without vacuum of 60% and 47%, respectively. 

 

3.2.2 Sintering under Ar atmosphere and HIPing 

 

Furthermore, sintering conditions were explored using the vacuum and argon (Ar) inert 

atmosphere and with a carbon crucible to protect components from furnace chamber 
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contamination. Figure10 from a) to d) shows a set of SEM images at different magnifications of 

the morphology structure profile of the component subjected to a sintering thermal treatment at 

1500oC in Ar atmosphere and vacuum conditions. This image indicates agglomerations of 

particles and cluster of smaller microparticles bound together due to the binder, the compaction 

created by the roller during printing, and the sintering conditions. 

 
Figure 10. From a) to d) SEM images of AlN at different magnifications with sintering at 1500 oC 

in Ar atmosphere/vacuum and covering with a carbon crucible. 

 

The regions indicated in blue squares in Figure 10b) correspond to the regions that were used for 

EDS chemical analysis composition. The EDS results were found to consist of 65% Al, 15% N, 

and 15% C, respectively. The occurrence of carbon was traced to the use of a glassy carbon 

crucible in order to protect the components being sintered from the heating elements. The 

crucible and inert gas atmosphere aided in preventing metallic contamination traces from the 

interior of the furnace and avoid oxidation of material. 

Figure 11a) shows a representative SEM image at the cross section of the AlN tube that was 

subjected to the HIPing process at 1900 oC. This view allows observation of homogeneous 

sintered microparticles exhibiting coalescence with well-formed boundaries. The regions 

indicated in white squares were used for EDS chemical analysis composition results. 
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Figure 11. a) SEM of AlN with HIPing cycle at 1900 oC and b) EDS results. 

 

Figure 11b) corresponds to the EDS results, showing that the components subjected to the 

HIPing cycle had a chemical trace corresponding to 65% Al, 32% N, and 3% O. This chemical 

composition obtained belongs to original atomic/mass of Al and N in AlN stoichiometric 

composition. The oxygen trace can be the result of trapped porous structures due to the 

fabrication process. 

 

3.3 XRD  

 

The formation of pure crystalline AlN phase by HIPing cycle was confirmed by XRD. Figure12 

shows the XRD results of AlN printed components after the HIPing process at 1900 oC. The 

XRD pattern for BJ printed AlN component corresponds to wurtzite crystal structure showing 

the principal plane directions at (001), (002) and (101) which is in a complete agreement with 

those reported by Xiong et al., [9]. 
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Figure 12. XRD of AlN components after HIPing process. 

 

3.4 TC measurements 

 

Here we present the TC properties results measured for an AlN pellet component fabricated by 

BJ according to the previously discussed dimensions and sintering thermal conditions. 

 

3.4.1 TC at sintering conditions 

Figure 13 from a) to c) shows the TC measurements of AlN 3D printed pellet with sintering 

process from 25 oC to 500 oC, results are presented such as a) specific heat, b) thermal 

diffusivity, and c) TC, respectively. TC results were found at 2.8 W/m*K and 1.4 W/m*K at 

room temperature and 500 oC, respectively. 
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Figure 13. TC measurements of AlN 3D fabricated pellet with sintering process from 25 oC to 500 oC: a) 

Specific heat (J/gK), b) Thermal diffusivity (mm2/s), and c) TC (W/mK). 

 

3.4.2 TC at HIPing conditions 

 

The TC properties results of AlN pellet component with HIPing conditions are presented in 

figure 14 from a) to b). Fig. 14a) shows a plot showing the specific heat measurements obtained 

in the temperature range from 25 oC to 500 oC. Figure 14b) shows a plot with the thermal 

diffusivity values in the same range of temperatures. Figure 14c) shows a plot of TC as a 

function of the temperature in the range from 25 oC to 500 oC, in the range from 4.82 W/m*K to 

3.17 W/m*K. 

 
Figure 14. TC measurements of AlN 3D printed pellet with HIPing from 25 oC to 500 oC: a) Specific heat 

(J/gK), b) Thermal diffusivity (mm2/s), and c) TC (W/mK). 

 

The TC results obtained are mainly affected by the average size of microcrystals, density, and 

synthesis method and fabrication process of components [9]. The fabrication method employed 

here of BJ with HIPing obtained good printed components. Nevertheless, AlN 3D printed 

components densification through sintering and HIPing may induce some contamination and 

oxidation. It is well known that oxygen is a typical contamination of AlN, located at the surface 

of AlN grains as aluminum oxide or oxynitrides [10]. In single crystals of high purity this value 

can reach ~ 320 W/(m*K) at room temperature, but for sintered polycristals values in the range 

from 17-285 W/(m*K) are more typical. In general, AlN 3D printing of polycrystalline ceramics 

exhibit lower thermal conductivities compared with their associated AlN single crystals [11]. As 

a result of impurities or lattice defects in AlN 3D fabricated components, phonon scattering may 

occur which leads to a decrease in thermal conductivity. One of the differences between AlN 
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single crystals, polycrystalline ceramic and AlN 3D fabricated components is that, for 

polycrystalline materials, the heat carrying process is by mean of phonons which propagate 

differently in each system network [12]. In single crystals the heat carrying is influenced by their 

nucleation, stoichiometric chemical homogeneity, mechanical stresses and phase transition in TC 

ceramics materials. 

 

4. Conclusions 

 

In this work we have presented results of BJ production of AlN components having high quality 

thermal conductivity properties for the first time. The structural aspects and thermal conductivity 

properties were analyzed by using LFM, SEM, EDS and XRD, respectively. The XRD pattern 

result showed the characteristic crystallographic planes of AlN 3D printed components at (001), 

(002), and (101) related to wurtzite crystal structure. The SEM results showed that the BJ 

produced AlN components subjected to HIPing exhibited a crystalline structure due to the 

formation of well-defined grain boundaries. With LFM, it was found that thermal conductivity 

properties of HIPed BJ produced AlN in the interval from 25 oC to 500 oC ranged from 4.82 

W/m*K to 3.17 W/m*K, respectively. In summary, the observed values of the printing 

parameters, binder density, powder packing rate, binder saturation level, and thermal 

conductivity properties found in BJ produced AlN components were shown be useful for the 

development of new devices for use in electronic devices including heat sinks. In future 

experiments, we propose sintering of BJ AlN at higher temperatures with the prospect of 

increasing densification. Future work also includes the application of BJ to other technical or 

engineering ceramics.  
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