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Abstract 
 

 Micro computed tomography (microCT) is widely in use for the inspection of additively 
manufactured parts. The main use of the technique is to detect unwanted voids inside the part. 
However, the ability to detect these kind of defects is strongly affected by image quality, which is 
often directly related to the scan time. Selecting fast scan settings (e.g. 5 minutes per part) can work 
for many situations where major flaws need to be identified (such as large unmelted cavities), but 
this may result in the missing of critical defects which are smaller, such as clustered  metallurgical 
pores or chains of fine voids between layers or tracks caused lack of fusion . An important defect 
type which can be missed by fast scanning is small inclusions also. Possible ways of overcoming 
this problem are discussed. After scanning, image analysis requires computing power, time and 
skilled human interface for proper analysis. Reduction of the image analysis workflow is possible 
using semi-automated analyses and the data size can be reduced using simple methods, including 
removal of unwanted data outside the object, 8-bit data size and even .STL format outputs in some 
cases. In this paper all the above is discussed in relation to reducing the bottlenecks (problems 
causing delays in getting results and slowing the workflow) often associated with microCT. 
 

Introduction 
 

 X-ray micro computed tomography (microCT) is an emerging technology used for the 
detailed 3D inspection and analysis of various materials. As a non-destructive imaging method, it 
finds application in various fields such as materials science [1], geosciences [2], industrial 
applications [3], dimensional metrology [4], food science [5], amongst various others. The use of 
this method in additive manufacturing (AM), and in laser powder bed fusion (LPBF) in particular, 
has been demonstrated widely, see for example [6-8] 
 
 The use of the technique has grown considerably over the last decade, as its availability has 
increased (especially with pay-per-use labs), and improvements in computing power and special 
softwares dedicated to analysis of CT datasets and image processing. In principle, this superior 
imaging technology can play a huge role in improving the quality of AM parts, by non-destructively 
identifying defective parts and also optimizing process parameters to eliminate build errors), this 
has been reviewed in detail recently [6]. Despite the huge potential of the technique, there are some 
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major bottlenecks in typical tests conducted, which are not discussed in the literature. These 
bottlenecks and issues encountered are some of the reasons the technology is not yet more widely 
used, due to the perception of it being a slow process , relative to other more routine non-destructive 
test methods such as 2D digital radiography, ultrasonic and other techniques.  
 
 This perception of the complexity or time-consuming nature of microCT, and these 
underlying issues causing this perception, are the topic of this paper. We discuss in some detail the 
entire microCT workflow, from the perspective of a typical laboratory microCT facility used for 
such testing [9]. The major potential bottlenecks are identified and ways of minimizing their effect 
through some simple methods are discussed. Besides this perspective, quantitative analysis of a 
layered defect and larger porosity (largest pores approx. 0.6 mm) in two parts are demonstrated for 
varying image quality (scan times) and resolutions. This demonstrates why both image quality and 
resolution are important (i.e. it is important to have a good resolution and good image quality). 
This also demonstrates why witness specimens might be crucial to assess large parts by microCT, 
due to the inherent resolution limit on larger parts but not on the smaller witness specimen. An 
example of a typical layered defect in a large part is shown, and examples of non-internal (surface) 
defects are shown, with suggestions on simple reporting strategies. Finally, data reduction and 
reporting options are discussed. When these bottlenecks are minimized, the method becomes 
suitable as part of a routine additive manufacturing testing workflow, and becomes suitable for 
incorporation into automated inspection and reporting workflows for Industry 4.0. 
 

Problem statement and background 
 

 The work reported here is relevant to typical laboratory microCT devices generically with 
capabilities as in [9], including a microfocus X-ray source up to 225 kV and best voxel resolution 
approximately 5 µm, with resolution scaling with geometrical magnification. Optimization of scan 
parameters is discussed in more detail in [10], especially different forms of artefacts that may be 
present and how to improve scan quality in general. The use of microCT in testing of powder bed 
fusion parts was reviewed recently [11] and Figure 1 shows a schematic of the microCT method. 
This paper is focused on Ti6Al4V due to its prevalence in biomedical and aerospace applications, 
especially in the powder bed fusion community, but all discussions are relevant to other metals and 
plastics and its applications. 
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Figure 1: Schematic of the microCT technique.  

 The typical workflow for testing AM parts using microCT is depicted schematically in 
Figures 2-4, in stages from initial sample submission, through scanning and analysis, to the final 
stages of reporting and data handling. Bottlenecks are identified with red arrows and green arrows 
show at which point these problems initiate. This is a simplified representation and various 
permutations and issues might exist, but these are considered the most important steps in the 
microCT workflow.  
 
 Initial problem can be entitled “setting expectations and setup”. When  the parts are 
submitted for testing by microCT  customer’s expectations may be unrealistic due to lack of 
experience or lack of knowledge of the technique (Figure 2). The problem manifests later, when 
the scans need to be done, and the operator is not clear about the test requirements. In practice, the 
work is delayed at this step due to waiting for instructions, attempts to contact the submitter of the 
work, or the operator prioritizes other work which has more clear instructions. The 
miscommunication at this step might be due to impractical requirements or instructions such as 
“best possible resolution” when a very large part needs to be tested. The “best possible resolution” 
often requires excessive scan times which does not necessarily add value to the inspection task or 
detectability of defects, due to the potential for image artefacts at higher magnification. In fact, 
each new part it may require very specialized setup and optimization, in addition to scan time, 
which slows down the workflow. Often the submitter of the work might be under the impression 
that all types of analysis can be done from one scan – this also is not possible. It is crucially 
important to identify the exact requirements prior to accepting samples for scanning, as this 
determines the scan setup and type of scan done, which in turn affects the time spent and hence 
cost involved. Once the instructions are clear on the goal of the scan, the next potential bottleneck 
is in the setup and optimization of the scan. Each scan requires generally a custom setup and 
optimization which takes some time. Inexperienced operators might take longer at this step, or 
might select incorrect settings or sample orientations. Additionally, some unexpected problems 
might arise, such as the sample being too dense to scan, or unexpected dense inclusions causing 
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image artefacts will require rescanning with different beam filtration. One possible solution to this 
issue is to make fast scout scans prior to the actual scan, to ensure no artefacts are present, with the 
scout scan simply being used to assess the scan setup. 

 
Figure 2: Workflow prior to scanning, with bottlenecks identified in red. Communication at early 
stage minimized these bottlenecks. 

 Once a setup is completed, the next phase is actual scanning and analysis (Figure 3). The 
actual scanning might lead to bottlenecks if the system is unstable or causes failed scans. For 
example, when a system fails near the end of a 1 hour scan, not only does the system need to be 
fixed and checked by the operator, but the scan must be set up properly and repeated entirely from 
the start in most cases. This causes unexpected delays of at least 1-4 hours depending on the source 
of the problem. At this point, despite attempts to optimize the scan, the final scan might be of poor 
quality, possibly due to sample movement (improper fixing, thermal expansion, etc.). This requires 
rescanning, and can only be diagnosed after reconstruction of the data. The reconstruction step 
itself is usually fast, but some systems might require more manual input than others which might 
make this an additional bottleneck. Generally, reconstruction also requires significant computing 
hardware to speed up the process (with optimized hardware this is 30 – 90 seconds, but with aging 
computers and basic software this might be 30-60 minutes).  
 
 The final step in this phase is image analysis. This is the largest bottleneck at present in all 
microCT analysis, not only in AM. In most cases this process involves initially viewing the data in 
slices and making some form of image segmentation to separate material from background air and 
from internal porosity or inclusions, sometimes with additional analysis functions calculating the 
porosity per cent and distribution. Any image analysis of large data is time-consuming, more so 
when computing power is not available and when the software is not optimized for the purpose. 
Usually this process is also strongly dependent on user interaction, which causes a bottleneck when 
the basic functions are not sufficient but custom methods need to be devised. Often the planned 
analysis does not work, which requires a back and forth process of segmentation and analysis until 
the result is acceptable. This time investment is difficult to plan and might sometimes be 
insufficient depending on the required analysis (e.g. pores visible but too small to accurately 
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quantify, edges of part visible but accurate surface determination fails due to grey value differences 
across the part). 

 
Figure 3: Scanning and analysis steps – bottlenecks during scanning and major bottleneck usually 
in analysis step. Clear definition and prior communication of analysis methodology smooths out 
this problem. 

 Finally, once the analysis is complete, this needs to be reported in an efficient manner 
(Figure 4). The data itself is large and requires not only disk space but generally good computing 
power to visualize and inspect the results. Therefore, simpler reporting methods must be used. Due 
to the many different permutations of reporting the results (slice images from different angles, 
videos, STL files, porosity values, porosity data spreadsheets, etc.), this often causes a bottleneck, 
as the operator or instrument scientist performing the analysis is unsure of the best way to present 
this to the client. Often the analysis is complete but the client waits weeks to receive the data (e.g. 
via shipment of hard drive) and then has trouble opening the analyzed data set, which is not a 
scientific issue but a practical one. This bottleneck can be eased by using standard reporting outputs 
available in commercial software packages, with some further simplified viewing options for quick 
self-assessment by the client. Finally, once the results are reported, the full data typically needs to 
be saved and shared with the client. This is not trivial as a single scan data set is typically 20 Gb 
and includes all acquired X-ray images, reconstructed volume data set and associated analysis files. 
When the data was de-noised this additionally increases the data set size as each de-noised volume 
data has its own raw data set. Clearly, for ease of use this process needs to be streamlined, especially 
for data transfer purposes. The method to do this is to align the part with the axes and crop 
unnecessary air voxels from around the part, possibly downscale the data to 8-bit if this is 
acceptable, then save the downscaled and cropped image stack. This will easily compress a 20 Gb 
data set to below 1 Gb, with some further compression possible using standard file compression 
formats. The raw X-ray images are discarded in this workflow. Ideally this final step can be 
automated. 
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Figure 4: Final steps in the process – bottleneck in reporting and data handling and transfer, these 
can be simplified using standardized output types, with simplified reporting and data for fast 
communication and full data moved later. 

 

Solutions 
 

 Despite the many issues highlighted above, the solutions to all the above bottlenecks are in 
standardization at every step. Submitting parts of standard geometry is possible when the analysis 
workflow is optimized. For example, a 10 mm cube can be scanned using pre-defined parameters 
and a near automatic image analysis workflow requiring minimal user input. The small size allows 
high scan quality, high resolution allowing detection of small pores and other detail, and therefore 
a simplified image analysis workflow. For this type of sample, three standardized analysis 
workflows based on the same scan allow accurate and simple quantification of porosity [12], 
physical density [13] and surface roughness [14] of selected surfaces. This allows a streamlined 
workflow for optimizing additive manufacturing process parameters, while also checking for major 
flaws that may be present.  
 
 Furthermore, despite AM producing complex parts, some form of standardization is 
possible for parts in different size categories. For smaller parts <100 mm, a standardized workflow 
was described in [15]. Since the resolution scales with part size, typical complex parts cannot be 
inspected reliably for critical porosities which may be very small and possibly in layered or 
clustered form. For this purpose, one partial solution is to produce a witness specimen, i.e. a 
cylindrical rod built next to the complex part of interest. This rod can be analyzed at high resolution 
by microCT using a standardized and automated workflow, and if critical-type defects are detected, 
the same is expected in the complex part (as these kinds of defects originate from deformations or 
delamination during manufacturing, uneven powder spreading across the build platform, or due to 
system instability, powder handling or other issues affecting all parts in the build at the time). The 
complex part itself can also be subject to microCT since it may also contain larger unexpected 
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defects, which can be detected despite the poorer resolution. The pass/fail decision still rests with 
the user, but standardized outputs allow better informed decisions to be made and compared over 
long periods of testing similar parts, potentially using different CT systems. 
 
 Included in this standardization requirement is the method of reporting and handling of 
noisy data or data with artefacts, and streamlining the workflow, the data format and data handling 
in general. All the above standardization is already possible with existing hardware and software 
and requires only implementation. The series of examples below attempt to demonstrate methods 
to ease the bottlenecks and allow simpler workflow supporting the incorporation of microCT into 
Industry 4.0. 
 

Examples 
 

Scan image quality and resolution 
 

 In this demonstration, we use two laser based LPBF samples scanned together: a 10 mm 
cube containing porosity sub-surface and a 15 mm diameter rod containing a layered defect. As the 
resolution gets poor, all pores are more difficult to observe clearly and no quantitative analysis is 
possible (Figure 5). 
 
 However, when fast scan settings are used (5 minutes) even at higher resolution of 25 µm, 
artefacts are obscuring the presence of the defects and the data is too noisy for a successful analysis, 
as shown in Figure 6a. Using best resolution and quality, good analysis of the porosity is achieved 
using a 3D analysis algorithm which successfully detects all defects, and the layered defect is 
clearly identified (Figure 6b, c). 
 

(a)        (b)   

Figure 5: Porosity and layer defect analysis, variation of resolution: 100 µm (a) and 60 µm (b). 
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(a)    (b)   

(c)  

Figure 6: Porosity analysis at 25 µm resolution – variation of image quality (scan time) – fast 
scanning obscures all defects (a); high quality scan settings clearly identify defects on slice 
images (b) and allows full defect analysis in 3D samples (c). 

Visualization of defects despite artefacts 
 

 When a part is large or complex shaped, various artefacts can affect the scan results. These 
image artefacts refer to brightness differences which are not related to the part density or integrity, 
but due to a lack of X-ray penetration of the part in some directions, or a beam hardening artefact 
due to polychromatic X-ray beam absorption. Various other artefacts may be present when a part 
is too large, or when it is too X-ray dense, or when the scan is either not done properly or something 
went wrong during the scan. None of these are necessarily seen in the data output, making it 
possible to miss important defects which can be obscured by these image artefacts. The only way 
to diagnose this is currently to view the CT slice images, unprocessed, and establish a level of 
confidence in the image quality and lack of artefacts. Image quality can be quantified using a 
measurement of signal and noise levels in the scan data, as demonstrated in [16]. While most 
artefacts are easily detectable and identified by users, this requires access to the slice images for 
the user, and is not an automated process yet. 
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 Furthermore, in case of artefacts, automated analysis is not possible, making quantitative 
analysis and data reporting difficult. Major flaws might be identified but how can one quantify 
this? This results in possible bottlenecks as the reporting method is not clear. The method proposed 
to overcome this problem is to manually inspect each slice image, from 3 orthogonal axes. When 
a potential indication is identified, a digital marker is saved in the data. This may be reported in the 
form of a slice video/s, for simple and easy viewing, and simple transfer of results. To demonstrate 
this, an example is used from [11], demonstrating the CT slice image with its variations in grey 
values and the defect line most likely caused by uneven powder spreading. This defect is clearly 
seen in Figure 7(a) in a slice image, but an automated analysis does not work as the brightness 
variations across the part is too high. For this case a manual image segmentation is necessary to 
highlight the location and 3D distribution as shown in Figure 7(b). 

 

(a)  
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(b)  

Figure 7: Analysis of defect in a large laser based PBF part, with slice image showing variation in 
greyscale (a) and manual segmentation showing location and orientation of defect (b). 

 

Non-porosity defects 
 

 A further complication is where a part is submitted for integrity testing and it shows no 
internal porosity, but surface defects and warping, which are two common problems in additive 
manufacturing. Warping is easily analyzed by performing a CAD variance analysis, and individual 
annotations show local deviation (warping values) or 3D colour coded deviations as shown in 
Figure 8. Surface defects are more difficult to highlight, but can be highlighted by a process of 
image analysis: a closing and smoothing function is applied to the surface data and this is compared 
to the actual part, showing strong variations at sharp discontinuities, this is also shown in Figure 8. 
This type of analysis is reported first using videos and images, and later in analyzed data sets for 
further in-depth viewing. 
 
 Figure 9 shows that microCT scans can easily identify the presence of inclusions or 
impurities in the AM parts as shown in (a) and partially melted powder material left on the surface 
or inside parts of a complex shape, when it is difficult to evacuate the powder during post-
processing (b). 
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(a)  

(b)  (c)  

 

Figure 8: CAD variance analysis shows some warping (a) and surface defects - shown in slice 
image (b) and in 3D using colour coding (c) on sharp edges and notches. 

 

 
Figure 9: Slice images show impurities in AM part (a) and powder that is trapped in corner of 
complex part, partially attached making its removal difficult (b). 
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Data reduction workflow 
 

 The above examples show typical analyses for additive manufactured parts and 
simplifications to report these. Finally, the analyzed data set needs to be reported and transferred 
as well, which currently causes a bottleneck due to file sizes (Figure 10). Some simple methods for 
reducing this size are implemented ideally prior to the analysis. This involves firstly an alignment 
relative to the coordinate axes of analysis, then a cropping of the region of analysis, removing 
unnecessary air voxels.  
 

 

Figure 10. Data reduction workflow. 

 
 A more advanced method which removes more air voxels involves using the surface data 
and image dilation to select all voxels of the object and a set number of layers of voxels from 
around it. In this way especially complex objects have much exterior air voxels removed from the 
selection. The next step is de-noising of data and at this point the data can be downscaled from 
typical 16-bit to 8-bit. However, 8-bit data might affect some types of analysis, therefore the choice 
of downscaling from 16 to 8 bit depends on the data reduction requirement vs the criticality of the 
analysis. Finally, the data is saved with only a single image stack which has been cropped and this 
is ready for transmission to the client or for long term storage. A typical medium-resolution 
microCT data size is reduced from 4 Gb for the scan data in 16-bit to 300 Mb for the cropped data 
in 8-bit data, when using only a single image stack and discarding unnecessary raw data.  
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Conclusions 
 
 Some of the bottlenecks in microCT were highlighted and it was shown that all of these 
issues can be streamlined using a combination of standardized methodologies for each of the steps 
involved in scanning, processing and reporting of microCT results. Automated workflows are 
necessary to incorporate microCT into Industry 4.0 systems, allowing automated reporting of 
results and accept/reject criteria assessment. Currently it is not possible to automate the entire 
workflow, but by minimizing human input, potential bias is minimized and the workflow is 
streamlined. Due to the large data format of microCT output, various quick outputs were 
demonstrated and data reduction techniques discussed. These reductions and compression of data 
are crucial to the future uptake of microCT into Industry 4.0 workflows, especially for simple but 
complete result reporting. Future growth areas will likely be in cloud-based storage and analysis, 
and improvement of standardized workflows, especially with optimized algorithms searching for 
specific defect types relevant to additive manufacturing– e.g. layered defects or cracks. 
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