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Abstract 

Aerosol Jet printing is a versatile direct-write method allowing selective deposition and 
alteration of surface chemistry on a variety of substrates, making it suitable for incorporation 
in a range of hybrid manufacturing processes. The digitally controlled nature of the presented 
hybrid manufacturing process enables rapid turnaround of designs, and improvements in 
flexibility and complexity compared to established methods. The apparatus and instrumentation 
that has been created at the University of Leeds enables specific processing conditions that 
result in deposition of features with critical dimensions smaller than 20µm. In this study the 
analysis of the effect of process variables on deposition geometries is presented. The features 
were assessed by a combination of optical microscopy and white light interferometry. Using in-
process machine vision, topographical compensation, and alignment capability the deposition 
of material into micropatterned features in poly(dimethylsiloxane) (PDMS) was demonstrated. 
High-value applications of this technology for surface functionalisation include electronics and 
bio-engineering.  

 

Introduction 

Aerosol Jet Printing is a promising new direct write (DW) technology that can be used 
to apply selective surface functionalisation. Aerosol Jet has been applied to a diverse range of 
applications, most notably in surface functionalisation and the prototyping of electronic 
circuitry [1]–[10]. In addition, the unique capabilities of Aerosol Jet have meant that it is 
integrated in several hybrid manufacturing processes chains [11]–[13], used in the production 
of embedded circuitry [14], and to integrated into bespoke machinery [15]–[17]. The ability to 
print microscale features on uneven surfaces [18], and the wide ranging choice of material [19]–
[27] are compelling reasons to investigate the hybridisation of Aerosol Jet technology, as long 
as complementary processes can be identified and suitable automation procedures developed.  

In the Aerosol Jet technique, the functional material is transitioned from liquid ink into 
an aerosol state before being focussed and deposited onto a substrate surface (Figure 1). The 
material is atomised using either focussed ultrasonic energy, or pneumatic shearing of the fluid, 
depending on the viscosity of the liquid ink, and the required throughput of material for the 
application. The aerosol is entrained within a gas stream and transported to the deposition head 
by a stream of inert nitrogen gas [28]. The stream forms a boundary layer around the aerosol 
that prevents the majority of the particles in the aerosol stream from contacting the tubing 
during the transportation [29]. An annular, co-axial sheath is introduced to the aerosol stream, 
which has the effect of collimating and accelerating the combined flow. The co-axial stream is 
further accelerated and focussed through nozzle directed at the substrate. Following the 
instructions contained in a digital script, the substrate is translated underneath the deposition 
head to produce traces of material. On/off patterning is achieved by interrupting the flow with 
a mechanical shutter. 
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Figure 1: Aerosol Jet Printing Overview. (1) A liquid sample is atomized by ultrasonic agitation. (2) N2 gas is 
pumped into the atomizer chamber. (3) The aerosol is transported to the deposition head (4) The aerosol is 
focused and accelerated by a further annular sheath of inert gas. (5) The resulting high velocity jet is deposited 
onto the substrate. (6) The stage is moved in up to 5 axes to produce a pattern. (7) On/off patterning is achieved 
by interrupting the flow with a mechanical shutter 

The diameter and properties of the emerging stream (and therefore the geometrical 
properties of the deposit) are controlled by several adjustable process parameters. Mahajan et 
al. reported that in the case of printing silver nanoparticles, the critical factors in controlling the 
transportation and focussing mechanisms of the apparatus are the two gas flows and the 
movement speed of the substrate under the sample. They contend that the total flow rate through 
a nozzle does not affect trace width, but that the ratio of sheath gas/atomiser gas, defined as the 
focussing ratio (Eqn 1) which is the critical factor. In addition, for each focussing ratio there is 
a range of optimum speeds at which a confluent line is drawn [30].  

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 = 𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑔𝑔𝑒𝑒𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝑒𝑒𝑓𝑓𝐴𝐴𝐴𝐴𝑔𝑔𝑒𝑒𝑟𝑟 𝑔𝑔𝑒𝑒𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒

                (1) 
 

Printing materials must either be a liquid, or be dissolved, suspended or melted into 
liquid form. Their properties must then be tuned for Aerosol Jet printing, mainly through the 
addition of solvents, though more sophisticated material formulations can contain dispersants 
or other additives. Print materials are specifically designed for the process, considering: 
machine compatibility, stability through the printing process, and the final deposit properties.  

To produce a pattern, the substrate is manipulated under the printing head using two or 
more computer controlled axes. It is necessary to conduct a full analysis of the system, to 
achieve the functionality and repeatability required for integration into wider hybrid systems. 
Currently no publicly reported boundary conditions for the printing of geometrical features 
exist.  

In our work, we integrated the core Aerosol Jet technology into a bespoke 
programmable manufacturing process and used this to produce micro scale printed structures 
from the conductive polymer PEDOT:PSS. This material was selected due to its range of high 
value applications such as touchscreens [31], solar cells [32], and as a non-toxic conductive 
material for electrical stimulation of cell cultures [33].  
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A body of work is presented which: 

• Identified trends in the printed line geometry according to process variables 
• Defined specific print parameters to print stable 20µm width at half maximum 

(WHM) features 
• Investigated the machine and printing capabilities with a 20µm WHM lines 

including minimum line pitch, sharp angles, and minimum circle size.  
• Proved the application to complex surface patterning through example prints 
• Showcased the ability to combine patterned substrates through in process 

alignment. 

This core technology can be combined with multiple processes resulting in a multi-
functional system. Alignment capabilities enable integration with other manufacturing 
processes such as microstructures produced by photolithography.  

 

Studying the Effect of Printing Variables 

The integration of Aerosol Jet print engine into a bespoke multi axis stage resulted in a 
standalone manufacturing apparatus. The substrates were loaded onto the stage which is 
controlled through a G-Code input to Mach3 CNC software. The stage is actuated through lead 
screws driven by a geared stepper motor. It is capable of a minimum incremental movement of 
<10µm and speeds up to ~3mm/s (200mm/min) without loss of accuracy. The stage 
incorporates rotary alignment and an alignment camera capable of distinguishing features as 
small as 5µm. This enabled alignment to fiducial features on substrates if patterned substrates 
manufactured in other micromanufacturing methods (e.g. photolithography) were required in 
the application. The travel distance of the stage is 90mm x 90mm, enabling batch production 
of tests in a step and repeat fashion. The stage can be removed to transfer between pre- and 
post- processing steps.  

When printing, the ink was transitioned into an aerosol by ultrasonic atomization and 
deposited through a 100 µm diameter nozzle. The atomising current was kept constant at 
0.65mA. The distance between the nozzle exit and the substrate was 3mm, and the substrate 
translated under the substrate at a speed of 2 mm/s. 

First, the geometry of the printed lines was assessed at different focussing ratios. Each 
print was conducted on a separate substrate to remove any chance of interference between 
prints. Before commencing each print, the aerosol jet apparatus was set to the specific 
sheath/atomiser gas flow rate and left to settle for 10 minutes to ensure a continuous stable flow 
from the nozzle. At this nozzle size the maximum recommended sheath gas is 50sccm.  

Table 1: Atomiser Gas flow rate (sccm) with respect to each Sheath Gas and Focusing Ratio combination.  

                 Focussing Ratio 
 
Sheath Gas (sccm) 0.5 1 1.5 2 2.5 3 3.5 

10 5 10 15 20 25 30 35 
20 10 20 30 40 50 60 70 
30 15 30 45 60 75 90 105 
40 20 40 60 80 100 120 140 
50 25 50 75 100 125 150 175 
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Outside these regions no viable lines were printed. Focussing ratios below 0.5 resulted 
in machine issues such as nozzle clogging, focussing ratios above 3.5 resulting in very little 
material output, so that a confluent line was not deposited. To drive off solvents and sinter the 
nanoparticle line prior to analysis each sample was baked at 150°C for 10 minutes.  

Figure 2 shows a three-dimensional rendering of typical white light data, showing the 
curved cross-sectional profile of the deposits. The deposits do not have a well-defined sharp 
edge, and the side walls are not vertical. Therefore, the features were defined by their maximum 
height, and the width at half maximum.  

 
Figure 2: White light rendering a small section of aerosol jet deposit showing the cross sectional shape.  

The results of the geometrical analysis are presented in Figure 3. Figure 3a shows the 
effect of total flow rate on the maximum height of the deposit. At low focussing ratios the step 
height did not substantially increase with an increasing gas flow. When the focussing ratio is 
higher than 2 the maximum height increased as the total flow rate increased. Other than 
focussing ratio of 3.5, as the gas flow rate increased the maximum heights approach the same 
height, indicating a critical limit to the height of the printed features. Figure 3b shows that at 
all focussing ratios the WHM increased with an increasing gas flow. The most pronounced 
increase was seen at the lower focussing ratios, particularly those lower than 2.  

Generally, as the gas flow rates are increased, the material deposition rate onto the 
substrate surface is also increased, resulting in an enlargement of the deposited line. This tends 
to be in the form of an increase in height, until a critical point is reached, after which there is 
an increase in line width. Most notably, at a focussing ratio of 0.5 the height does not 
substantially increased, however large increased in WHM are observed as gas flow rate 
increased. Figure 3a indicates that the maximum deposit height for Aerosol Jetted PEDOT:PSS 
features is in the region of 0.5-0.8µm, as all the focussing ratios approach this region at high 
gas flow rates. Ultimately, this limit is as a result of the wetting properties of PEDOT:PSS to 
the substrate.  
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Figure 3 Effect of gas flow rate on (a) maximum height and (b) width at half maximum height. 

The effect of reducing atomiser gas whilst keeping the sheath gas constant can also be 
interpreted by comparing the points of each focussing ratio at a specific sheath gas value. For 
example, Figure 4 illustrates deposits at increasing focussing ratios at a constant sheath gas of 
40sccm. The reduction of atomiser gas at a constant sheath resulted in a reduced material flow 
rate from the atomising chamber, resulting in geometrically smaller deposits, both in terms of 
maximum height and width at half height. 

Sheath gas  40 sccm 40 sccm 40 sccm 40 sccm 

Focussing ratio 0.5 1 2 3 

Atomiser gas 80 sccm 40 sccm 20 sccm 13.3 scmm 

 

    
Figure 4: Effect of decreasing atomiser gas at a constant sheath gas (S=40) 

There are limits and exceptions to these rules: in addition to the focussing ratio limits 
described earlier, several other sheath/atomiser gas combinations resulted in no printed features. 
This is due to the inability for the atomiser gas to push through enough material to form a 
confluent line. It is proposed that to define a printing width, first the atomiser gas should be set, 
so that a stable line is printed. The line geometry should then be altered within this range using 
the focussing ratio, and a knowledge of how the increased material deposition rate onto the 
substrate will affect line geometry.   

 

Validating Machine Capabilities 

Subsequent experiments investigated the capabilities of the bespoke automation system, 
working in tandem with the core aerosol jetting apparatus. The features that were assessed were 
the line pitch, sharp corners, and printing circles, as many complex shapes can be fundamentally 
made from these features. The aerosol was deposited through a 100 µm diameter nozzle. The 
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atomising current was kept constant at 0.65mA. The distance between the nozzle exit and the 
substrate was 3mm, and the substrate translated under the substrate at a speed of 2 mm/s. These 
experiments used a focussing ratio of 2, with the sheath gas set to 40 in order to print lines with 
a WHM in the region of 20µm. These extremely fine lines are desirable for many applications, 
particularly as the size of components in electronics and microfluidics becomes smaller. These 
experiments established boundary conditions for critical features when printing with a 20µm 
WHM line.  

Once a suitable line geometry was identified, and the process conditions established, 
the printed features were defined in G-code. Following the commands of the code, the substrate 
was manipulated in such a way to print discrete features. The use of a mechanical shutter to 
interrupt the flow enables the production of intricate, microscale patterns.  

Figure 5 shows the result of printing lines with decreasing pitch between samples. The 
first observation was the starting bulge in all the prints, caused by the mechanical shutter 
opening before the stage was moved. This was due to the line by line execution method of G-
code. Some advanced control codes enable the shutter to be opened independently of the stage 
movement, removing this artefact. Line integrity was confirmed by taking a cross sectional 
measurement. When the pitch of the line was smaller than two line widths (i.e. the space 
between the lines was smaller than the lines themselves), the regions of overspray noticeably 
interacted, and so the area between the lines was blurred. This has implications for applications 
where line integrity is key. For example, in fine pitch electronics this artefact may cause short 
circuits. For these applications is it recommended to print with a pitch greater than twice the 
line width.  

 

Figure 5: Pitch Experiments with a 20µm WHM line. (Left) White light interferometry measurements. (Right) 
Cross sectional profile measurement of white light data. 

Circles of decreasing radii were printed to determine the minimum radius to use in 
designs. In all these features it was noticed that the circle did not ‘complete’ and this was 
attributed to the backlash in the stage (~25µm in this system). Although backlash can be 
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designed out in many features, for circles it is unavoidable as both axes must always change 
direction to create it. Some automation systems may include anti-backlash features such as 
using a ball screw, which would remove this artefact.  

 
Figure 6: Increasing diameter circles printed with a 20µm WHM line. 

When the same process conditions were used to print circles, the WHM increased 
slightly, due to the constant acceleration required to manipulate the substrate in the circular 
shape. Cross sectional profiles were taken to validate the geometry (Figure 7). The minimum 
diameter achievable by this system was roughly 100µm, however to print a truly circular feature 
the limit was 200µm. Below this diameter the effect of backlash was relatively large, and 
affected the circularity of the printed features. As such a minimum recommended circle 
diameter of 200µm is recommended for a 20µm WHM line. 

 
Figure 7 Comparison of the profiles of the two smallest diameter circles. Circularity is affected by backlash in 
the 100µm diameter line. 

A series of sharp angles were printed to analyse the effect of a sharp corner on the 
depositions. Figure 8 shows the angles printed with 20µm width at half height line. In addition 
to the start and end bulges described previously, an accumulation of material was observed at 
the vertex of acute angles, due to the deceleration and acceleration profiles required to move 
the substrate through the sharp angle. As the angle increased and became obtuse, the stage does 
not need to change direction, so this effect was lessened. The manufacturing system 
successfully printed all corners, as sharp at 30°. 
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Figure 8: Increasing angle corners printed with a 20µm WHM line 

 

Substrate Alignment and Complex Patterning 

Integration into hybrid manufacturing processes is reliant on the ability to precisely 
align substrates onto the machine. The in-process camera can align the substrate from a fiducial 
feature. The multi-axis stage incorporates one additional axis of rotation, meaning that the 
substrate can be loaded then aligned. The camera is capable of distinguishing features as small 
as 5µm, so substrates can be positioned with extremely high accuracy. The alignment capability 
was showcased by printing into 50µm channels, produced by casting from a photolithography 
mould, for extremely fine pitch microfluidic device. An optical microscopy image of the printed 
features is shown in Figure 9. 

 
Figure 9: Confluent PEDOT:PSS lines printed into 50µm wide channels in PDMS. Scale bar = 50µm 

Aerosol Jet is suitable for integration in any process that is controlled by machine code. 
To change the pattern the code can be altered, without the need to update any templates. 
Therefore, even complex changes or new designs can be output quickly. A DXF to G-code 
converter was developed which enables complex designs to be incorporated into processing. 
Figure 10 showcases the ability to print intricate designs on a small scale by showing a 
University of Leeds logo printed within a 1.5mm square. 

 

Figure 10: Example of an intricate pattern produced by Aerosol Jet Printing (a) pattern viewed under an optical 
microscope with a match head for scale (b) white light interferometry scan showing fine details 
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Conclusions 

In summary, an automation system for Aerosol Jet printing has been characterised, and 
processing conditions to reliably print 20µm and smaller features from PEDOT:PSS were 
defined. At all focussing ratios, the material deposition rate was proportional to the total gas 
flow rate. The surface interactions of material and substrate affect the printed line geometry. In 
general, increasing the gas flow rate results in larger geometry. These increases manifested as 
either maximum height increase, or once a critical point is reached, they were due to an increase 
in line width. The approach to specifying a line width should be to first set an appropriate 
atomiser gas to achieve a stable deposit, followed by tuning the focussing ratio. It was 
recommended that for successful printing, the pitch of lines be no less than twice the line width, 
the diameter of a circle should be no less than 200µm, and any sharp corners should be an 
obtuse angle. The flexibility in terms of design was shown by printing the University of Leeds 
logo within a 1.5mm square. Aerosol Jet is an extremely versatile technology that can be applied 
to a range of scenarios. Particularly, the opportunity for novel and multi-material printing, 
deposition onto non-planar substrates, and alignment capability enable integration within a 
wide range of hybrid processes that require selective surface alterations.  
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