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Abstract 

Laser Metal Deposition with wire (LMD-w) is one of the novel Direct Energy Deposition 
(DED) processes that is gaining the attention of various industries, especially aerospace, due to the 
potential cost and lead time reductions for complex parts. However, subjects of development 
include optimization of process parameters (for example laser power, wire feed speed, robotic 
travel speed, inter-layer cooling time etc.) for large scale adaption of this process. These 
parameters influence residual stress which potentially results in distortion and subsequent 
mechanical properties. Inter-layer cooling time is one of the main influences on production volume 
and is typically used to help control the cooling conditions to mitigate part distortion. Therefore, 
this paper is aimed at investigating different inter-layer cooling times on distortion and resulting 
mechanical properties of the parts produced by LMD-w. Distortion of deposited Ti-6Al-4V walls 
was measured automatically using a laser scanner, which was attached to the robotic arm itself. 
Finally, suitable recommendations are discussed to optimize the inter-layer cooling time to 
produce parts with desired mechanical properties.  

Keywords: Additive Layered Manufacturing, 3-D Printing, Direct Energy Deposition, Laser Metal 
Deposition with wire, Ti-6Al-4V, Laser Scanner, Distortion, Residual Stress 

1. Introduction

Since their first introduction more than 30 years prior, additive manufacturing (AM) processes 
for metals have been produced and commercialized in the market under different names, for 
example, Direct Metal Deposition [1], Laser Engineered Net Shaping [2], Shaped Metal 
Deposition [3], Selective Laser Melting [4], and Electron Beam Freeform Fabrication [5]. In every 
one of these processes, a heat source is used to create a melt pool into which a wire or powderized 
feedstock is fed, or the heat source is applied to a powder bed to create beads after solidification. 
The beads are realized by relative movement of the melt pool and the substrate by using an 
industrial robotic arm or a gantry system [6]. A part is then manufactured by depositing beads 
adjacent to each other and layer upon layer. The most common technique to date has been to use 
a high-power laser as the heat source with metal powder as the feed stock. Other conventional 
welding techniques have likewise been introduced, for example, Tungsten Inert Gas (TIG) welding 
[7], Gas Metal Arc Welding (GMAW) [8], Plasma Transferred Arc (PTA) welding [9], [10], and 
Electron Beam (EB) welding [11].  

The high-power laser-based technique remains the most common because of several 
advantages, for example, the relatively low heat input to the base material and good shape accuracy 
of the realized geometries. This Laser Metal Deposition (LMD) process has been dominated by 
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powder-based technologies because of flexibility and robustness of the process. However, the 
powder-based technologies have been developed for building small and complex geometries, with 
very little focus on deposition rate. The deposition efficiency varies depending on the system set-
up, and post treatment of the scattered powder is required. For large scale parts with moderate 
complexity, such as flanges or bosses, it is more rewarding to use wire-based processes, since these 
lead to higher deposition rates, better material quality and better surface finish [12]. While the 
utilization of powder requires specially planned and designed feeding nozzles, the wire-based 
processes require much simpler equipment and standard welding hardware.  

Laser Metal Deposition with wire (LMD-w) is a novel process that fabricates components 
using a high-power laser source and adds material in the form of metal wire. The laser generates a 
melt pool on the substrate material into which the metal wire is fed and melted, forming a 
metallurgical bound with the substrate [13]. By moving the laser processing head and the wire 
feeder, i.e. the welding tool, relative to the substrate a weld bead is formed during solidification. 
The relative movement of the welding tool and the substrate is made using a 6-axis industrial robot 
arm. The formation of a weld bead is illustrated in Figure 1 along with images from the real 
process. 

 
Figure 1 Left: Illustration of laser-wire interaction Right: Top and side view images of the real 

process [13] 

 
One main consideration for the resulting parts of the LMD-w process is the dimensional 

precision compared to an initial input geometry. Each layer is formed by melting individual passes 
from the wire, which experiences rapid heating, melting, solidification, and cooling during the 
deposition process. While the part is manufactured, the deposited material experiences continuous 
heating and cooling cycles as more passes and layers are deposited. One of the consequences of 
the thermal gradients induced in the components by the layer-by-layer deposition of material in 
AM processes is the build-up of undesirable levels of residual stress and distortion [14]. 
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2. Literature Review 
 

The development of residual stress and distortion in AM processes has several similarities with 
multi-pass welding. Several researchers have explored techniques to reduce distortion in similar 
multi-pass welding processes including the investigations by Michaleris and DeBiccari [15] who 
demonstrated that decreasing heat input would result in a decrease in workpiece distortion and 
Masubuchi [16] who confirmed that constraining the workpiece can limit distortion. Futhermore, 
Deo and Michaleris [17] examined the impact of heating the weld region immediately prior to 
welding and found that the technique can be utilized to achieve zero net distortion. In AM research 
Klingbeil et al. [18] and Cornin et al. [19] each found that bulk substrate preheating can be used 
to decrease distortion in deposited workpieces. 

In AM processes, the influence of change in path planning and inter-layer cooling time between 
passes on residual stress and distortion have also been studied. For instance, the selection of 
different deposition paths has been shown by Nickel et al. [20] to notably affect distortion in AISI 
1117 C-Mn steel, and has also been studied by Mercelis and Kruth (2001) to influence residual 
stress in AISI 316 austenitic stainless steel. With respect to changing inter-layer cooling time 
between passes, Jendrzejewski et al. (2007) reported that shorter delays reduce the measured 
residual stress in deposited Cobased stellite SF6 alloy, and Klingbeil et al. [18] concluded delays 
to reduce distortion in AISI 308 austenitic stainless steel. Fessler et al. [21] reported that allowing 
deposition to cool between passes decreases distortion of nickel-base INVAR alloys and austenitic 
stainless steels. Costa et al. [22] and Torries et al. [23] studied the effect of introducing inter-layer 
cooling time between deposited layers on the resulting thermal history and microstructure of laser 
deposited AISI 420 steel and Ti-6AL-4V respectively. The study concluded that low inter-layer 
cooling times result in higher temperature levels and notably altered microstructure when 
compared with longer inter-layer cooling times. 

Whereas these studies have concentrated on post-process measurements of accumulated 
distortion, others have used in-situ measurements to monitor the temporal accumulation of 
distortion. Lundbäck [24] estimated in-situ distortion on single wall builds utilizing an optical 
measurement system to validate their model of the GTAW process. Plati et al. [25] utilized a linear 
variable differential transformer to measure the deflection of the free end of a cantilevered 
substrate during powder-based cladding. Grum et al. [26] recorded in-process strain using 
resistance measuring rosettes to measure strain accumulation during laser cladding. Ocelik et al. 
[27] utilized digital image correlation to measure distortion of single and multi-bead Nanosteel, 
Eutroloy 16012, and MicroMelt 23 powder laser depositions on C45 steel and 301 stainless steel 
substrates. The in-situ measurements taken in these works offer more prominent understanding 
into distortion accumulation than conventional post-process distortion measurements, but do not 
compare the impact of changing materials or inter-layer cooling time. The in-situ distortion 
measurements have primarily been conducted for model validation. Also, some of the other 
researchers Ding et al. [28], [29], [30], Montevecchi et al. [31], Simunovic et al. [32] have 
developed thermo-mechanical models to predict residual  stress and the resultant distortion in the 
large parts.  However, the relationship between inter-layer cooling time and heat input was not 
discussed and then interlayer cooling time is one of the parameters which affects the overall 
production rate. 

Much of this previous work on the accumulation of distortion during the deposition has focused 
on welding and laser cladding processes. AM, on the other hand, involves the deposition of 
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multiple layers and potentially large volumes of material to produce discrete shapes and 
components. In cases where AM processes have been investigated, the impact of changes in the 
inter-layer cooling time between multiple passes on the accumulation of distortion and the impact 
on the mechanical properties of the realized components has not been investigated. In the work 
reported here, in-situ measurements of distortion during the deposition of Ti-6Al-4V are made to 
investigate the effect of inter-layer cooling time on the mechanical properties.   
 

3. Experimental Procedure 
 

This section describes the base materials, consumables, deposition conditions, power supplies, 
set-up and techniques deployed during the investigation. The experiments were performed using 
Ti-6Al-4V plates and delivered according to the specifications AMS 4911; a 1.6 mm diameter Ti-
6Al-4V solid wire consumable was used and delivered according to the specifications AMS 4954. 
The compositions in wt.% for substrate and electrode wire are shown in the Table 1. 

Table 1 Chemical composition of substrate and wire 

Element Substrate (wt.%) Wire (wt.%) 
Carbon 0.01 0.02 

Iron 0.16 0.18 
Aluminum 6.35 6.03 
Titanium Remainder Remainder 
Vanadium 4.13 4.08 

Hydrogen (ppm) 25 25 
Nitrogen 0.01 0.01 
Oxygen 0.19 0.18 

 
3.1 Preparation of substrate 
 

The titanium substrates were cut from a large titanium plate with a thickness of 6.4 mm. 
The dimensions of the substrate used for the investigation was 500 mm x 155 mm. The substrate’s 
surface was first wiped using an acetone dampened clean paper cloth. Then a finishing disk Cibo 
SAG/5/115 was mounted on a hand-held grinder with a low rotational speed and the surface was 
ground to eliminate oxide layers and impurities. Finally, degreasing was repeated using the acetone 
dampened clean paper cloth. The substrate was clamped onto a steel block with ceramic washers 
in between them to avoid heat transfer through conduction. The steel block was then placed onto 
an aluminum table. A schematic diagram of the arrangement is shown in Figure 2. 

3.2 Equipment set-up 
 

All the investigations were conducted with a 6-axis KUKA ‘KR90 2900 extra HA’ robot. 
Two fiber delivered diode lasers each with the power of 10.7 kW and wavelengths of 940 – 980 
nm and 1020 – 1060 nm were used, and they were combined using a laser head combiner to form 
a laser with 20 kW power. The laser light was conveyed to the optics to eventually form a 7.69 
mm diameter out of focus laser spot on the work piece. Abicor Binzel was used as the wire feeder. 
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All the investigations were performed in a closed argon environment with less than 250 ppm O2 
content. The equipment set up is shown in Figure 3. 

A laser line scanner was added to the system to measure the height of deposited layers, and 
it enabled the implementation of layer height control. It scans from the left end of the plate to the 
right end of the plate and records data for every 0.5 mm of travel. The laser scanner then generates 
layer height maps; subsequently, the correction data for the subsequent layer is generated from the 
control algorithm generated in-house, to maintain a set layer height for all the layers.  The control 
algorithm was developed using LabVIEWTM software and was executed in a computer. 
LabVIEWTM software was also used to interface with the robot, laser and wire feed systems as 
well as collecting and logging data.  
 

 
(a) Top view 

 
(b) Side view 

Figure 2 Arrangement (a) Top view (b) Side view 
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3.3 Design of Experiments 
 

The weld parameters used for deposition are listed below in Table 2. The dimensions of 
the walls were 200 x 20 x 11 mm3.  Continuous weld beads 200 mm long were deposited one layer 
at a time in the same deposition direction. With the weld parameters listed below, the single bead 
width and single bead height ranged between 9-12 mm and 0.8-1.2 mm respectively. Thus, two 
beads were deposited next to each other with an overlap that resulted in a flat deposited layer of 
width 21 mm. 

 
Figure 3 LMD-w cell 

 
Table 2 Deposition and weld bead parameters 

Parameter Value 
Laser power 11.5 kW 
Robot travel speed 12 – 14 mm/s 
Deposition rate 2.0 +/- 1.0 kg/hr 
Single bead width 9-12 mm 
Single bead height 0.8-1.2 mm 

 
Before depositing a new layer, the previously deposited layer was scanned using the laser 

line scanner, and the height data was recorded. To maintain a constant layer height, the control 
algorithm created new weld parameters which were then used to deposit the subsequent layer 
automatically. In total six walls were deposited. Three of them were clamped all-round the 
substrate, and three were clamped only at the center. Interlayer cooling time is the wait time 
between the end of depositing a layer and start of height scan for that layer. Each wall was 
deposited using a different interlayer cooling time. In total ten layers were deposited for each wall. 
The six walls are denoted as Wall 1, Wall 2 and so on until Wall 6 and are described below.  
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Wall 1 was built with clamps all-round the substrate with no inter-layer cooling time. Wall 2 
was built with clamps all-round the substrate with an inter-layer cooling of 30 min after depositing 
every five layers. Wall 3 was built with a center clamp with no inter-layer cooling time. Wall 4 
was built with clamps all-round the substrate with an inter-layer cooling time of 30 min after 
depositing every two layers. Wall 5 was built with center clamp with an inter-layer cooling time 
of 30 min after depositing every two layers. Wall 6 was built with center clamp with an inter-layer 
cooling time of 30 min after depositing every five layers. These are described in the form of a table 
below (Table 3).  
 
Table 3 Description of walls deposited 

 
Sample Clamped/unclamped Inter-layer cooling time of 30 min after every ‘n’ 

layers of deposition (n) 
Wall 1 Clamped 10 
Wall 2 Clamped 5 
Wall 3 Unclamped 10 
Wall 4 Clamped 2 
Wall 5 Unclamped 2 
Wal 6 Unclamped 5 

 
4. Results and discussion 

 
 
Below are the graphs that show a correlation between the layer number and vertical deformation 
for each wall. Figure 4 and Figure 5 show the vertical deformations of the plate at the left end and 
right end of the plate respectively with respect to the layer number. 
 

 
Figure 4 Deformation of left end of the plate with an increase in layer number 
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Figure 5 Deformation of right end of the plate with an increase in layer number 

 
The vertical deformation on layer zero indicates the deformation of the plate without any 

deposited material. Likewise, the vertical deformation on layer 10 indicates the deformation of the 
plate after 10 layers of deposition and 30 min of cooling time. 
 

As shown in Figure 4 and Figure 5, the walls built using only center clamps experienced 
more vertical deformation on the right end of the plate than on the left end of the plate; the vertical 
deformation also increased as more layers were deposited. This is due to the preheating effect. The 
robot moves from the left end to the right end of the plate depositing beads from left to the right. 
Therefore, the heat also transfers from left to right and downwards through conduction mode 
primarily. There is more heat accumulation on the right end compared to the left end, which is also 
seen from the thermocouple readings, that were attached on the both ends of the plate. 
Subsequently, there is more residual stresses and thus, more deformation. Therefore, the 
deformation at the right end of the plate is more than the deformation at the left end of the plate. 
 

It is also seen that deformation increases with both an increase in layers and the 
introduction of inter-layer cooling time; the, deformation decreases after depositing the subsequent 
layer. From Figure 6, it is seen in the case of Wall 5, which was built using only center clamps and 
with an inter-layer cooling time after every two layers. The deformation before the third layer of 
deposition was 4.5 mm, and then it decreased to 3.5 mm just before fourth layer of deposition. A 
similar trend was seen for Wall 3 and Wall 6, too. This trend is due to the shrinkage of the deposited 
metal, which causes the plate edges to lift resulting in vertical deformation. Then when a 
subsequent layer is deposited after the inter-layer cooling time, the deposited metal adds heat to 
the previously deposited layers, which then expand and lower the edges of the plate [14].  
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In case of walls built with clamps all-round the substrate, the deformation was found to be nearly 
zero, both at the left and right ends of the plates irrespective of inter-layer cooling times. 
 

After depositing 10 layers with inter-layer cooling time and allowing them to cool down, 
all the Ti-6Al-4V plates were un-clamped. Then, the distortion at the right end of the plate was 
measured. Figure 6 shows the distorted plates after un-clamping. The vertical deformation at the 
right end of the plate for each wall is measured using a ruler and is presented in Table 3. 
 

  
Wall 1 Wall 2 

  
Wall 3 Wall 4 

  
Wall 5 Wall 6 

Figure 6 Ti-6Al-4V Walls after unclamping 

 
 

Table 4 Vertical deformation of un-clamped deposited walls 

Sample ID Vertical deformation (mm) 
Wall 1 6 
Wall 2 7 
Wall 3 8 
Wall 4 7 
Wall 5 12 
Wall 6 9 

 
All six deposited walls were used to extract samples for room temperature tensile testing 

in accordance with the ASTM E-08 13a standard. One half of the wall was tested in an as-deposited 
condition, while the other half was subjected to the heat treatment recommended by the AMS 4999 
standard, which involved annealing the samples at 538 oC +/- 14 for 4 hours +/- 0.25. Table 4 
compares the monotonic tensile properties of as-deposited samples across different processing 
conditions, while Table 5 compares the tensile properties of their heat-treated counterparts. 
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Table 5 Tensile properties of as-deposited samples 

Sample ID Temp. UTS 
(ksi) 

0.2 YS 
(ksi) 

Elong 
(%) 

Reduction in 
Area (%) 

Modulus 
(Msi) 

Wall 1 Room 144.2 127.0 8.0 13 16.4 
Wall 2 Room 145.5 128.8 11 19 16.8 
Wall 3 Room 143.9 128.0 11 22 14.5 
Wall 4 Room 146.1 129.5 11 23 15.5 
Wall 5 Room 145.6 129.2 13 24 15.9 
Wall 5 Room 144.1 127.0 13 21 16.5 

 

Table 6 Tensile properties of heat treated samples 

Sample ID Temp. UTS 
(ksi) 

0.3 YS 
(ksi) 

Elong 
(%) 

Reduction in 
Area (%) 

Modulus 
(Msi) 

Heat Treated Wall 1 Room 136.5 123.6 13 18 15.5 
Heat Treated Wall 2 Room 139.8 126.8 15 32 15.6 
Heat Treated Wall 3 Room 138.2 124.7 15 24 15.6 
Heat Treated Wall 4 Room 139.7 126.6 11 13 15.9 
Heat Treated Wall 5 Room 140.9 128.0 15 29 16.1 
Heat Treated Wall 5 Room 139.9 127.6 15 30 16.0 

 
In the as-deposited condition, the samples have similar Yield Strength (YS) and ultimate 

tensile strength (UTS) irrespective of the processing condition involved. However, there is some 
scatter in the elongation to failure. The similarity of YS may arise from near similar 
microstructures in the as-deposited condition, whereas the scatter in elongation may result from 
the presence of porosity in the as-deposited samples. Upon heat treatment, there is a noticeable 
drop in the YS and UTS values in all cases, and yet again the properties are within scatter. There 
is an increase in elongation on the heat-treated samples in general. The reduction in strength along 
with the increase in elongation is indicative of microstructural coarsening that is to be expected at 
the annealing temperatures. To better understand the impact of varying cooling times and clamping 
states during deposition of these samples, the microstructures from two extreme cases (Wall 1 and 
Wall 4) were evaluated via scanning electron microscopy. The micrographs are presented in Figure 
7. 
 

Microscopic examination shows the presence of basketweave in both the processing 
conditions. However, the similarity in microstructures is intriguing. These similarities in 
microstructures may have been caused by the start plate, or heat sink, being much larger than the 
part itself. Thus, Wall 1 maintained a high enough cooling rate over 10 layers to result in a 
basketweave microstructure. However, in the case of Wall 4, the cooling rate was as fast as that of 
Wall 1 during the deposition of the first two layers. In such a case, the deposited bead may already 
have cooled down to the background substrate temperature, which acts as a heat sink. On 
deposition of the subsequent two layers after a 30 minutes wait, if the prior layers are already at 
the background temperature, then the cooling rate will be similar as the build progresses. Thus, in 
the limited 10-layer build, the effect of the larger heat sink dominates over any potential impact 
the inter-layer cooling time can have. However, for taller, it is very likely that a continuous build 
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may have a coarser microstructure compared to one that has substantial inter-layer cooling time 
because of the thermal buildup resulting from the poor thermal conductivity of titanium. 
 

 
Figure 7 Microstructures of Wall 1 and Wall 4 in as-deposited conditions 

 
5. Conclusions and Future Work 

 
1) Cooling time between deposited layers influences the distortion of the plate, and 

unclamped samples showed more distortion than the clamped samples. 
2) Longer inter-layer cooling time will cause larger distortion.  
3) Since the built walls were not high, all the heat was transferred to the large heat sink or 

start plate thus, similar microstructure and mechanical properties are seen. 
4) Wall 1 showed minimal distortion. Thus, for building large scale parts that are 10 layers or 

less, it is recommended not to use any inter-layer cooling time. This way total production 
time can be reduced. 

5) Cooling time influences distortion but not mechanical properties for large scale parts that  
are not high. 

6) There is a need to correlate amount of distortion to microstructure and mechanical 
properties for large scale components. 

7) There is also a need to focus on the deposition pulling away from the start plate due to the 
residual stress build up. 
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